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Summary. In vivo microdialysis was used to study the effects of restraint stress
(30min) and amphetamine (AMPH) (5mg/kg, i.p.) in awake adult male
rats with neonatal ventral hippocampal (VH) damage. Extracellular levels
of dopamine (DA), dihydrophenylacetate (DOPAC), homovanillate (HVA)
and 5-hydroxyindolacetate (5-HIAA) were measured in the nucleus
accumbens (NA). There were no differences in the baseline levels of DA,
DOPAC, HVA or 5-HIAA in the lesioned as compared to the sham rats.
Release from restraint resulted in increased extracellular levels of DA in the
sham but not in the lesioned animals. AMPH increased DA release in both
sham operated and lesioned animals, but this increase was significantly
attenuated in the lesioned rats. Our data suggest that this developmental
lesion alters function of the dopaminergic system in response to environmen-
tal and pharmacological challenge.

Keywords: Hippocampus, microdialysis, dopamine, amphetamine, ibotenic
acid, 5-HIAA.

Abbreviations

DA dopamine, NA nucleus accumbens, MPFC medial prefrontal cortex,
AMPH amphetamine, VH ventral hippocampus.

Introduction

In an earlier series of experiments, we have shown that rats with neonatal
(postnatal day 7, PD7) excitotoxic damage of the ventral hippocampus (VH)
express behavioral abnormalities that appear relatively late in development,
i.e. after puberty (PD56), and that implicate increased mesolimbic/
nigrostriatal dopamine (DA) activity. These behavioral abnormalities can be
blocked with antipsychotic drugs (Lipska et al., 1993; Lipska and Weinberger,
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1993). Adult rats with the neonatal VH lesion express also exaggerated
locomotor responses to amphetamine (AMPH) (Lipska et al., 1993), dimin-
ished haloperidol-induced catalepsy, augmented apomorphine-induced ste-
reotypy (Lipska and Weinberger, 1993), impaired prepulse inhibition of
the acoustic startle response (Lipska et al., 1995) and increased locomotion
following acute stressful situations such as a single saline injection or exposure
to novelty or a swim test (Lipska et al., 1993). This work has been confirmed
and extended by others (Wan et al., 1996; Flores et al., 1996; Black et al.,
1996).

In contrast to the evidence that hyperlocomotion expressed under these
conditions is linked to increased dopaminergic action in the mesolimbic sys-
tem (Costall and Naylor, 1977; Kelly et al., 1975), we have found that in vitro
tissue concentrations of 3-methoxytyramine (3-MT), a DA metabolite indica-
tive of DA release, is decreased after mild chronic stress in the lesioned as
compared to the sham operated rats in the MPFC, striatum and nucleus
accumbens (NA) (Lipska et al., 1995). We have also recently shown that
AMPH induced expression of c-fos mRNA, an immediate early gene tran-
script induced in response to AMPH challenge via DA D, receptor stimula-
tion (Graybiel et al., 1990; Merchant et al., 1994), is attenuated in the MPFC,
cingulate cortex and ventral striatum in the lesioned rats (Lillrank et al.,
1996). These data raise the question of whether neurotransmitter systems
other than dopamine, receptors other than DA receptors, or post-receptor
signaling events are responsible for the behavioral findings of hyper-
locomotion after stress and AMPH in neonatally VH lesioned rats or whether
the previously used technique to measure DA release (tissue levels of 3-MT)
did not adequately reflect functionally relevant changes.

In order to clarify this issue, we studied the effect of AMPH and restraint
stress on extracellular levels of DA, its metabolites and 5-HIAA in the NA
using in vivo microdialysis. Responses to AMPH and to restraint stress
involve both the dopaminergic and the serotonergic system. In vivo
microdialysis allows continuous monitoring of the extracellular levels of neu-
rotransmitters for prolonged time in awake rats and causes relatively small
damage to brain tissue. The levels of neurotransmitters collected from the
extracellular space quite reliably reflect neurochemical events occuring in
the synaptic region (Zetterstrom et al., 1983; Westerink et al., 1987). In the
present study, in vivo microdialysis was used to determine if restraint stress
and AMPH differentially affect extracellular dopamine, its metabolites and 5-
HIAA levels in the NA in rats with the neonatal VH lesions and the sham
operated controls.

