
Meteorol Atmos Phys 82, 287–301 (2003)
DOI 10.1007/s00703-001-0593-8

1 Deutscher Wetterdienst, Offenbach, Germany
2 Dipartimento di Ingegneria Civile ed Ambientale, Universit�aa degli Studi di Trento, Trento, Italy

Review of numerical methods for nonhydrostatic
weather prediction models

J. Steppeler1, R. Hess1, U. Schättler1, and L. Bonaventura2

Received July 6, 2001; revision October 12, 2001
Published online: November 21, 2002 # Springer-Verlag 2002

Summary

Currently available computer power allows to run opera-
tional numerical weather prediction models at resolutions
higher than 10 km. The aim of such high resolution mod-
eling is the prediction of local weather, including oro-
graphically induced winds and local precipitation patterns.
In this range the hydrostatic approximation is no longer
valid and nonhydrostatic models have to be used instead.
For several decades these models have been developed for
research purposes only, but operational application is now
reality. In this paper, the numerical methods used in current
nonhydrostatic forecast models will be reviewed and some
promising techniques in this field will be discussed. Special
attention is given to aspects such as the choice of the
vertical coordinate, the efficiency of algebraic solvers for
semi-implicit time discretizations, and accurate and non-
oscillatory advection schemes.

1. Introduction

Operational numerical weather prediction (NWP)
models are currently close to the 10 km hori-
zontal resolution threshold, beyond which the
hydrostatic approximation becomes inaccurate.
Therefore, many NWP centers have been doing
research in nonhydrostatic (NH) modeling over
the last ten years. Some of the numerical meth-
ods used for NH models are adaptations of meth-
ods well tested in the hydrostatic case. Many of
these techniques are presented in reviews such
as Arakawa and Mesinger (1976), and Pielke
(1984). However, some specific features of NH

dynamics and some more recent numerical de-
velopments require special consideration.

In most NH models, for example, the vertical
coordinate is fixed in time and based on geomet-
rical height, whereas it is mostly time dependent
in hydrostatic modeling. Fully elastic models
require numerical methods that handle sound
waves appropriately, in order to avoid excessive
time-step restrictions. Semi-implicit time inte-
gration methods can be chosen here, which lead
to three dimensional Helmholtz equations as op-
posed to two dimensional ones, which are solved
in hydrostatic semi-implicit schemes. The solu-
tion of the three dimensional equations require
highly efficient algorithms, that must be appli-
cable on parallel computers.

Furthermore, special numerical techniques are
required for forecasts in the meso-� scale which
is resolved with the very high resolution that can
be reached by NH models. The most important
among these are small scale orographically
induced winds, explicit representation of convec-
tion, and local weather, such as local precip-
itation and fog. Orography in high resolution
models in general is steeper than for larger
scales. Therefore, spurious numerical effects
caused by the deformation of the terrain-follow-
ing coordinates are potentially present and must
be avoided. Explicit forecasts of convection
require numerical methods that can handle highly



divergent flows. Numerical methods have to be
appropriate for this situation. Prediction of local
weather features such as rain and fog requires
accurate and non oscillatory moisture advection
schemes. The accuracy of second- or first-order
schemes, which are present in many current op-
erational models, may not be sufficient for the
applications indicated.

The issue of conservation of mass, and possi-
bly of other quantities such as energy or momen-
tum, may become important in this respect, even
though most current NH models neglect this.
Furthermore, models that resolve convective
clouds can be used for nowcasting purposes over
time ranges of 3 to 6 hrs. Assimilation of highly
resolved observations, such as radar, is essential
for such applications. Due to the strong time
dependence, these indirect observations need
to be assimilated via continuous assimilation
schemes, for which a high efficiency is required.
This important numerical issue is not subject of
this review but is treated by Park and Županski
(2002).

This paper reviews and discusses features of
the dynamical cores of NH numerical models,
with special attention to the discretization ap-
proaches for the fully elastic equations applied
in operational models. A number of important
aspects will not be considered here, such as, for
example, top and lateral boundary conditions.
These aspects are currently treated in the same
way as in hydrostatic models. It will, however, be
attempted to discuss numerical techniques which
may become important for the future high reso-
lution dynamical cores. These include methods
for the solution of Helmholtz equations and
adaptive meshes. In particular, techniques which
are being applied successfully in areas like ocean-
ography or computational aerodynamics will be
considered. Some of these approaches are likely
to be relevant in the development of the next
generation of operational NH models. Current
operational NH models are described in Sect. 2.
Problems related to the coordinate choices, dis-
cretization grids, and vertical coordinates are
discussed in Sect. 3. Split-explicit and semi-
implicit time discretizations are discussed in Sect.
4, along with numerical methods for the solu-
tion of the resulting sparse linear systems. The
problem of advection schemes for NH models
is discussed in Sect. 5 and some perspectives

for the future developments are presented in
Sect. 6.

2. The state of the art of operational
nonhydrostatic models

NH models have been developed since the early
70s for research purposes in the atmospheric
sciences community. Thorough reviews of earlier
work can be found in Pielke (1984). In the past,
the anelastic approximation was often used,
which can be justified on the basis of a scale
analysis. In this approach, the continuity equation
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is replaced by the diagnostic equation

r � ð�0uÞ ¼ 0; ð2Þ
where �0 is a reference density profile.

Various anelastic models developed by German
universities and research centers in the 80s have
been reviewed in Schl€uunzen (1994). The purpose
of this section is rather to review models that are
currently run in operational or quasi-operational
mode. The models mentioned in this paper are
summarized in the Appendix. All these models
employ the fully elastic equations, where the con-
tinuity equation is used without further approxi-
mation before discretization.

