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Abstract
Cognitive impairment is one of the most salient non-motor symptoms of Parkinson disease (PD) that poses a significant 
burden on the patients and carers as well as being a risk factor for early mortality. People with PD show a wide spectrum of 
cognitive dysfunctions ranging from subjective cognitive decline and mild cognitive impairment (MCI) to frank dementia. 
The mean frequency of PD with MCI (PD-MCI) is 25.8% and the pooled dementia frequency is 26.3% increasing up to 83% 
20 years after diagnosis. A better understanding of the underlying pathological processes will aid in directing disease-specific 
treatment. Modern neuroimaging studies revealed considerable changes in gray and white matter in PD patients with cognitive 
impairment, cortical atrophy, hypometabolism, dopamine/cholinergic or other neurotransmitter dysfunction and increased 
amyloid burden, but multiple mechanism are likely involved. Combined analysis of imaging and fluid markers is the most 
promising method for identifying PD-MCI and Parkinson disease dementia (PDD). Morphological substrates are a combi-
nation of Lewy- and Alzheimer-associated and other concomitant pathologies with aggregation of α-synuclein, amyloid, 
tau and other pathological proteins in cortical and subcortical regions causing destruction of essential neuronal networks. 
Significant pathological heterogeneity within PD-MCI reflects deficits in various cognitive domains. This review highlights 
the essential neuroimaging data and neuropathological changes in PD with cognitive impairment, the amount and topographi-
cal distribution of pathological protein aggregates and their pathophysiological relevance. Large-scale clinicopathological 
correlative studies are warranted to further elucidate the exact neuropathological correlates of cognitive impairment in PD 
and related synucleinopathies as a basis for early diagnosis and future disease-modifying therapies.
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Abbreviations
AD	� Alzheimer disease
ADNC	� Alzheimer disease-related neuropathological 

changes
aMCI	� Amnestic mild cognitive impairment
Aβ	� β-amyloid
αSyn	� α-synuclein
CA	� Cornu ammonis
CAA​	� Cerebral amyloid angiopathy
CI	� Cognitive impairment
CMBs	� Cerebral microbleeds
DLB	� Dementia with lewy bodies
DMN	� Default mode network
FA	� Fractional anisotropy

FW	� Free water
GM	� Gray matter
GMV	� Gray matter volume
LB	� Lewy body
LBP	� Lewy body pathology
MCI	� Mild cognitive impairment
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MRI	� Magentic resonance imaging
naMCI	� Non-amnestic mild cognitive impairment
NBM	� Nucleus basalis of Meynert
NFT	� Neurofibrillary tangle
PD	� Parkinson disease
PDD	� Parkinson disease dementia
PD-MCI	� Parkinson disease with mild cognitive 

impairment
PD-NC	� Parkinson disease with normal cognition
PDND	� Parkinson disease-no dementia
PET	� Positron emission tomography
SAN	� Salience network
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SCD	� Subjective cognitive decline
SN	� Substantia nigra
WM	� White matter
WMH	� White matter hyperintensity
WMV	� White matter volume

Introduction

Parkinson disease (PD), the most common movement dis-
order and the second most common neurodegenerative 
disorder after Alzheimer disease (AD), is characterized 
by progressive degeneration not only of the dopaminergic 
striatonigral system but also by involvement of many other 
neurological systems and organs, due to widespread intra-
neuronal and neuritic deposition of abnormal phosphoryl-
ated α-synuclein (αSyn), forming intracytoplasmic Lewy 
bodies (LBs) and Lewy neurites, the morphological hall-
marks of PD and related LB disorders. However, multiple 
mechanisms and pathways play a role in the pathogenesis of 
PD including oxidative stress, mitochondrial dysfunction, 
calcium imbalance, neuroinflammation, and multiple neu-
rotransmitter deficits (Jellinger 2012a; Zaman et al. 2021): 
The resulting biochemical deficits cause a heterogeneous 
spectrum of motor and non-motor symptoms that contribute 
greatly to the overall disease burden of this multisystem/
organ disorder (Dickson et al. 2009a; Jellinger 2012b). Cog-
nitive impairment (CI) that has been recognized as an impor-
tant part of PD since the historical description of Charcot 
(1877), shows a full spectrum ranging from subjective cog-
nitive decline (SCD) and mild cognitive impairment (MCI) 
to full-blown dementia (PDD). It severely affects the quality 
of life, is a risk factor for early mortality (Oosterveld et al. 
2015; Schrag et al. 2000), and has been shown to have sub-
stantial consequences over and above the motor symptoms, 
even at early stages of PD (Chandler et al. 2021; Leroi et al. 
2012). SCD is a self-perceived decline in cognitive ability 
with normal age-, sex- and education-adjusted performance 
on standardized cognitive tests (Jessen et al. 2014); PD with 
MCI (PD-MCI) is a gradual decline in cognitive ability 
affecting single or multiple cognitive domains on complex 
functional tasks, including amnestic (aMCI) and non-amnes-
tic (naMCI) phenotypes (Litvan et al. 2012; Petersen et al. 
2009). It is a risk factor for PDD (Hoogland et al. 2017), 
which is defined as CI in PD patients with deficits in at least 
four cognitive domains (memory, attention, executive and 
visuospatial abilities) being severe enough to significantly 
affect routine functions of life (Emre et al. 2007; Goetz 
et al. 2008; Kiesmann et al. 2013). PDD can be denoted as 
mild, moderate and severe (inability for independent liv-
ing). Cognitive decline may occur in presymptomatic stages 
(Fengler et al. 2017), at the time of diagnosis or a few years 
or decades after diagnosis of PD and has a high variability 

in its severity, rate of progression and involved cognitive 
domains (Aarsland et al. 2021). Mild neurocognitive deficits 
can occur even in the presymptomatic phase of PD (Bougea 
et al. 2019) and may precede the onset of dementia by up 
to 20 years. This is suggested to affect 19–30% of newly 
diagnosed, untreated (de novo) PD patients and may be 
associated with subtle changes of cognitive function that 
are not apparent to patients, families or clinicians. The most 
frequent phenotypes of MCI in prodromal PD are execu-
tive dysfunction and multidomain amnestic phenotypes (Pan 
et al. 2022), but not memory or attention (Speelberg et al. 
2022). Although the estimated frequency of cognitive dys-
function in nondemented PD varies between 19 and 55%, it 
is underrecognized in practice (Barone et al. 2011). The cog-
nitive symptoms experienced in PD are highly variable and 
may reflect both molecular, neurochemical, and morphologi-
cal changes, such as αSyn- and Alzheimer-related and other 
pathologies, which will be critically reviewed. The relations 
between PDD and dementia with Lewy bodies (DLB) will 
not be discussed, since they have been reviewed recently 
(Jellinger 2018; Jellinger and Korczyn 2018).