Materials and methods
Surgery

Pregnant Sprague-Dawley rats obtained at 12-15 days of gestation (Zivic-Miller Labs)
were housed individually in breeding cages with a 12 h light/dark cycle and fed ad libitum.
Litters of 4-8 male pups were formed. On the 7th day of age (PD7, weight 17-18g), pups
were randomly assigned to LESION (n = 12) and SHAM (n = 11) status and anesthe-
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tized by hypothermia (placed on ice for 10-20 minutes). The pups were taped to a
platform fixed to a stereotaxic Kopf instrument. An incision was made in the skin
overlying the skull. Ibotenic acid (0.3ul), (Sigma, 10ug/ul) (in LESION rats) or artificial
cerebrospinal fluid (in SHAM rats) was infused bilaterally into the ventral hippocampal
formation (AP —3.0mm, ML *3.5mm, VD —5.0mm, relative to Bregma) through
a Hamilton needle using an infusion pump at a rate of 0.15ul/min. On the 25th day
of age, rats were weaned and separated by lesion status and grouped two to three to a
cage. At PD56, the microdialysis probes were implanted. Anesthesia was induced
with Equithesin (26.2 g chloral hydrate and 6.48 g Na-pentobarbital, total volume 770 ml,
i.p.). The animals were placed in a stereotaxic frame with an incisor bar set at —2.4mm.
A microdialysis probe (CMA11, CMA Microdialysis, outer diameter 0.24mm, a 2mm
dialyzing membrane at the tip), was implanted in the right nucleus accumbens
(AP —1.6mm, L +0.8mm, VD —7.8mm (Paxinos and Watson, 1986). The microdialysis
probe was attached to the bone with dental cement using three small stainless steel
SCrews.

Microdialysis

The rats were allowed to recover from the surgery overnight. On the next day, they were
placed in a hemispheric bowl and the implanted microdialysis probe was connected to a
microinfusion pump (CMA100, CMA Microdialysis) via a liquid swivel. The dialysis
probe was perfused with Ringer solution (NaCl 147mM; CaCl, 1.5mM; KCl 4mM, pH 6,
and 0.15mM ascorbic acid to prevent DA breakdown) at a constant flow rate of 2 ul/min.
The perfusate was discarded during the first 60 min and then collected at 15-min intervals
for analysis of dopamine and amine metabolities. Four fractions were collected in the
beginning of the experiment to establish the stable baseline levels, whereupon each rat
was restrained for 30min and then released. Perfusate samples were collected for a
further 90min. At the end of the experiment, each rat received amphetamine sulphate
(5mg/kg) intraperitoneally and perfusate samples were collected for a final 45 minutes
(total time from restraint to the end of the experiment 165min).

Chromatography

DA, dihydrophenylacetate  (DOPAC), homovanillate (HVA), and 5-
hydroxyindolacetate (5-HIAA) were assayed using high pressure liquid chromatography
(HPLC) coupled to electrochemical detection. Twenty ul of dialysate was injected onto a
reversed phase HPLC column (Spherisorb, PhaseSep Inc., 2mm X 10cm, C-18, 3um
particle size) using an automated refrigerated injection unit. Catecholamine metabolites
were separated by eluting the column with mobile phase (5% acetonitrile, 0.1 mM mono-
sodium phosphate, 0.1 mM EDTA, 0.6mM sodium octyl sulfate, pH 2.95). A pulse free
solvent delivery system allowed 120ul/min at a constant flow rate. All samples were
analyzed in the same HPLC assay. Peak heights were measured to determine the levels of
the chemicals. External standards of all measured chemicals were periodically injected to
identify the peaks. Detection limits of our analysis system for DA ranged between 8—
15fmols per injection, and for the metabolites 50-70fmols/injection.