The model equations are often formulated in
advection form, using temperature and pressure
as prognostic variables, along with the velocity
components and moisture fields. As an example,
the equations employed in the Lokal Modell
(LM) (see Steppeler et al, 2002) can be written
in Cartesian (x, y, z) coordinates in the dry adia-
batic case as
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Here, u, v and w are the three components of the
velocity vector v, p is pressure and T the absolute
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temperature. � is the density of moist air, con-
nected to the pressure p by the equation of state
p¼ �RT with the gas constant R for dry air. cpd

and cvd are the specific heats of dry air at con-
stant pressure and constant volume, g is the grav-
ity acceleration and f is the Coriolis parameter.
D�r � v denotes the three-dimensional wind
divergence.

Some models, such as MM5 and LM, violate
mass conservation due to numerical approxima-
tions to (3) and approximations concerning the
heating rates, which are considered as zero in (3).

2.1 Split-explicit, Eulerian models

A number of NH models employing Eulerian
discretization of advection have been used in
an operational or quasi-operational mode to pro-
duce numerical forecasts in real time. Models of
this kind are ARPS (Xue et al, 2000), the JMA-
MRI model (Saito, 1997), LM (Steppeler et al,
2002), MM5 (Dudhia, 1993), and RAMS (Cotton
et al, 2002). The robustness and the computer
time required by these models are not too differ-
ent from current hydrostatic Eulerian operational
models, if proper care in the implementation is
taken.

The numerical methods used in these models
are different from those employed in most opera-
tional hydrostatic models. While for hydrostatic
models the use of the semi-implicit method is
quite standard, sometimes in combination with
a semi-Lagrangian treatment of advection, NH
models are mostly based on the split-explicit
scheme introduced by Klemp and Wilhelmson
(1978) and on three time levels, leapfrog time
discretization (see Sect. 5). In order to make the
small time step size of the split-explicit method
independent from the vertical grid spacing, which
is much smaller than the horizontal one in opera-
tional NWP applications, vertical discretization is
usually treated implicitly. Although this method is
quite well established and currently the best op-
tion to reach operational efficiency at the meso-�
scale, the more complicated approaches, such as
three dimensional semi-implicit methods could
well be faster, if sufficient research is invested.
Two time level schemes have a potential for
greater efficiency and accuracy of moisture treat-
ment, but encounter some difficulties, as pointed
out by Skamarock and Klemp (1994).

All models mentioned above use terrain fol-
lowing coordinates which are fixed in time.
Mostly this is a �-coordinate based on reference
pressure or Gal-Chen type coordinates (see Sect.
3). Some of the models use second order cen-
tered differences. As an option, higher-order
advection schemes are also implemented some-
times. For all models the grids are uniformly
structured, and mostly of Arakawa-B or C type
(Arakawa, 1966).

The models described here have a computa-
tional speed similar to that of Eulerian hydrostatic
models and are therefore quite attractive for
operational or quasi-operational use. With the
exception of JMA-MRI, the models have been im-
plemented on parallel computers with distributed
memory (see Sathye et al, 1997, for ARPS,
Sch€aattler et al, 2000, for LM, Michalakes, 1997,
for MM5, and Tremback and Walko, 1997, for
RAMS). The parallelization strategy used is the
decomposition of the horizontal domain, where
each processor solves the model equations on its
own subdomain. Because the split-explicit meth-
od only involves grid points of the finite differ-
ence stencil, all communications are local, i.e. an
exchange is necessary only between adjacent
domains. This is a substantial advantage on mas-
sively parallel distributed memory computers.

2.2 Semi-implicit, semi-Lagrangian methods

Semi-implicit and semi-Lagrangian methods have
been developed for hydrostatic models to over-
come limitations posed on the time step due to
stability reasons. The first fully elastic semi-
implicit semi-Lagrangian NH model has been
introduced in Tanguay et al (1990). In this paper
it was demonstrated that this approach is also
applicable to NH models using the fully elastic
equations (3). This model employed height as the
vertical coordinate and used the semi-Lagrangian
approach only for horizontal advection, while a
standard finite difference discretization was ap-
plied in the vertical direction. However, tests have
been carried out without topography only.

This attempt paved the way for the devel-
opment of other fully elastic, semi-Lagrangian
models in the Canadian research community.
Benoit et al (1997) developed the MC2 as a
research community mesoscale model by extend-
ing Robert’s and Tanguay’s work with features
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necessary for realistic three-dimensional sim-
ulations. A first test version of this model was
developed by Pinty et al (1995). One of the
main differences between the MC2 and the
former model is the introduction of the terrain-
following vertical coordinate of the Gal-Chen
type.

The GEM model (see, e.g., Staniforth and
Côot�ee, 1995; Côot�ee et al, 1998) has been developed
by the Atmospheric Environment Service of
Canada in order to replace both their previous
global and regional models. GEM is a unified
model which can be used simultaneously for glo-
bal and local forecasting. Semi-implicit and
semi-Lagrangian discretization is employed. A
stretched Cartesian grid allows for higher resolu-
tion over an area of interest and the hydrostatic
pressure vertical coordinate introduced by
Laprise (1992) is employed. Although devised
so as to be developed into a fully nonhydrostatic
model, it has been running operationally only in
hydrostatic mode so far.