Epidemiology

PD patients have a 2.5–6 times higher risk of developing 
dementia than people without PD of similar age (Aarsland 
et al. 2021; Perez et al. 2012). However, the epidemiology of 
CI in PD is not entirely clear, since population-based studies 
rarely include PD-MCI and PDD, and most studies assess the 
prevalence and incidence of CI in established PD cohorts. 
MCI is often described as a transitory stage between normal 
condition and dementia; conversion rates for PDD are mark-
edly increased in those with MCI, and were reported to be 
almost 60% at 5 years of follow-up (Pedersen et al. 2017). 
Early onset PD patients exhibit a poorer cognitive perfor-
mance than those with late onset PD (Kim et al. 2017). The 
frequency of PD-MCI ranges from about 21 to 70%, with 
a mean of 25.8% (Aarsland et al. 2021; Monastero et al. 
2018; Nicoletti et al. 2019). A recent meta-analysis reported 
a pooled prevalence of 40% in a sample of 7053 PD patients 
(Baiano et al. 2020). Its estimated point prevalence is 30%, 
the cumulative prevalence is > 75% for PD patients surviving 
more than 10 years (Hely et al. 2008). The cumulative inci-
dence of PD-MCI is 9.9% after 1 year, 23.2% after 3 years, 
and 28.9% after 5 years follow-up (Pedersen et al. 2017). 
Within 3 years, in PD with normal cognition (PD-NC), 25% 
(95% CI 20–30%) converted to PD-MCI and 2% (95% CI 
1–7%) converted to PDD, whereas 28% (95% CI 20–37%) 
reverted back to normal cognitive function (Saredakis et al. 
2019). A comprehensive meta-analysis of PD-MCI cogni-
tive outcome and predictors in its conversion to PDD was 
published recently (Wallace et al. 2022). Approximately 



979Morphological basis of Parkinson disease‑associated cognitive impairment: an update﻿	

1 3

20–30% have at least mild cognitive changes even at the 
time of diagnosis of PD (Poletti et al. 2012), increasing 
to 40–50% after 5 years’ follow-up (Domellöf et al. 2015; 
Pedersen et al. 2017). By contrast, the estimated prevalence 
of MCI in the general population (age 60–90 years) ranges 
between 16 and 20% (Roberts and Knopman 2013). 59.1% of 
patients with persistent PD-MCI within 1 year develop PDD 
(Pedersen et al. 2017). Importantly, the value of MCI for the 
development of PDD is influenced by the diagnostic criteria 
chosen for MCI (Wood et al. 2016). About 30.3% of de novo 
PD patients complained of memory issues and were more 
likely to develop MCI within 2 years’ follow-up compared 
to those who did not complain of memory issues (Purri et al. 
2020), although other factors, such as affective symptoms, 
may contribute to progression of MCI (Chua et al. 2021). 
Cognitive deficits have been recently defined as a prodromal 
marker and have been included in the last research criteria 
of prodromal PD (Heinzel et al. 2019).

The global pooled frequency of PDD is 26.3% with vari-
ations according to the methodologies (14–55%) (Severiano 
et al. 2022), the estimated prevalence is 24–31% (Aarsland 
et al. 2005b), the cumulated prevalence in patients with a 
mean age of 54–70 years is 17% at 5 years after diagnosis, 
83% at 20 years after diagnosis (Hely et al. 2008), and up 
to 95% by age 90 years (Rongve and Aarsland 2013). PDD 
has a relative risk of 2.47 (1.55–3.95) (Perez et al. 2012), a 
prevalence of 31.3% (95% CI 20.1–40.1) and incidence rates 
from 42.6 to 112.5/100,000 person-years (Marder 2010), 
indicating that around 10% of a PD population develop 
dementia per year (Hall and Lewis 2019). Systemic reviews 
suggest that 3–4% of the dementia in the general popula-
tion would be due to PDD; its estimated prevalence in the 
population older than 65 years is 0.2–0.5% (Aarsland et al. 
2005b).

Cognitive dysfunction/dementia in genetic forms of PD 
is variable, depending on the affected gene or genetic risk 
factors, e.g., DNA mutations, LRRK2, GBA1, Parkin/PINK1, 
APOE ε4, MAPT/H1, or other unknown factors, like addi-
tional genetic modifiers and environmental factors, which 
have been reviewed recently (Aarsland et al. 2021; Fan et al. 
2021; Koros et al. 2022; Szwedo et al. 2022; Wise and Alca-
lay 2022). AD tau has been shown to be a prominent pathol-
ogy in LRRK2 PD (Henderson et al. 2019).

Neuroimaging findings in cognitive 
impairment in PD

Unlike clinical behavioral research and fluid biomarkers, 
brain imaging studies offer a unique opportunity to relate 
changes in brain structure and function, changes in cer-
ebral blood flow, neuronal activation and neurochemical 
changes in the brain to cognition and cognitive impairment. 

Neuroimaging approaches to cognition in PD have been 
reviewed recently (Hall and Lewis 2019; Hou and Shang 
2022; Montaser-Kouhsari et al. 2022; Weil et al. 2019). 
Although there is a continuum from PD-NC to SCD, PD-
MCI and PDD, the major neuroimaging changes in the 
progression of normal to impaired cognition have been 
described separately.