Statistical methods

The levels of transmitters and their metabolites are expressed as percentages of
baseline values defined as the average of the last two samples before restraint stress.
The restraint and AMPH data were analyzed separately using a two-way analysis of
variance (ANOVA) with treatment (lesion status) as an independent variable and time
(15min samples after the beginning of treatment) as a repeated measure. If significant
(p < 0.05) effects or interactions were detected, the data were subjected to LSD post-hoc
comparison.
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Fig. 1. A drawing showing the location of a microdialysis probe (a black vertical bar) in
the nucleus accumbens (NA). NAc nucleus accumbens core, NAs nucleus accumbens
shell (from Paxinos and Watson, 1986)

Results
Histology

All brains were examined to verify the location of the ibotenic acid lesion in
the VH and microdialysis probes in the NA using Nissl stained sections. The
lesion criterion was defined as neuronal loss and gliosis confined to the VH,
with all the cytoarchitectural divisions in the ventral aspects of the hippocam-
pus (CA1-CA4) as well as parts of the subiculum affected and no discernible
damage outside the hippocampus as previously reported (Lipska et al., 1993).
Three animals were deleted from further analysis due to improper location of
the lesion. In these cases the lesion was either unilateral or encroached on the
adjacent neocortex. The probe aimed at nucleus accumbens was in 70% of the
cases in the shell region and in the remaining 30% in the core region (Fig. 1).
Three animals had to be deleted from further analysis due to improper loca-
tion of a probe or signs of excessive bleeding around a probe.

Baseline levels

The baseline extracellular levels of DA, DOPAC or HVA were not altered in
the lesioned as compared to the sham operated rats (Table 1 and Fig. 2).
Although the baseline levels of 5S-HIAA tended to be lower in the lesioned
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Table 1. Baseline levels of DOPAC, HVA and 5-HIAA (mean * S.E.M. in fmol/20ul,
n = 5) in microdialysates of the nucleus accumbens in awake freely moving rats

Lesion Sham
DA 61.61 = 17.19 35.76 = 2.47
DOPAC 5433.4 *= 990.2 5034.1 *= 1369.4
HVA 1802.1 = 341.0 1732.9 = 375.5
5-HIAA 1755.8 = 444.6 2657.0 = 357.2

as compared to the sham operated rats, the change was not statistically
significant (F, 5 = 1.98, p = 0.19).

Effect of restraint

Restraint differently affected the extracellular levels of DA in the lesioned
and control rats (main effect of lesion F 5 = 5.26, p < 0.05). In the sham
operated animals, there were no significant changes during restraint but DA
levels increased by 30% above baseline (p < 0.05) 60 min after the release of
the animals from restraint (i.e., 90 min from the beginning of the experiment).
The lesioned animals showed a decrease of 23% below baseline at 30 min
during restraint (p < 0.05), whereupon DA levels returned to baseline (Fig.
3). There were no significant changes in DOPAC levels (Time Fggq) = 1.69, p
= 0.12, Lesion F 5 = 0.87, p = 0.38) (data not shown). For HVA values,
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Fig. 2. Distribution of baseline levels of extracellular dopamine in the nucleus accumbens
in the sham and lesioned rats
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Fig. 3. The effects of restraint on the extracellular levels of DA, HVA and 5-HIAA in the
nucleus accumbens in LESION and SHAM rats. The results (mean * S.E.M) are given in
per cent of the mean of two baseline levels before restraint. *LESION group significantly
different from SHAM group, p < 0.05. *significantly different from a baseline level,
p < 0.05. A horizontal bar indicates time of restraint. For baseline levels, see Table 1

ANOVA showed a significant effect of time (Fgq, = 2.97, p < 0. 01) but no
lesion effect F, 5 = 0.09, p = 0.77). Post hoc analysis revealed an increase of
HVA levels above baseline (by 14%, p < 0.05) in the sham operated rats 30
and 45 min after release from restraint (i.e., 60 and 75 min from the beginning
of the experiment) (Fig. 3). For 5-HIAA, ANOVA showed a significant time
effect (Fgqy = 5.8, p < 0.0001) but no lesion effect (F, 5 = 0.05, p = 0.82). In
both lesioned and sham operated rats 5-HIAA levels were elevated after
release of the animals from restraint, (by 15-20%), p < 0.05, (Fig. 3).
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Fig. 4. The effects of amphetamine (5mg/kg, i.p.) on the extracellular levels of DA,

DOPAC HVA and 5-HIAA in the nucleus accumbens of LESION and SHAM rats. The

results (mean = S.E.M) are expressed as per cent of the mean of two baseline levels

before restraint. *LESION group significantly different from the SHAM group, p < 0.05.