In Europe, a semi-implicit semi-Lagrangian
model is developed at the UK Met Office, see
Cullen et al (1997). This model is based on pre-
vious work on mesoscale NH models, see, e.g.
Cullen (1990) and Golding (1992). It is a unified
forecast and climate model, which is meant to
replace the existing unified model described in
Cullen (1993). In the new model, some of
the conventional meteorological approximations
(such as the shallow atmosphere approximation)
are not applied.

Care has to be taken when implementing semi-
implicit semi-Lagrangian models on parallel com-
puters. A parallel version of MC2 is described in
Thomas et al (1997). In semi-Lagrangian meth-
ods the derivatives of scalar fields are approxi-
mated along a parcel trajectory that arrives at a
grid point at the end of a time step. Values of the
departure point of this trajectory, which usually is
not a grid point, are computed by interpolation
of the surrounding grid points. When decompos-
ing the horizontal domain, the departure point
(and the necessary surrounding grid points) could
reside in any of the surrounding subdomains and
a trajectory could even traverse several sub-
domains. In the MC2 a fixed overlap strategy is
implemented, where all grid points are exchanged
between subdomains that might be necessary to
calculate the values for the departure points. For

this purpose the maximum possible wind speed is
estimated for the whole integration time.

While the semi-Lagrangian advection still
only needs a nearest neighbor exchange, many
numerically efficient solvers for the Helmholtz
equation in semi-implicit methods require a glob-
al communication. In the MC2 a flexible variant
of the generalized minimal residual algorithm
(FGMRES) is used. On the one hand there are
local communications necessary between neigh-
boring subdomains because of matrix-vector
products and also global communications for
the calculation of scalar products. The efficiency
and performance therefore depends much on
good parallel implementations of these methods.

2.3 Other operational models

The NH version of the spectral model ALADIN
has been developed on Laprise’s idea that hydro-
static-pressure coordinates could also be used
in nonhydrostatic atmospheric models (Laprise,
1992). Bubnova et al (1995) implemented a
scheme that uses hydrostatic pressure as an inde-
pendent variable and that remains very close to a
primitive equation system. The gravity and sound
waves are filtered through a semi-implicit algo-
rithm, where the discrete linear operators have
the same form as in the hydrostatic dynamics.
To handle the orography, a terrain following
hybrid coordinate is introduced.

Based on the NCEP meso-model, Janjic et al
(2001) proposed and tested an alternative ap-
proach for nonhydrostatic modeling. It is based
on relaxing the hydrostatic approximation in a
hydrostatic model using a vertical coordinate
based on hydrostatic pressure. Thus the model
can also be applied to nonhydrostatic motions.
The nonhydrostatic dynamics is introduced
through an add-on module that can be turned on
and off depending on the resolution. The system
of the nonhydrostatic equations is splitted into
the hydrostatic system and a set of equation that
allows the computation of corrections appearing
due to the vertical acceleration.

3. Grids and vertical coordinates

The high resolution which is necessary in order
to resolve NH effects results in very large
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computational grids and in a steeper orography.
The size of the required grids will be much larger
than in current hydrostatic models. (see also the
analysis in Lindzen and Fox-Rabinowitz, 1989).

Regarding the choice of the discretization grid,
a question that arises naturally is whether the
memory requirements necessary to achieve a
given accuracy can be reduced either by local
grid refinement in the areas of interest or by less
traditional choices of the discretization grid.
Some steps towards the development of adaptive
meshes have already been taken, which are
described in Sect. 3.1.

In contrast to hydrostatic models, where use of
a hybrid pressure based vertical coordinate is the
general choice, height based terrain following
coordinates are nowadays the most established
choice, but various difficulties have been encoun-
tered over very steep mountains. It is still unclear
to which extent the more complex orographies
of high resolution models will require different
approaches, some of which have already been
successful applied to other environmental flows.
The prognostic variables often combine a hori-
zontal C-grid arrangement with vertical stagger-
ing after Lorenz (1960) (all scalar variables at
the cell center and vertical velocity at the cell
side). This arrangement has been questioned in
Arakawa and Moorthi (1987) as a source of spuri-
ous computational modes and now some models
(see, e.g. Cullen et al, 1997) employ instead
the Charney-Phillips staggering introduced in
Charney and Phillips (1953). In this grid arrange-
ment, potential temperature (or temperature) is
given at the cell side, at the same location as
the vertical velocity.

With unstructured grids discretization is often
based on triangles and finite volumes or finite
elements. Unstructured grids can be refined in a
natural way during the construction phase. Com-
plications for dynamical grids are the dynamical
adaptation of the grids, the grid partitioning and
the load balance process for simulations on par-
allel computers. A number of simulations exist,
mostly in oceanography (Behrens, 1998) and
technical engineering. A finite difference discre-
tization has been proposed for NH models of
estuaries and lagoons in Casulli and Walters
(2000), where orthogonal grids are introduced
that extend Arakawa-C staggering to unstruc-
tured grids.

The simple data arrays of structured grids
facilitate implementation and provide efficient
memory access and thus numerical operations
and are therefore used for atmospheric simula-
tions. The atmosphere is a homogeneous medium
and also the lateral boundaries do not require the
flexibility of unstructured grids.

3.1 Adaptive and unstructured grids

Because of their high potential to save computa-
tion time and the possibility to run even higher
resolutions, a variety of different grid adapta-
tion approaches have been considered (see, e.g.
Arney and Flaherty, 1990; Bai and Brandt,
1987; Behrens, 1998; Berger and Oliger, 1984;
McCormick, 1989; Skamarock et al, 1989;
Fulton, 1997). These range from statically and
one-way nesting where an area of specific inter-
est is more highly resolved to dynamically adap-
tive grids that are automatically adjusted to the
dynamical weather conditions being simulated
and require two-way feedbacks. Whereas adap-
tive grids are almost standard for computational
intensive industrial applications as CFD or struc-
tural mechanics, operational meteorological mod-
els have at best very restricted adaptive features
(e.g., MM5, RAMS and LM).