Gray matter changes in early PD

While in noncomplicated PD, structural neuroimaging may 
be normal or shows only mild diffuse brain atrophy or tem-
poral lobe changes in early PD (Martin et al. 2009; Pereira 
et al. 2014), voxel-based morphometry in PD patients with 
subjective memory complaints revealed reduced gray mat-
ter (GM) intensities in anterior cingulate and right parietal 
lobe than in uncomplicated ones (Hong et al. 2012). Ear-
lier studies showed reduced gray matter volume (GMV) in 
frontal lobe in patients with PD and no dementia (PDND) 
compared with control subjects, while there was significant 
GM atrophy in the occipital lobe in PDD patients which 
extended from frontal areas to temporal, occipital and sub-
cortical areas (Burton et al. 2004). Measurement of cortical 
thickness revealed distinct limbic and subtle GM atrophy 
in anterior cingulate, precuneus and temporal neocortex in 
PD-NC compared to healthy controls (Kunst et al. 2019).

Recent studies indicated that reduction of GM density in 
superior frontal gyrus and cerebellum were related with cog-
nitive performance in early PD-MCI (Donzuso et al. 2021), 
while right entorhinal cortex atrophy was seen in early, drug-
naive PD-MCI, which provided new evidence in differentiat-
ing the neuroanatomical states between PD-MCI and PD-NC 
(Jia et al. 2019).

Magentic resonance imaging (MRI) findings 
in PD‑MCI (Table 1)

At baseline, compared with stable PD-NC cases, those with 
conversion to MCI showed cortical atrophy in the parietal 
and occipital lobes, similar to PD with stable MCI, while 
those with CI from the study entry showed additional 
involvement of the frontotemporal cortices (Weintraub et al. 
2011). MCI is linked with a faster rate of cortical thinning 
in patients with PD longitudinally, as well as with signifi-
cant diminishment of limbic subcortical structures (Han-
ganu et al. 2014). PD-MCI subjects revealed significant 
enlargement of bilateral temporal, occipital and left frontal 
lateral ventricles relative to PDND ones (Apostolova et al. 
2012). GMV loss in MCI is characterized by prefrontal 
and occipital GM atrophy (Weintraub et al. 2011). A study 
using voxel-based morphometry, showed atrophy of the right 
entorhinal cortex in PD-MCI patients compared to PD-NC 
ones (Jia et al. 2019), while a resting-state functional MRI 
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study documented hyperactivity (reflecting a compensatory 
mechanism) in the right inferior frontal gyrus and hypoactiv-
ity in the occipital area in early PD with MCI (Wang et al. 
2018). PD-MCI showed greater GM atrophy than PD-NC 
in orbitofrontal regions, left superior parietal lobule, more 
wide-spread limbic and fronto-parietal-occipital neocorti-
cal atrophy (Kunst et al. 2019). While frontostriatal atro-
phy may be a predictor for dementia in PD-MCI (Lee et al. 
2010), other reduced GMV regions, including temporal and 
parietal cortices, amygdala, putamen and hippocampus have 
also been implicated (Melzer et al. 2012), the latter particu-
larly associated with memory impairment (Chen et al. 2016; 
Weintraub et al. 2011).

A meta-analysis of around 1400 PD patients reported 
a significantly higher GM atrophy in bilateral prefrontal 
cortex, left angular gyrus, right supramarginal gyrus, left 
insula, and midcingulate cortex in the PD-MCI group, but 
atrophy of bilateral insula and right hippocampus in the PDD 
group (Mihaescu et al. 2019), while another meta-analysis 
reported severe GM atrophy in the left anterior insula, infe-
rior and orbital-frontal gyrus (Zheng et al. 2019). Smaller 
cornu ammonis (CA) 1 region and hippocampal-amygdaloid 
transition area volumes have been observed in PD-MCI com-
pared to PDND (Becker et al. 2021). Early PD-MCI showed 
reduction of GM density in superior frontal gyrus and cer-
ebellum (Donzuso et al. 2021).

Longitudinal studies have shown a significantly greater 
progression of cortical thinning in posterior brain region 
in PD-MCI compared to PDND (Garcia-Diaz et al. 2018), 
while another 4-year follow-up study showed that both 
PDND and PD-MCI patients have a more severe decline 
in anterior and posterior hippocampus related to memory 
dysfunction (Uribe et al. 2018). Significant correlations were 
found between global cognitive status and lateral hippocam-
pus volume, with significant reduction of bilateral CA4, and 
other subfields and right presubiculum, indicating selective 
regional vulnerability of the hippocampus in the progression 
of PD (Foo et al. 2016; Xu et al. 2020).

MRI findings in PD‑MCI and PDD converters (Table 2)

Relative to PD-MCI patients who did not convert to PDD, 
the converters showed lower GM densities in prefrontal 
areas, insular caudate nucleus and lesser cortical thickness 
extending from the posterior cortical area into the frontal 
region and frontotemporal cortices (Chung et  al. 2019; 
Filippi et al. 2020). PD-MCI is associated with a faster rate 
of GM thinning in temporal and medial occipital lobes as 
well as limbic subcortical structures (Hanganu et al. 2014); 
others observed early atrophy in temporal lobes and progres-
sive atrophy in frontal lobes in patients who converted to 
PD-MCI (Zhou et al. 2020).