##significantly different from baseline levels, p < 0.05, p < 0.01. Amphetamine was
injected at 120min. For baseline levels, see Table 1

Effect of amphetamine

Treatment with AMPH (5mg/kg, i.p.) significantly increased extracellular DA
levels in both controls and the lesioned rats. ANOVA showed a significant
effect of lesion and time F,z = 6.53, p < 0.05, F5,, = 591, p < 0.01
respectively) as well as a significant lesion X time interaction (F,, = 5.91, p
< 0.01). Post hoc analysis revealed that DA release was significantly attenu-
ated in the lesioned as compared to the sham operated rats 45 minutes after
the injection (i.e., 165min from the beginning of the experiment), p < 0.05,
(Fig. 4). DOPAC levels were significantly reduced after AMPH injection
(time effect F3,, = 178.06, p < 0.0001). This attenuation in DOPAC tended
to be more pronounced in the lesioned as compared to the sham operated
rats, but the difference did not reach significance (Fig. 4). HVA levels were
also significantly altered after AMPH treatment (lesion F, 5 = 16.25, p < 0.05;
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time F;,, = 16.25, p < 0.0001) but a post hoc test did not show a significant
difference between the lesioned and the sham rats at any time point (Fig. 4).
ANOVA for 5-HIAA levels revealed a significant time effect (F;,, = 3.33,p
< 0.05, but no lesion effect (F, 5 = 0.57, p = 0.47). Post hoc analysis revealed
that the sham controls responded to AMPH with increased 5-HIAA (p < 0.05
at 135min), whereas in the lesioned rats this effect did not reach significance.
There was no difference in 5-HIA A levels between the lesioned and sham rats
at any time point (Fig. 4).

Discussion

The main finding of this study is attenuated DA release in the nucleus
accumbens in response to amphetamine and release from stress in adult rats
with the neonatal VH lesion. The VH lesion did not alter baseline extracellu-
lar levels of 5-HIAA or DA and its metabolites in NA. These findings are
consistent with our previous results which showed that the VH lesion dimin-
ished tissue concentrations of 3-MT, a DA metabolite thought to be a reliable
index of DA release (Lipska et al., 1995), in response to chronic mild stress
but not at baseline. These results are particularly intriguing in light of en-
hanced locomotor activity displayed by the VH lesioned rats in response to
stress and AMPH (1.5mg/kg., i.p.) which has usually been associated with
increased rather than diminished NA DA activity.

It should be noted that, in contrast to other studies, we did not find
increased DA release in NA during stress. This difference may be attributed
to the type and duration of stress. Most stress studies use tail pinch, tail
pressure or foot shock (King and Finlay, 1995; Abercrombie et al., 1989)
which may more profoundly alter dopaminergic neurotransmission in the NA,
as compared to our relatively mild restraint stress. Those few studies that have
used restraint as a stressor, applied it for a considerably longer time, i.e. 60 or
120 minutes (Imperato et al., 1991, 1992). Another possibility for our failure
to find stress-induced increases in DA may be the cannulae placement. Recent
studies have shown that baseline extracellular levels of DA, as measured by
in vivo microdialysis, are higher in the NA core than in the shell but the
DOPAC/DA ratios are not different between the regions (King et al., 1997).
Moreover, Kalivas and Duffy (1995) reported that 20 minutes after discon-
tinuing mild footshock stress, DA release was elevated in the shell but not in
the NA core. Although there seem to be some discrepancies between the
studies measuring baseline DA levels in different subregions of the NA
(Deutch and Cameron, 1992), it is possible that the small changes in
DA release expected to be seen during stress might have been missed by
placing the cannulae in the NA core. In agreement with other studies, how-
ever, we found increased DA after release from stress (Kalivas and Duffy,
1995; Imperato et al., 1992). The physiological significance of this short-
term increase of extracellular DA after release from restraint is not fully
understood.