In atmospheric applications, adaptive grids are
typically formed with rectangular patches of
higher resolution that are nested in the original
grid. Simple application of grid adaptation is the
nesting of higher resolution regional models into
lower resolved global models using one-way
interaction from the global to the regional model
only. Most of the models mentioned in Sect. 2
support self nesting procedures in order to refine
the resolution in predefined areas. A number of
them already provide two-way interactive cou-
pling with feedback from the fine to the coarse
grid (MM5, RAMS, LM).

Approaches to dynamically adapt the resolu-
tion to the simulated meteorological conditions
exist as well. Based on a refinement criterion
the areas to be highly resolved are determined
during simulation only. Dynamical grid adapta-
tion requires two-way interaction in order to
improve the accuracy of the global grid and to
remove the fine grid once it is not required any
more. Grid adaptation with more or less dynami-
cal rectangular patches have been implemented
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by Skamarock et al (1997), Fulton (1997), and
also for parallel computers by Michalakes (1997).
Grid partitioning and load distribution for paral-
lel computers with distributed memory were
investigated for a shallow water model in Hess
(1999).

Other approaches of structured adaptive grids
are continuous refinements, where the resolution
is smoothly increased to the certain region of in-
terest or techniques where gridpoints are slightly
moved (e.g., Dietachmayer and Droegemeier,
1992; Staniforth and Côot�ee, 1995; Côot�ee et al,
1998).

3.2 Vertical coordinates

Most NH models use vertical coordinates derived
from the natural height coordinate by an appro-
priate normalization, which allows to map the
computational domain onto a unit height box.
Such coordinates, also known as terrain following
vertical coordinates, have been used extensively
since the work of Gal-Chen and Somerville
(1975), and Clark (1977). More specifically, given
an orographic profile h(x, y) and some constant a
general normalized coordinate can be defined as

� ¼
z�h

zF�h
zF h 	 z 	 zF

z zF 	 z 	 zT :

�

Here, zF denotes some reference level above the
maximum orographic height and zT denotes the
height of the domain top. If zT¼ zF, the original
adapted coordinate of Gal-Chen and Somerville
(1975) is obtained, otherwise a hybrid coordinate
results, which reverts to the natural height coor-
dinate above the reference level zF. Another ap-
proach is the use of sigma levels based on the
reference pressure. This method is used in MM5.
LM allows a rather general coordinate where
time independent layers can be prescribed as a
table of z-values.

The choice of these terrain-following coordi-
nates has the advantage that the boundary layer is
uniformly resolved and orography is resolved
according to the model resolution. Furthermore,
the computational domain is rectangular, which
allows for simple data structures and efficient
model implementations. On the other hand, the
resulting coordinate system is non orthogonal
and is strongly deformed over steep orography,
thus resulting in a series of potential problems, in

part analogous to those highlighted in Gary
(1973), and Sundqvist (1976) for the case of the
pressure based coordinates. For example, numer-
ical experiments carried out with LM at DWD
showed that spurious flows develop over a steep
mountain because of purely numerical reasons, if
a stable atmosphere at rest is assumed as an
initial state. Furthermore, the Helmholtz equation
derived in semi-implicit models using such coor-
dinates in general is asymmetric, thus requiring
the application of computationally more costly
linear solvers (see the discussion in Sect. 4).

One attempt to overcome these difficulties is
the so-called �-coordinate proposed by Mesinger
(see, e.g. Mesinger et al, 1988). This method
describes the orography as a construction of
building blocks. Because of the discontinuity of
the orographic function it does not have sufficient
convergence properties (see Kr€ooner, 1997). Mod-
els based on the �-coordinate were shown to have
major difficulties at high resolution. An analysis
of inaccuracies arising in a NH �-coordinate
model has been carried out in Gallus and Klemp
(2000).

Another possible solution to the problems con-
nected to steep orography is the use of height as
vertical coordinate, without any terrain following
normalization, coupled to finite volume or finite
elements discretization of the Euler equations,
along the lines of what is done in many typical
CFD application areas, such as for example com-
putational aerodynamics. The natural coordinate
z suffers from obvious difficulties in obtaining a
uniform resolution of the boundary layer. Fol-
lowing standard schemes from CFD, such prob-
lems are, however, solvable, using variable grids
together with the finite volume approach. Various
types of finite volume discretization approaches
for oceanic circulation models have been re-
viewed and analyzed in Adcroft et al (1997) in
order to study their behavior over orography. In
fact, it was shown for example in Montavon
(1997) how a commercial CFD code could be
adapted to reproduce quite reasonable lee-wave
patterns. However, the straightforward applica-
tion of finite volume techniques to atmospheric
flows has resulted so far in methods whose com-
putational efficiency is not compatible with the
requirements of operational models. In the con-
text of estuarine modeling, the hybrid finite-
difference finite volume approach described in
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Casulli (1990), and Casulli and Cattani (1994)
has proven to yield rather efficient, accurate
and robust semi-implicit models. In this ap-
proach, only the divergence term in the pressure
equation is discretized by a simplified finite
volume method (see, e.g. Eqs. (5) in Sect. 4),
thus resulting in a symmetric Helmholtz equation
to be solved. This technique has also been suc-
cessfully extended to NH flows in estuaries, see,
e.g. Casulli and Stelling (1998). Furthermore, an
accurate and efficient computation of idealized
stratified atmospheric flow over two-dimensional
orography was achieved in Bonaventura (2000)
with a semi-implicit semi-Lagrangian model
based on the same principle. Extensions and im-
provements of this technique are currently inves-
tigated at DWD (Steppeler et al, 2002).