Table 1   Neuroimaging changes in PD-MCI vs. PD-NC (modified from Hou and Shang 2022)

PDND Parkinson disease-no dementia, PD-MCI Parkinson disease with mild cognitive impairment, PD-NC Parkinson disease with normal cog-
nition, NBM nucleus basalis of Meynert, GM gray matter, WM white matter, Aβ β-amyloid

General
 Mild diffuse brain atrophy or atrophy of prefrontal and temporal lobes
 Enlargement of bilateral temporal and frontal lateral ventricles

GM
 Reduced GM volume in left superior frontal and superior temporal gyri, bilateral dorsolateral frontal cortex, left cingulate, insular and parietal 

cortex, mid cingulate cortex, angular and supramarginal gyri
 Atrophy in orbitofrontal regions, left superior parietal lobule, limbic and fronto-parieto-occipital neocortex
 Reduced GM intensities in anterior cingulate and superior frontal gyrus
 Atrophy hippocampal subregions (CA1), hippocampal-amygdaloid transition area; entorhinal cortex; amygdala, thalamus; accumbens nucleus; 

NBM
 Reduced neuromelanin-sensitive MRI signal in substantia nigra and locus ceruleus

WM
 WMH in frontal and interhemispheric WM (genu and body of corpus callosum)
 Changes in prefrontal area and cingulum; smaller anisotropy in diffuse WM areas

Others
 Loss of functional connectivity in salient networks without structural changes
 Dysfunction of somatosensory and executive processing networks
 Dysfunction of cortico-striatal networks; disruption of WM connections in frontal and posterior cortical regions
 Reduced connections between mediodorsal thalamus and posterior cingulate cortex
 Decreased connectivity of left caudate to frontal and cingulate cortex
 Mild cortical Aβ-binding (5–11%) not significantly different from PDND and age-matched controls
 Rather rare and mild cortical tau deposition
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Few studies using longitudinal MRI metrics to predict 
MCI or dementia conversion in PD patients suggested that 
atrophy of fronto-temporal areas, hippocampus, thalamus 
and accumbens play a role in this process. Stratifying 
patients according to disease severity findings appeared par-
tially controversial, although showing progressive atrophy of 
basal ganglia over one year of follow-up and a widespread 
cortical thinning over 3–6 years in patients with mild to 
moderate CI (Sarasso et al. 2021).

A longitudinal analysis showed that PD patients with sta-
ble MCI and those with no conversion to dementia accumu-
lated the least cortical damage, while those with conversion 
to dementia showed progressive volume loss of right thala-
mus and hippocampus. PD patients with conversion to MCI 
had cortical thinning in the medial and superior frontal gyri, 
inferior temporal, precuneus, cingulate and supramarginal 
gyri bilaterally, whereas those with stable normal cognition 
showed cortical thinning progression mainly in parietal and 
occipital regions bilaterally. In general, cortical thinning was 
more prominent in the initial stage of PD cognitive decline, 
whereas involvement of the frontotemporoparietal regions, 
hippocampus and thalamus is associated with conversion to 
a more severe stage of CI (Filippi et al. 2020).

MRI in PDD (Table 3)

One study investigating whole brain atrophy in PDD showed 
a rate of atrophy of 1.12% in PDD patients, compared to 
0.31% in non-demented ones and 0.34% in healthy age-
matched controls. Rather surprisingly, it found no correla-
tions between atrophy rate and dementia severity, which 
might be attributed to an insensitive scale used (Burton et al. 
2005). One of the first identified predictive markers for cog-
nitive decline in PD was temporo-parietal atrophy, which is 

indicative of AD pathology (Weintraub et al. 2012), con-
firmed by many subsequent studies (Hall and Lewis 2019). 
In addition, basal forebrain atrophy is also associated with 
CI in PD (Pereira et al. 2020; Ray et al. 2018). Memory 
impairment is correlated with frontal and hippocampal dif-
fusivity impairments (Carlesimo et al. 2012; Gargouri et al. 
2019; Melzer et al. 2013). Dorsomedial thalamus free water 
(FW) correlates with cognitive decline in early PD, while 
baseline hippocampal FW was associated with CI at 3 years, 
and baseline dorsomedial thalamic FW distinguished PD-NC 
from PD with cognitive impairment (Guttuso et al. 2022).

Cluster analysis of multimodal imaging data identified 
three PD subtypes, with prominent GM patterns and little 
white matter (WM) involvement: One group with wide-
spread cortical and subcortical GMV and WM fractional 
anisotropy (FA) reductions and pronounced cognitive defi-
cits; a second group with only cortical atrophy limited to 
orbitofrontal and temporal regions and more specific neu-
ropsychological impairment, and a third one without detect-
able atrophy or CI and earlier disease onset (Inguanzo et al. 
2021). Early onset PDD patients exhibit more severe atro-
phy in the left anterior cingulate and right inferior temporal 
gyrus with significantly decreased substantia innominata 
volume (Kim et al. 2017). These results are in line with 
recent results showing structural connectivity differences in 
PD subtypes (Abbasi et al. 2020).

A meta-analysis showed consistent GM loss bilaterally in 
the medial temporal lobes and the striatum (Pan et al. 2013). 
A discrimination analysis demonstrated that the volume of 
hippocampus, in combination with cortical thickness could 
identify PDD patients with an 80% accuracy (Zarei et al. 
2013). PPD patients have GMV reduction in the superior 
temporal, inferior frontal lobe, insula and anterior cingulate 
cortex (Xu et al. 2016).

Table 2   a Neuroimaging changes in PD-MCI converters vs. non-
converters (modified from Hou and Shang 2022), b Neuroimaging 
changes in PDD converters vs non-converters (modified from Hou 

and Shang 2022), c Neuroimaging changes in PDD converters vs PD-
MCI non-converters (modified from Hou and Shang 2022)

PDD Parkinson disease dementia, PD-MCI Parkinson disease with mild cognitive impairment, PD-NC Parkinson disease with normal cognition, 
NBM nucleus basalis of Meynert, GM gray matter, WM white matter

a
 GM atrophy temporal region, amygdala-hippocampus network at baseline; cortical thinning anterior cingulate cortex, temporal, parietal and 

occipital regions; accumbens nucleus; progressive atrophy frontal lobe; longitudinal WM volume reduction
 Higher progressive atrophy thalamus, hippocampal subfields (CA 2/3), striatum, NBM

b
 GM atrophy uncus, global hippocampus and hippocampal subfields (precuneus, cuneus, subiculum and CA1)
 Cortical thinning mid superior frontal/olfactory cortex, superior frontal/anterior cingulate and precentral regions
 Dysconnection between frontal and multiple other cortical and subcortical networks including cholinergic pathways

c
 GM atrophy prefrontal areas, caudate nucleus and insula; cortical thinning from posterior into frontal regions
 Atrophy of fronto-temporal, olfactory cortices, superior frontal/anterior cingulate and prefrontal region
 Volume reduction global WM; progressive volume decrease hippocampus and substantia innominata
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White matter (WM) changes in PD‑MCI and PDD