Other confounding factors may be the effects of anesthesia (24 hrs prior to
microdialysis) and injury due to the probe implantation. Anesthesia has been
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shown to acutely elevate DA and DOPAC levels, but the long lasting conse-
quences are not known (Stdhle et al., 1990; Lillrank et al., 1994). Tissue
trauma due to implantation of a probe and increasing gliosis after 48hrs of
insertion have been shown to more profoundly affect levels of extracellular
neurotransmitters. Our study was designed to limit the problems of direct
effects of anesthesia and chronic probe implantation, by implanting
the microdialysis probe under Equithesin anesthesia 24 hours prior to the
experiment.

As we have previously shown, after puberty, rats with the neonatal VH
lesion respond to stress and AMPH stimulation with increased locomotor
activity as compared to the sham treated rats (Lipska et al., 1993). These
behaviors are generally thought to be linked to excessive dopaminergic action
(Pijenburg and Van Rossum, 1973; Kelly et al., 1975; Swerdlow and Koob,
1984; Clarke et al., 1988). In this respect, the finding of attenuated extracellu-
lar DA levels in these rats is intriguing. Some, but not all, in vivo microdialysis
experiments have shown that hippocampal lesions have marked effects on
subcortical DA neurotransmission. For instance, Wilkinson et al. (1993)
reported that rats with adult hippocampal lesions display increased locomotor
activity and show increased DA release in the NA after AMPH challenge. In
contrast, but using a different paradigm, Kolachana et al. (1996) demon-
strated that in monkeys with neonatal medial temporal-limbic removals, DA
release from the caudate nucleus in response to local K*-stimulation was
significantly attenuated as compared to control monkeys. Wan et al. (1996),
on the other hand, using in vivo microdialysis in awake rats, reported that the
neonatal hippocampal lesion does not alter DA release in the NA in response
to AMPH (1.5mg/kg). Moreover, no difference in the baseline 5S-HIA A levels
between lesioned and control rats were reported in this study. It is possible
that different experimental designs, i.e., different species, ages at lesion and
doses of drugs may explain these inconsistencies.

We have previously speculated that rats with the neonatal VH lesion
experience stress as an uncontrollable, aversive situation, to which they are
unable to habituate (Lipska et al., 1995). Stress has been shown to activate the
dopaminergic system in normal rats by increasing DA release in the MPFC,
NA and neostriatum (Keefe et al., 1993; Abercrombie et al., 1989; Imperato et
al., 1991). Immobilization, tail pinch, and saline injections are known to acti-
vate dopaminergic function in mesolimbic brain regions (King and Finlay,
1995; Keefe et al., 1993; Abercrombie et al., 1989; Hamamura and Fibiger,
1993; Kuczenski and Segal, 1989). Our data implicate, however, that rats with
a neonatal VH lesion have an impaired ability to respond to stressful events
with increased DA release. Similarly, suppressed dopamine releasing effects
in response to stress and to amphetamine have been reported in rats chroni-
cally stressed (Imperato et al., 1993) and chronically treated with amphet-
amine (Imperato et al., 1996; Weiss et al., 1997), despite the enhanced
behavioral response in these animals. This reduced responsivity in terms of
DA release might be due to downregulated DA synthesis, depleted DA in
storage sites, impaired release mechanisms or abnormal transporter system,
and may be reflected in the state of DA receptors. Previous studies, however,
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using receptor autoradiography for DA D, and D, receptors, did not find
changes in these receptors in these animals (Knable et al., 1994), although
reduced striatal D, mRNA levels were recently reported in the lesioned
animals (Lipska et al., 1997). There is also a possibility that other DA receptor
subtypes (D;, or Dy) are altered in these rats. Flores et al. (1996) have recently
found reduced D; receptor binding in adult rats with a similar neonatal VH
lesion, but we have not confirmed this finding in our binding or in situ hybrid-
ization studies (Lipska et al., 1997).

We have previously suggested that intracellular signal transduction
mechanisms may be affected by the developmental lesion, and have shown
that the neonatal VH lesion results in changes in AMPH-induced gene ex-
pression. AMPH is known to induce expression of the immediate early gene
c-fos in the striatum and neocortex, probably by activating DA D, receptor
signalling systems (Graybiel et al., 1990; Merchant et al., 1994) or by stimulat-
ing glutamate receptors (Johanson et al., 1994). Our current data are consis-
tent with the previous findings of decreased AMPH-induced expression of
c-fos mRNA in the ventromedial striatum in the lesioned rats (Lillrank et al.,
1996). Thus, both these studies suggest DA hyporesponsivity in situations
when special demands are imposed upon the dopaminergic system of the VH
lesioned rats.