The pressure based �-coordinates, widely
employed in large scale models based on the
primitive equations, have also been applied to
NH models, see, e.g. Durran and Klemp (1983),
Dudhia (1993), and Xue and Thorpe (1991). A
vertical coordinate representing hydrostatic pres-
sure has been proposed in Laprise (1992). This
coordinate can be defined as

� ¼ 	� 	T

	S � 	T

; ð4Þ

where 	T, 	S represent pressure values, respec-
tively, at the top and at the bottom of the consid-
ered domain, and 	 is computed at each timestep
from the hydrostatic relation @	

@z
¼ ��g. This type

of vertical coordinate is practically advantageous,
because it allows to reuse physical parameteriza-
tion libraries available from hydrostatic models,
as well as allowing a simple way to switch from a
hydrostatic to NH model (see, e.g. Côot�ee et al,
1998). The hydrostatic pressure coordinate has
been incorporated in the GEM model and in the
ALADIN model of M�eet�eeo France.

4. Split-explicit and semi-implicit methods

With explicit time discretizations the size of
stable time steps is limited by the CFL-condition
that basically states that the fastest waves must
not propagate more than the mesh size within one
time step. In NH models using the fully elastic
equations disturbances propagate at the speed of
sound and because of the high local resolution
time steps are restricted to some seconds only.

A way to reduce these severe time step restric-
tions is the operator splitting scheme known as
the split-explicit method (also referred to as
mode splitting in other modeling communities).
In this approach, the elastic equations are solved
by splitted computation of the slow advective
tendencies and of the equation terms giving rise
to fast sound wave solutions. In the case of
the two-dimensional Euler equations (see, e.g.
Holton, 1992)
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Here, �0, p0 denote constant reference density
and pressure values, respectively. The advective
tendencies
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time step n are approximated first, usually by
leapfrog time discretization and centered finite
differences in space (see Sect. 5). The terms
responsible for the propagation of sound waves
are then integrated explicitly in time by forward
finite differences
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where 
¼ 1, . . . , Nsub is the number of substeps
to be computed, chosen in such a way that the
resulting short time step �� ¼ �t

Nsub
complies with

a CFL-condition based on the speed of sound.
This approach has been proposed in Klemp and
Wilhelmson (1978) and its stability properties
have been analyzed in Skamarock and Klemp
(1992) (see also the discussion in Browning
and Kreiss, 1994). In the three-dimensional case
the vertical coordinate is normally treated implic-
itly (see Ikawa, 1988). Therefore these schemes
can be described as one-dimensional implicit.
Split-explicit discretization is attractive because
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it does not require the solution of large linear
systems and it can be easily implemented also
on parallel computers.

On the other hand, the development of unified
models for global and regional forecasting is
generally found to be the most efficient option
for the future (see, e.g. Cullen, 1993; Côot�ee
et al, 1998). Therefore, the time discretization
employed should perform well also for large
scale flows in terms of efficiency and accuracy.
This efficiency in the framework of the split-
explicit methods is obtained by treating the buoy-
ancy term implicitly according to Skamarock and
Klemp (1992). This option is realized in LM,
which therefore handles also the coarser resolu-
tions efficiently.

Large scale flows can be simulated efficiently
by using semi-implicit discretization, which how-
ever results into models with a somewhat more
complex architecture. In its simplest first-order
version, semi-implicit time discretization of
Eqs. (5) is here given for the one-sided form by
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explicit discretization of the advective terms. The
values of unþ 1 and vnþ1 are then substituted into
the pressure equation so as to obtain

pnþ1 ��t2�p0

�0

�pnþ1 ¼ Fn; ð8Þ

where all the explicit terms are collected in Fn.
This Helmholtz equation has then to be solved at
each timestep in order to determine pnþ 1 and
update consequently the velocity values. Semi-
implicit time discretization has been widely ap-
plied in hydrostatic atmospheric modeling after
its introduction by Kwizak and Robert (1971),
and Robert (1982), while its application to the
full Euler equations for NH atmospheric model-
ing dates back to Tapp and White (1976). It is to
be remarked that this is analogous to what is
usually done in numerical modeling of incom-
pressible or anelastic fluids in order to impose

the divergence-free condition. This constraint
can be taken into account in a variety of ways,
resulting, among others, in the MAC method of
Harlow and Welsh (1965) or in the so called pro-
jection methods. Comprehensive reviews of the
main numerical techniques for incompressible
flow can be found in many standard computa-
tional fluid dynamic (CFD) references, see, e.g.
Dautray and Lions (1993), Patankar (1980),
Peyret and Taylor (1983), and Quarteroni and
Valli (1994). In all these methods, the numerical
solution of a Poisson equation is required at each
time-step, while in the case of compressible
fluids analogous steps lead to the derivation of
the Helmholtz equation for pressure.

In the following, the linear solvers most
widely applied in NH models are reviewed and
the relative advantages of the semi-implicit ver-
sus the split-explicit option are discussed.