Prominent WM changes are observed in both PD-MCI and 
PDD patients. Early changes in WM in PD-MCI patients 
with intact GMV have been reported (Agosta et al. 2014; 
Rektor et al. 2018). White matter hyperintensities (WMH) 
burden in PD-MCI patients was significantly different from 
that in PD-NC (Liu et al. 2021). WMH volume changed 
over time and was associated with impairment in global 
cognition, executive functions and language, whereas WM 
microstructural changes did not vary significantly with 
those clinical parameters (Scamarcia et al. 2022). How-
ever, significant reductions in WM volume have not been 
consistently found with PD-MCI compared with healthy 
controls (Butt et al. 2021; Hanning et al. 2019; Hattori 
et al. 2012; Yarnall et al. 2014). This suggests that the 
heterogeneous phenotypes seen in PD-MCI may impact 
on these distinctions and that either brain atrophy may 
not be as prominent in the early stages of PD-MCI (Hall 
and Lewis 2019). Moreover, microstructural damage in 
the main motor and associative WM tracts are present and 
rapidly progress, even in early phases of PD (Sarasso et al. 
2021). PDD patients had a significantly higher burden of 
WMH, especially deep WMH, which might be an imag-
ing marker for CI in PDD but not in PD-MCI (Liu et al. 

2021). Whole brain studies revealed the involvement of the 
corpus callosum, cingulum and major association tracts in 
PD-MC patients, but not in PD-NC (Agosta et al. 2014; 
Chen et al. 2016; Hattori et al. 2012). PD-MCI shows 
increased hyperintensity in frontal and interhemispheric 
WM (genu and body of corpus callosum) (Agosta et al. 
2014; Deng et al. 2013; Melzer et al. 2013). Thinning of 
corpus callosum in PDD compared to PD-MCI and PD-NC 
correlated with thickness of left orbitofrontal cortex in 
PD-MCI, while changes in corpus callosum in PDD occur 
in line with changes in the cortex in advanced disease stage 
(Owens-Walton et al. 2022). The corpus callosum, the 
cingulum bundle, and the corticospinal tract showed the 
same trend in the decline of cognitive function (Sang et al. 
2022). In addition, the PDD group showed FA decrease 
and/or mean diffusivity increase in the bilateral cingulate 
tract (Kamagata et al. 2012; Matsui et al. 2007), in genu 
of corpus callosum (Chondrogiorgi et al. 2019; Kamagata 
et al. 2013), and hippocampus (Chen et al. 2015).

Correlation analyses between memory and voxel-based 
WM measures showed that PD-aMCI had smaller FA values 
than PD-NC in diffuse WM areas (Chen et al. 2019). Over-
all, WM abnormalities in PD patients with CI seem to be 
widespread (Hall and Lewis 2019), involving multiple brain 
regions with a heterogeneous pattern, abnormal diffusivity 

Table 3   Neuroimaging changes in PDD vs PD-NC (modified from Hou and Shang 2022)

GM gray matter, GMV gray matter volume, WM white matter, WMH white matter hyperintensity, NBM nucleus basalis of Meynert, Aβ β-amyloid

General
 Increased whole brain atrophy and enlargement of ventricular system

GM
 Atrophy of basal forebrain, frontal, inferior and supratemporal lobes, anterior cingulate cortex and insula
 GM loss in bilateral temporal lobes and striatum; cortical thinning frontal/supplementary motor area
 Atrophy parieto-temporal and occipital cortices
 Free water in dorsomedial thalamus and hippocampus
 Degeneration of specific subregions of hippocampus
 Reduced GMV in cholinergic nucleus basalis of Meynert
 Reduced metabolism in temporoparietal, limbic, posterior cingulate cortex and hippocampus

WM
 Considerable WMH burden, especially in deep cerebral WM
 Microstructural change in corpus callosum, prefrontal area and cingulum
 Fractional anisotropy decrease and mean diffusivity increase in bilateral cingulate, genu of corpus callosum and hippocampus
 Abnormal diffusivity in subcortical and limbic WM; WMH in periventricular and deep WM areas

Others
 Disruption of frontal cortical connectivity; reduced fractional anisotropy in hippocampus
 Breakdown of connectivity of mediodorsal thalamus and cingulate cortex
 Loss of interconnections between anterior insula and anterior cingulate cortex
 Lesions of cholinergic pathways from the NBM to frontal cortex and from basal forebrain to hippocampus
 Dysfunctional connections between subcortical frontoparietal and attention networks
 Frequent and moderate to severe cortical Aβ deposition (around 52%)
 Frequent and moderate to severe tau-deposition in cerebral cortex
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variables being widely distributed in WM adjacent to corti-
ces and limbic subcortices (Zhang and Burock 2020). PDD 
patients show a significantly higher burden of periventricular 
and deep WMHs compared to PD-NC (Beyer et al. 2006; 
Lee et al. 2010), which might be an imaging marker for CI 
in PDD but not in PD-MCI (Liu et al. 2021).

In summary, GM changes in PDD predominantly involve 
the temporal regions including the hippocampus, frontal and 
parietal areas as well as subcortical areas including thalamus 
and nucleus basalis of Meynert (NBM), while WM lesions 
are most typically observed in the corpus callosum and cin-
gulate gyrus, inducing dysfunctions of cortico-cortical and 
cortico-subcortical networks, while local network analysis 
showed reduced efficiency predominantly in the frontal and 
parietal regions with the PD-MCI group (Colon-Perez et al. 
2018). However, the clinical heterogeneity of MCI in PD is 
reflected in the variability of structural imaging findings and 
identifying a unique structural signature of PD-MCI remains 
challenging (Hall and Lewis 2019).