DOPAC levels in response to AMPH were somewhat attenuated in the
lesioned rats. Extracellular DOPAC is believed to be derived largely from
newly synthesized DA that is deaminated into DOPAC intracellularly by
monoaminooxidase (MAQO) before being released (Soares-Da-Silva et al.,
1990; Zetterstrom et al., 1988). Therefore, DOPAC may provide a measure of
DA synthesis. AMPH has been shown to increase extracellular DA but to
decrease DOPAC and HVA in normal rats (Zetterstrom et al., 1986). This
decrease in DOPAC in response to AMPH may be explained by its action on
inhibiting MAO (Jones et al., 1988) or its ability to increase DA release from
a newly synthesized pool and thus leaving less DA inside the cell for deami-
nation to DOPAC. Our data might suggest, therefore, that DA production in
the soluble pool may be somewhat down regulated in the lesioned rats as
reflected in slightly reduced DOPAC levels. Because DA levels in the synap-
tic cleft are regulated both by vesicularly stored and soluble cytoplasmic pools
of DA (McMillen et al., 1980; Hurd and Ungerstedt, 1989), downregulation in
one pool may not be detected in baseline levels but becomes more apparent
when AMPH induced DA release is measured. Changes may also exist in
other systems that can alter DA function and mediate the effects of AMPH,
for example serotonergic and glutamatergic systems (Johansson et al., 1994;
Kuczenski and Segal, 1989). In this study, however, the baseline levels of
5-HIAA were not significantly altered, although there was a trend for a
reduction in the lesioned rats.

We have reported previously that rats with a neonatal VH lesion are
hyperresponsive to the stimulatory effects of the NMDA antagonist MK-801
(Lipska and Weinberger, 1996) suggesting alterations of glutamatergic activ-
ity. However, receptor autoradiographic and in situ hybridization studies did
not reveal any changes in NMDARI receptors (Al-Amin et al., 1996),
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although this does not preclude changes in other glutamatergic receptor sub-
types. Such changes might be expected considering that the lesion destroys
intrinsic VH neurons, some of which are glutamatergic projection neurons
that innervate NA. Since the nucleus accumbens receives DAergic input from
the VT A (Bjorklund and Lindval, 1984) and glutamatergic input from, among
other structures, the VH (Groenewegen et al., 1987; Sesack and Pickel, 1990;
Swanson and Cowan, 1977; Jay and Witter, 1991), it is possible that due to the
VH lesion less glutamate is released in NA and that DA release is attenuated.
In addition, previous studies from this laboratory suggested that early hippoc-
ampal deefferentation affects the development of other brain regions, such as
the MPFC, that is also involved in the regulation of striatal/NA function
(Lipska and Weinberger, 1993; Lillrank et al., 1996; Lipska et al., 1998).

We have studied the effects of this neonatal VH lesion as a potential
animal model for certain aspects of schizophrenia, a disorder in which
postpubertal onset of symptoms and developmental structural pathology in
the hippocampal region are implicated (Lillrank et al., 1995; Weinberger and
Lipska, 1995). Using this model, we attempted to elucidate mechanisms un-
derlying the behavioral abnormalities that emerge postpuberty by studying
extracellular DA release. These results confirm and extend our previous
findings from in vitro tissue measurements of attenuated DA release in the
VH lesioned animals exposed to environmental or pharmacological stimuli,
but also raise a new challenge to the face validity of the model. While the
animals are behaviorally hyperresponsive to stress and AMPH and respond to
antidopaminergic drugs analogous to patients with schizophrenia, they are
hyporesponsive at the level of stimulated DA release. In contrast, patients
with schizophrenia manifest decreased radioligand binding in the striatum
following systemic AMPH administration, suggesting increased DA release
(Laruelle et al., 1996; Breier et al., 1997). While the exact mechanism for this
clinical finding is uncertain, the resolution of this apparent discrepancy will
require additional experimentation.
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