4.1 Numerical problems and solutions
for semi-implicit models

The fast solution of the Helmholtz equation (8) at
each time step is the main drawback of semi-
implicit methods compared to explicit schemes,
especially with regard to the implementation on
parallel computers. In global NWP models, the
spectral method has been employed successfully,
but its efficiency for high resolution modeling is
increasingly being questioned. With hydrostatic
models it is possible to separate the three-dimen-
sional equation into a system of two-dimensional
Helmholtz equations for each mode or level.
These are then solved directly, for example by
Fast Fourier decomposition with subsequent
Gauss elimination for the resulting uncoupled tri-
diagonal linear systems, or iteratively (see below).
This separation is in general not possible for NH
models, where the full three-dimensional equa-
tions must be solved.

In NH models discretization of Eq. (8) results
in a large sparse linear system that is in best case
symmetric, positive definite and diagonally dom-
inant. However, it can be easily observed that
semi-implicit discretization of models using ter-
rain following coordinates yields asymmetric
Helmholtz equations (see, e.g. Pinty et al, 1995;
Saito, 1997, and Thomas et al, 2000). Specifi-
cally, the antisymmetric component depends in
general on the steepness of the orography.
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The much smaller scales in the vertical than
in the horizontal direction of todays operational
models lead to anisotropic dependencies and to
bad condition numbers (i.e., ratios between the
horizontal and vertical scales) that affect the rate
of convergence for iterative solvers. Moreover,
vertical discretization especially in case of steep
orography may reduce the smallest vertical mesh
size additionally which amplifies the problem. In
order to accelerate convergence in case of aniso-
tropic dependencies preconditioning can be ex-
tremely effective. Hereby the original equation is
transformed into another one with equal solution,
however better condition number. In case of
strong vertical couplings line preconditioners in
the vertical direction of todays operational mod-
els can be used which require the solution of
tridiagonal systems (see, e.g. Thomas et al,
2000; Skamarock et al, 1997).

Although direct solvers based on block-cyclic
reduction (Bunemann, 1969) have been applied to
meteorological models in the past (see, e.g. Leslie
and McAvaney, 1973; Haltiner and Williams,
1980), due to the size of the linear systems of high
resolution models, iterative methods can almost
exclusively be considered as a realistic option
for operational models.

Reviews of modern iterative methods can be
found, e.g. in Ortega (1988), and Golub and Van
Loan (1989). Basic iterative algorithms such as
the Gauss-Seidel or the successive over-relaxa-
tion (SOR) method have also been applied in
NWP models (see the previous references and
Fulton et al, 1986, for a review of earlier work).
In SOR corrections are computed for each single
equation of the system one after the other as
for Gauss-Seidel relaxation, however in order to
improve convergence rate, the corrections are
multiplied by a constant factor. These simple
methods, although robust and easy to implement
and parallelize, are, however, not considered to
be fast enough for high-resolution models.

More recently efficient Krylov methods have
been applied. The linear system is solved by
minimizing a corresponding cost functional with
a recursively computed sequence of vectors that
span the Krylov-subspaces. In general, without
rounding errors the exact solution would be
obtained after the minimization with regard to
n vectors, where n is the dimension of the prob-
lem. However in practice the minimization is

continued beyond n and stopped by an appropri-
ate criterion, e.g. based on an approximate rela-
tive error check. (In Smolarkiewicz et al, 1997,
stopping criteria for PCG methods are investi-
gated.) Another possibility is to apply only a very
limited number of vectors and repeat the mini-
mization iteratively from the beginning. Conver-
gence of Krylov methods can be fast but jerky:
often the residual is not diminished for a number
of additional vectors and then suddenly reduced
by orders of magnitude. Preconditioning of
Krylov methods usually can be performed within
the iterative solution.

The best-known Krylov solver is the conjugate
gradient (CG)-method (Hestenes and Stiefel,
1952) (with preconditioning PCG-method) for
symmetric linear positive definite systems. Since
standard discretization in terrain-following co-
ordinates of the Helmholtz equation (8) yield
asymmetric matrices, generalizations of CG for
asymmetric problems have to be used, such as
GCG, GCR, Orthomin, Orthodir, Bi-CG, Bi-
CGSTAB and GCS or GMRES (see the above
references, Freund et al, 1992), and, e.g., chap.
2 of Quarteroni and Valli, 1994, for a review).

Some of these linear solvers were applied suc-
cessfully in the context of anelastic models, see,
e.g. Kapitza and Eppel (1987); Kapitza (1988),
and Kapitza and Eppel (1992). The potential of
PCG based methods for atmospheric applica-
tions has been evaluated in Smolarkiewicz
and Margolin (1994), Skamarock et al (1997).
GMRES (Saad and Schultz, 1986) was applied in
a version of the LM of DWD (Thomas et al,
2000).

Multigrid algorithms are very attractive for
large scale two or three-dimensional Helmholtz-
Equations, because of their potential to achieve
optimal computational complexity. Very fast so-
lutions can be achieved, however, the implemen-
tation and setup for actual applications can be
difficult. In multigrid methods, sequences of coars-
er grids are employed in order to provide cheap
initial guesses for the respective finer grids and to
reduce low frequency error components effec-
tively by simple relaxations. Fast convergence
can be achieved also in case of strong vertical
couplings if line-relaxations in the vertical are ap-
plied (Thole and Trottenberg, 1985). A compre-
hensive review of multigrid methods is given in
Hackbusch (1985), and Trottenberg et al (2000).
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Multigrid solvers have been applied to the
algebraic problems resulting from semi-implicit
discretization of hydrostatic atmospheric models
in Fulton et al (1986), Barros et al (1990), and
Bates et al (1990). It is also being applied in
global models based on icosahedral grids, see
Baumgardner and Frederickson (1985).