Degeneration of neurotransmitter systems

Dopaminergic system

Cognitive deficits in early PD are associated with impaired 
striatal and extrastriatal dopaminergic dysfunction (Sie-
pel et al. 2014), which results in abnormal processing in 
the cortico-basal ganglia circuit with reduced prefrontal 
and parietal metabolism in PD-MCI (Bohnen et al. 2011; 
Ekman et al. 2012), in the salience network (SAN), and in 
the medial temporal lobe (Christopher et al. 2015), which 
contribute to memory impairment in PD, whereas mesocor-
tical dopamine transmission appears to be preserved (Huang 
et al. 2008). Lower presynaptic dopamine uptake in stria-
tum correlated with under-recruitment of anterior cingulate 
cortex suggesting frontostriatal dysfunction (Ekman et al. 
2012). Functional MRI studies have shown frontostriatal and 
temporal lobe deficits in some PDD patients suggesting an 
involvement of both the nigrostriatal and the mesocortical 
dopaminergic pathways. Resting-state functional MRI stud-
ies that provide evidence of functional connectivity changes 
are consistent with the concept of two distinct cognitive syn-
dromes in PD, which include dopaminergically mediated 
frontostriatal executive impairments and a "posterior cor-
tical syndrome" more frequently associated with the later 
development of dementia (Baggio et al. 2015; Lebedev et al. 
2014; Olde Dubbelink et al. 2014). Striatal dopamine trans-
porter availability mediates the association between WMHs 
and CI in the visuospatial and memory domains (Jeong et al. 
2022).

All patients with PD have a moderate to severe loss of 
dopaminergic neurons in the nigrostriatal pathway. More 
widespread degeneration of dopamine terminals in the 

striatum, particularly in the dorsal caudate nucleus, occurs 
in patients with PD-MCI than in those without CI. However, 
in PD-MCI patients there is relative preservation of the other 
dopaminergic systems in the brain, while those with PDD 
have a considerable loss of the lateral dopaminergic systems 
in frontal, parietal and temporal cortical regions (Sasiku-
mar and Strafella 2020). Dysfunction of subcortical-cortical 
networks is the result of neuronal loss in the brainstem and 
limbic areas; cholinergic deficits in the cortex, thalamus, 
and NBM; striatal dopamine loss, decreased nicotinic acetyl-
choline receptors, and degeneration of the medial substantia 
nigra (SN) and striatofrontal and mesocorticolimbic loops. 
Dopaminergic differences in the SAN and the medial tem-
poral lobes also contribute to memory impairment in PD 
(Christopher et al. 2015).

Forebrain cholinergic system

In vivo cholinergic forebrain atrophy predicts cognitive 
decline in de novo PD (Grothe et al. 2021; Ray et al. 2018). 
Microstructural alterations within the cholinergic NBM, 
detected by diffusion tensor imaging, have been identified as 
a strong predictor for development of CI in PD, and precede 
structural GM volume loss (Wilson et al. 2021). Volume loss 
of the NBM is specific to PD and progressive supranuclear 
palsy but not to multiple system atrophy (Rogozinski et al. 
2022).

WM lesions were found in the cholinergic pathway pro-
jecting from the NBM to the cortex, associated with severe 
memory impairment (Park et al. 2015); these lesions were 
increased in PDD compared to PD-MCI and PD-NC, sup-
porting the notion that memory dysfunction is related to 
cholinergic impairment (Schulz et al. 2018). Patients with 
smaller volumes of the NBM had a 3.5-fold greater risk of 
developing PD-MCI over about 5 years (Ray et al. 2018).

PDD is associated with selective destruction of corticos-
triatal resting functional MRI correlations (Seibert et al. 
2012), while acetylcholinesterase-PET (positron emission 
tomography) demonstrated that posterior brain areas are 
related to cognitive decline in PD (Hirano et al. 2012). PD 
patients showed a reduction in volume and density of the 
forebrain cholinergic region and their projections to neo-
cortex, hippocampus and amygdala, which was associated 
with CI over a 2-year period and predicted CI in those with 
PD-NC over 5 years (Bohnen et al. 2015; Ray et al. 2018; 
Schulz et al. 2018). The loss of the basal forebrain choliner-
gic projections to the hippocampus correlates with memory 
deficits and conversion to PDD (Gargouri et al. 2019; Pereira 
et al. 2020). Loss of hippocampal cholinergic fibers is seen 
in patients with PD-MCI, whereas those with PDD show a 
subsequent increase in αSyn deposition and dysfunction in 
both hippocampal and basal forebrain cholinergic systems 
(Hall et al. 2014; Liu et al. 2018). Significant subcortical 
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degeneration with neuronal loss and LBs in NBM may pre-
cede the onset of PDD due to cortical cholinergic denerva-
tion and αSyn pathology (Jellinger 2007a). Cortical cho-
linergic denervation and early posterior cortical atrophy 
induced by caudate dopaminergic denervation contribute to 
CI in PD (Bohnen et al. 2015; Sampedro et al. 2019). Reduc-
tion of cholinergic markers in PDD is due to early degenera-
tion of the corticopetal basal forebrain projection involving 
both the NBM and the nucleus of the diagonal band of Broca 
(Liu et al. 2018; Ray et al. 2018; Schulz et al. 2018).

The noradrenergic locus ceruleus, serotonergic dorsal 
raphe nucleus and ventral tegmental area are also involved 
(Del Tredici and Braak 2013; Espay et al. 2014; Halliday 
et al. 2014; Tilley et al. 2021; Vermeiren and De Deyn 
2017; Ye et al. 2022). PD-MCI patients showed a reduc-
tion in the neuromelanin-sensitive MRI signal of the locus 
ceruleus (Li et al. 2019; Prasuhn et al. 2021). MRI tech-
niques sensitive to brain iron content found higher brain 
tissue iron content in cerebral cortices, hippocampus, 
thalamus, and putamen related to lower Montreal Cogni-
tive Assessment scores in early and mid-stage PD (Thomas 
et al. 2020).

Connectivity and network degradation

Multimodal imaging studies showed a loss of functional 
connectivity and topological features without structural 
damage in the SAN in PD-MCI (Aracil-Bolaños et al. 2019), 
while recent studies revealed disrupted myelin networks in 
the cingulate cortex of PD (Xie et al. 2022).