Assessing the effective relative efficiency of
split-explicit and semi-implicit schemes is a dif-
ficult task, since it is highly dependent on the
characteristics of the problem being solved, as
well as on the specific solver and discretization
approach that is being employed. An attempt to
perform such a comparison was carried out in
Saito et al (1998), where the three-dimensional
semi-implicit version of the JMA-MRI model
was compared to the split-explicit version of
LM by means of idealized test cases of weak
forcing. The conclusion of this study was that,
for forecast applications, split-explicit was more
efficient. It was found that for the semi-implicit
option of the LM the efficiency was affected by a
decreased convergence rate or stagnation of the
GMRES method for realistic test cases, while it
was much better for idealized tests. The efficient
solution of the Helmholtz equation is a key issue
for the practical use of semi-implicit models.
Several aspects of the iterative solver could con-
tribute to improved efficiency in future models,
e.g. care has to be taken for the vertical discre-
tization, since this has an effect on the conver-
gence rate of the iterative solver. In Bonaventura
(2000) a non-normalized vertical z-coordinate
was applied that resulted into a semi-implicit
model with a symmetric and well conditioned
linear equation. It was shown that with PCG ter-
rain independent convergence at greatly reduced
computational cost was yield with respect to
analogous numerical tests performed in Pinty
et al (1995) over steep orography.

5. Advection schemes

The advective terms represent the main nonlin-
earity in the adiabatic equations of atmospheric
motion, so that the accuracy and efficiency of
their discretization are of essential importance.
Furthermore, the issue of mass conservation has
also great relevance for the transport of moisture
and other chemically reacting species. As a con-
sequence, the choice of the advection schemes

has usually a strong influence on the whole mod-
el architecture.

Traditionally, quite simple Eulerian schemes
such as centered finite differences with three time
level leapfrog time differencing have played a
major role in mesoscale and nonhydrostatic mod-
eling, so that many of the currently operational
models have inherited discretizations based on
this approach. However, other techniques such
as flux form schemes and semi-Lagrangian
schemes have also been applied since a number
of years.

Eulerian advection schemes are based on ei-
ther the advective or the conservative formula-
tion of the transport equation. If the solutions
are smooth, these two formulations are mathemat-
ically equivalent. This holds for most applica-
tions to atmospheric flows, so that use of the
conservative formulation is not required for cor-
rectness of the solution, in contrast to the typical
CFD applications for high Mach number com-
pressible flows.

Centered finite differences coupled to leapfrog
time discretization have proven to be a quite
robust modeling tool, in spite of the related nu-
merical difficulties such as the time-step decou-
pling and the subsequent need for explicit time
and space filtering (see, e.g. Haltiner and
Williams, 1980, and Pielke, 1984). This type of
advection discretization has been incorporated
in several NH models, see, e.g. Klemp and
Wilhelmson (1978), Durran and Klemp (1983)
and is used also in the operational LM model
of DWD (Steppeler et al, 2002). The centered
finite differences and leapfrog discretization are
combined in Dudhia (1993) with the flux form
reformulation of the equations proposed in
Anthes and Warner (1978). However, as observed
in Gross et al (1998), the use of time filters may
lead to an effective numerical diffusion of the
same magnitude or larger than the turbulent dif-
fusion arising in some environmental applica-
tions. Two time level schemes have also been
proposed, coupled to centered differences space
discretization, see, e.g. Wicker and Skamarock
(1998). Other higher-order schemes based on
the advective form of the equations, such as the
Crowley advection scheme and its improvements
(see, e.g. Crowley, 1986; Tremback et al, 1987)
have also been applied to operational models,
see, e.g. Tripoli (1992), and Cotton et al
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(2001). For many of these schemes, directional
splitting is used for the three-dimensional imple-
mentation. The vertical discretization is usually
implicit in time, in order to avoid excessive sta-
bility restrictions.

Schemes in conservation law form allow in-
stead to achieve exact mass and momentum con-
servation. Among operational models, only the
MRI model (see, e.g. Saito, 1997) is based on
the flux form of the equations. The advection
scheme proposed in Cullen and Davies (1991)
was employed in a preliminary version of the
new UKMO unified model (see Cullen et al,
1997), together with a conservative reformulation
of the split-explicit scheme of Gadd (1978). The
MacCormack scheme was used for the discretiza-
tion of momentum advection in Kapitza and
Eppel (1992). High-resolution upwind-based
schemes such as the PPM method have also been
applied, see, e.g. Carpenter et al (1990). Other
conservative schemes for atmospheric ap-
plications have been proposed and applied in
Smolarkiewicz and Clark (1986), Smolarkiewicz
and Grabowski (1990), Smolarkiewicz and
Pudykiewicz (1992), Smolarkiewicz and
Margolin (1993), Smolarkiewicz and Margolin
(1997), Stevens and Bretherton (1996).