Comparison of corticostriatal connectivity in PD-MCI 
showed decreased function between the striatal network 
and both the default mode (DMN), central executive and 
saliency (SAN) networks compared to PD/nonMCI and 
age-matched control subjects. This was explained partly 
by increased atrophy within the SAN in PD-MCI. The 
seed analysis revealed a relationship between higher MCI 
scores and lower connectivity of the left caudate head to 
the dorsal anterior cingulate and left middle frontal cortex, 
as well as to decreased connectivity of the right caudate 
head with the anterior cingulate cortex, precuneus, and 
left supramarginal gyrus, and increased connectivity to 
the left hippocampus and right cerebellar hemisphere. 
These results suggest that PD-MCI is associated with both 
global behavioral and cognitive symptoms in PD (Lang 
et al. 2020). Disrupted WM connectivity in frontal and 
posterior cortical regions, which correlates with frontal/
executive dysfunction, are associated with early dementia 
conversion in PD-MCI (Chung et al. 2022). Furthermore, 
PD-MCI is associated with reduced connectivity of the 

mediodorsal thalamus with the paracingulate cortex, while 
also demonstrating increased functional connectivity of 
the mediodorsal thalamus with posterior cingulate cortex, 
compared to PDD. Structures with basal ganglia-thalamo-
cortical circuits are implicated in CI and dementia in PD, 
which are associated with a breakdown in the connectiv-
ity of mediodorsal thalamus with para- and posterior cin-
gulate regions, respectively (Owens-Walton et al. 2021). 
The brain regions involved in PD-MCI are associated with 
the somatosensory and executive processing networks 
(Mihaescu et al. 2019), and specific change in resting-
state functional connections in frontostriatal and posterior 
cortical subtypes of PD-MCI (Devignes et al. 2022).

Reduced cognitive performance in PD patients was also 
associated with functional connectivity of the dorsal insu-
lar cortex with the DMN, highlighting the relevance of the 
insula in cognitive dysfunction in PD (Fathy et al. 2020). 
Tracts between dorsal anterior insular cortex and anterior 
cingulate cortex showed lower fractional anisotrophy and 
higher mean diffusivity in PD patients with lower work-
ing memory and executive functions, indicating a struc-
tural damage in the dorsal limbs of the SAN in PD, pos-
sibly due to loss of interconnecting anterior insular cortex 
subregions and anterior cingulate cortex. This provided 
evidence for clinically relevant structural damage to the 
cortical limbs of the SAN in PD due to extensive neuro-
pathology and loss of interconnecting anterior insular and 
anterior cingulate cortex (Jonkman et al. 2021).

Studies of the connectivity within two distinct DMN 
systems—left-to-right hippocampal (LHC-RHC) and 
medial prefrontal cortex to posterior cingulate cortex 
(mPFC-PCC)—showed that LHC-RHC connectivity was 
significantly associated with global and domain-specific 
cognitive impairments, while the mPFC-PCC was associ-
ated with future global and episodic memory impairment. 
This suggests that there is a functionally distinct role of 
the hippocampal subsystems within the DMN resting state 
network and that intrinsic connectivity between the hip-
pocampus is related to a broad range of cognitive functions 
in PD (Zarifkar et al. 2021). Reduced hippocampal FA 
correlating with global cortical decline in PD (Chen et al. 
2015) is associated with disruption of cortex functional 
connectivity (Rektorova et al. 2012; Seibert et al. 2012) 
with predominant frontal cortical disruption, while others 
showed altered temporal properties in dynamic connec-
tivity in PDD (Fiorenzato et al. 2019). Examination of 
altered (dynamic) functional interactions between brain 
networks relating to cognitive dysfunctions in PD patients 
showed that the severity of executive dysfunction was cor-
related with higher static and lower dynamic functional 
connectivity between deep GM regions and the frontopa-
rietal network (DGM-FPN). Declining executive function 
was related to increasing static DGM-FPN connectivity, 
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together with changes of connectivity involving the dorsal 
attention network. These findings demonstrate that in PD 
patients, dysfunctional connections between subcortical 
fronto-parietal and attention networks mostly underlie 
worsening in executive functioning (Boon et al. 2020). In 
general, CI in PD is associated with reduced connectivity 
in networks relevant to cognition, most prominently to the 
DMN (Gratwicke et al. 2015; Wolters et al. 2019).

Brain positron emission tomography studies 
in PDD

18FFluorodeoxyglucose positron emission tomography 
(FDG-PET) studies showed hypometabolism in parietal, 
precuneus, hippocampus, and occipital lobes in PD with 
incident dementia (Bohnen et al. 2011), while hypome-
tabolism in medial frontal and parietal regions was asso-
ciated with decline in memory and executive functions 
(Huang et al. 2007), and reduced metabolism in posterior 
cortical regions was observed in PD-MCI patients (Schrag 
et al. 2017). Aβ PET studies showed higher rates of tracer 
retention in PDD but the degree of uptake was less than 
that seen in AD (Foster et al. 2010; Mashima et al. 2017; 
Oh et al. 2021; Villemagne et al. 2011), Patients who show 
higher degree of Aβ uptake are at higher risk of developing 
CI (Petrou et al. 2012; Shah et al. 2016). 18FFlorbetapir 
PET showed that severe Aβ deposition is common in PDD 
patients (52.4%), contributing to memory impairment and 
driving a faster rate of cognitive decline (Palermo et al. 
2019). In other PET studies, prevalence of Aβ-positive 
cases was 0.34 (95% CI 0.13–0.56) in the PDD group 
and 0.05 (95% CI − 0.07 to 0.17) in the PD-MCI group 
(Petrou et al. 2015). Other groups did not find an asso-
ciation between Aβ deposition and CI in PD (Ko et al. 
2017; Melzer et al. 2019). Frequency of positive Aβ PET 
scans in PD-MCI (5–11%) was not different from age-
matched controls (Melzer et al. 2019; Petrou et al. 2015; 
Winer et al. 2018). The patterns of cortical Aβ and tau 
did not significantly differ between people with PD-NC, 
those with PD-MCI and healthy older adults. Thus, age, 
Aβ and tau did not differentiate patients with PD-NC and 
PD-MCI (Winer et al. 2018). A recent study showed that 
the Aβ-positive PD group had higher frequency of MCI, 
especially amnestic type, and lower dopaminergic activi-
ties in the left ventral striatum, suggesting that PD patients 
with Aβ positivity have AD-related cognitive changes (Na 
et al. 2020; Oh et al. 2021). In general, PDD patients have 
a lower incidence of Aβ deposition than DLB patients 
(Akhtar et al. 2016; Frey and Petrou 2015). No signifi-
cant increase of tau-PET in SN or cortex brain flortaucipir 
uptake was seen across a 2-year follow-up in PD patients 
(Hansen et al. 2020). Preliminary tau-PET studies using 