The semi-Lagrangian discretization is based
on a generalization of the classical method of
characteristics: the advected quantity is updated
at each grid point by interpolation of the values at
the previous time-step at the foot of the charac-
teristic reaching that gridpoint at the new time-
step. The semi-Lagrangian approach to the
discretization of advection has first become pop-
ular in the context of large scale hydrostatic mod-
els, see, e.g. Temperton and Staniforth (1987)
and Staniforth and Côot�ee (1991). Semi-Lagran-
gian advection was then applied to a NH model
in Tanguay et al (1990). Various NH models
employing semi-Lagrangian advection have
been proposed since then, see, e.g. Benoit
et al (1997), Bonaventura (2000), Côot�ee et al
(1998), Côot�ee et al (1998), Golding (1992), Pinty
et al (1995), Saito (1997), Semazzi et al (1995),
and Quian et al (1998). The efficiency of semi-
Lagrangian techniques for application to high
resolution models has been questioned in
Bartello and Thomas (1996). After several at-
tempts to use the semi-Lagrangian scheme at res-
olutions of about 3 km, practical experience has

indicated that Courant numbers smaller than 1, or
even 0.5, are necessary to achieve reasonable
results at such high resolutions. This reduces
very much the efficiency of such schemes. How-
ever, the semi-Lagrangian approach is also a con-
venient choice for a fully multidimensional
advection discretization. Furthermore, it is quite
advantageous for models employing the non-
normalized z vertical coordinate, where cells with
arbitrary thickness for the vertical discretization
imply that high vertical Courant numbers can
easily arise. It should also be kept in mind, that
the currently observed limitation to small Cou-
rant numbers is based on practical experience
and there is no argument against the development
of improved semi-Lagrange schemes which are
free of this drawback.

6. Recent developments and future
perspectives

Models based on simple numerics were shown to
be able to do relevant simulations at the meso-�
scale, such as convective cells and flow forced by
small scale orography. In respect to this, it has to
be asked if the simulations are accurate enough.
The convergence of solutions with grid length
was investigated by Steppeler et al (2002) using
the LM. The convergence was rather slow, so
there arises the question if the rather universal
second order approximation should be aban-
doned in favor of third-order or even higher-order
schemes. Even though the existing approaches
obtain a reasonable degree of efficiency, it has
to be recognized, that the more advanced numer-
ical schemes (semi-implicit, semi-Lagrangian)
used in experimental model versions aim to
increase it substantially. Adaptive grids, as dis-
cussed in Sect. 3, are another development with a
potential to substantially increase the efficiency
of NH models. Expectations on fine scale models
are not limited to the simulations mentioned
above. In longer terms the simulation of local
weather, such as fog, will be requested. Numer-
ical requests associated with such developments
are a rather good simulation of all moisture
related processes. In particular a sufficient accu-
racy for the advection of moisture, absence of
numerically generated oscillations and conserva-
tion of mass will be mandatory. For such expec-
tations second order schemes for the simulation
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of advection will definitely be too inaccurate.
The development of accurate non-oscillating
advection schemes will be necessary. Experience
from current models suggests that approxima-
tions of overall third order will be adequate. Cur-
rent research in advanced schemes has not yet
lead to models which can be used operationally.
Therefore considerable more research is neces-
sary in order to realize the potential efficiency
and accuracy of such schemes.

As artificial circulations driven by numerical
errors of the representation of mountains have a
potential to destroy high fog, such errors will
have to be avoided, for example by using a z-
coordinate representation.

The computational costs of such numerical
improvements has to be a point of concern.
According to conventional wisdom the costs of
more accurate semi-Lagrangian schemes should
be recovered by using rather large time steps. As
there have been practical difficulties in realizing
such savings, and for the scales of interest there
are also theoretical limits to the CFL-condition to
be used (see, e.g. Bartello and Thomas, 1996),
the possibility to save also by reducing the grid
points of spatial representation should also be
considered. This is based on the observation that
in three dimensions a third order finite element
representation of a field uses 7 points, which are
distributed inhomogeneously, whereas the classi-
cal homogeneous representation has to use 27
points. As Galerkin finite element approaches
of high order have proven to be unpractical, it
will be necessary to use such reduced grids in
connection with finite difference approaches, as
done by Steppeler (1976).

Experimental global simulations at a scale of
15 km have already been done. Already existing
computers offer the capacity to perform global
simulations at NH scales, using resolutions of
about 5 km. The authors of this report have no
knowledge that such computations have actually
been performed, but the implementation of
NH models on global grids should be a point of
concern.

It may be foreseen, that the prediction of the
local weather will require the use of more mois-
ture related fields, and also other chemical
constituents (Doms, private communication).
Conservation of mass of all these constituents
is of primary importance. Models used currently

operational or quasi operational do not have this
property. A way to achieve this property is to use
conservation forms of equations together with
the finite volume method (Skamarock, Klemp
and Dudhia, private communication).

Appendix

List of models mentioned in this paper:

Model Institute Reference

ALADIN M�eet�eeo-France �SSiroká et al
(2002)

ARPS Center for Analysis
and Prediction of
Storms, Oklahoma

Xue et al (2000)

GEM Canadian
Meteorological
Centre

Côot�ee et al (1998)

JMA-MRI Japan Meteorological
Agency (JMA)

Saito (1997)

LM German Weather
Center (DWD)

Steppeler et al
(2002)

MC2 Canadian
Meteorological
Center

Benoit et al
(1997)

MM5 National Center of
Atmospheric Research
(NCAR)

Dudhia (1993)

NCEP-MESO National Center of
Environmental
Prediction (NCEP)

Janjic et al
(2002)

RAMS Colorado State
University

Cotton et al
(2002)

WRF National Center of
Atmospheric Research
(NCAR)

private
communication
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Côot�ee J, Desmarais J, Gravel S, M�eethot A, Patoine A, Roch M,
Staniforth A (1998) The operational CMC-MRB Global
Environmental Multiscale (GEM) model, Part II: Results.
Mon Wea Rev 126: 1397–1418
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