18Fflortaucipir (formerly called AV-1451) indicated a gra-
dient of tau binding from PD-NC (none to minimal) via 
PD-MCI (minimal), PDD (low/modest) to DLB (inter-
mediate/strong) to AD (highest) (Bohnen et al. 2017), 
uptake in PDD being intermediate between PDND and 
AD (Coughlin et al. 2020; Gomperts et al. 2016; Kantarci 
et al. 2017). Similar to postmortem data for tau pathology, 
increased flortaucipir uptake antemortem is also associated 
with dementia in PD (Smith et al. 2018). The recently 
described binding of 18Fflortaucipir uptake by neuromela-
nin (Marquie et al. 2017) and the relevance of radioio-
dinated benzimidazole derivates for selective imaging of 
αSyn aggregates (Alzghool et al. 2022; Roshanbin et al. 
2022; Watanabe et al. 2017) deserve further confirmation.

Neuropathology of PD‑MCI

Although the heterogeneous pathology of PDD and PD-
MCI are well documented (Halliday et al. 2014; Molano 
et al. 2010; Sabbagh et al. 2009), there are few neuropatho-
logical studies of PD-MCI. Two neuropathological studies 
described 16 PD-MCI cases: among 365 autopsy-proven 
PD, eight (2.2%) met the criteria for PD-MCI (mean age 
82.2, mean disease duration 11.4 years). Four patients had 
aMCI memory, three naMCI with frontal executive and 
one with executive and visuospatial dysfunction. Three 
cases were brainstem-dominant and brainstem-limbic-
dominant, and two neocortical LB stage (Beach et  al. 
2009). Two patients with naMCI and one with aMCI 
showed multiple brain infarcts, emphasizing the role of 
co-existent cerebrovascular pathology (Adler et al. 2010). 
In addition, there was severe amyloid plaque intensity in 
the cortex; four with moderate to severe cerebral amyloid 
angiopathy (CAA), while one case each had moderate to 
severe CAA (Adler and Beach 2010). Among 233 autopsy-
proven cases of PD (54.6% cognitively unimpaired), eight 
(3.4%) met the criteria for PD-MCI (mean 76.7, disease 
duration 13.4 years). Four patients were aMCI memory 
only; three naMCI with frontal dysexecution, and one 
multiple-domain aMCI. Two were brainstem, 5 brainstem-
limbic, and one neocortical LB stage (Jellinger 2010a). 
Neuritic Braak stages ranged from I to III (mean 1.3); 
a few neuritic plaques and mild generalized CAA were 
detected in only two brains, while no diffuse plaques were 
seen in the basal ganglia. In the case of multidomain MCI, 
there was a correlation between amyloid and neuritic 
plaques and CAA (Jellinger 2010b), confirming the con-
tribution of both Aβ plaque load and CAA to CI (Jellinger 
and Attems 2008). The neuropathological data in these 16 
PD-MCI cases (8 aMCI-PD, 7 naMCI-PD, one amnestic 
multiple domain, mean age 78 years) can be summarized 
as follows: 50% were brainstem dominant LB disease, 31% 
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brainstem-limbic forms, 19% neocortical type. Neuritic 
Braak stage in aMCI was slightly higher than in naMCI 
(mean 2.7 vs 2.1); mild neuritic plaques were seen in 12%, 
moderate ones in 31%; mild CAA in 11%, lacunar state 
in 25%, and old cerebral infarcts in 12.5%. These data 
indicated a heterogeneous neuropathology in PD-MCI 
(Jellinger 2013). Recently the neuropathological findings 
of 49 cases (15 with the clinico-pathological diagnosis 
of PD) with amnestic aMCI and naMCI were compared, 
reporting the propensity of increased neurofibrillary tan-
gles (NFT) in the aMCI group and increased LBs in the 
naMCI group (Dugger et al. 2015). In a recent study of 
159 autopsy-confirmed PD cases, 25 had PD-MCI and 102 
PDD. In the PD-MCI group 56% met criteria for aMCI 
and 44% of naMCI, showing no significant differences in 
age, gender, PD duration, etc. In the naMCI group, all 
were brainstem-limbic stage (III), which was significantly 
different from the aMCI group in which only 22% were 
at neocortical stage (IV). Concomitant non-AD tauopa-
thy was present in 9 PD-MCI cases (42% aMCI and 18% 
naMCI). Both aging-related tau astrogliopathy (ARTAG) 
and argyrophilic grains were seen in 5 cases with no 
significant differences between both groups. Two aMCI 
cases also met neuropathological criteria of progressive 
supranuclear palsy. No differences were found in neuritic 
plaque density, total plaque density score, WM rarefac-
tion, cerebral infarct volume. CAA score or APOE carrier 
frequency were similar between both groups (Knox et al. 
2020). This study also confirmed a clear morphological 
heterogeneity in PD-MCI similar to that in MCI without 
PD (Markesbery 2010). In this cohort, 56% of the PD-
MCI cases had aMCI with no preponderance of naMCI 
as reported in other series (Litvan et al. 2012). The aMCI 
cases had slightly higher Braak NFT stages, while a previ-
ous study of autopsy-proven PDD cases showed that 54.9% 
of them had concomitant AD, although there was little 
difference in their clinical dementia presentation (Sab-
bagh et al. 2009), while another recent study revealed an 
increase in LB pathology in naMCI (Knox et al. 2020). 
Furthermore, the presence of non-AD pathology in this 
PD-MCI cohort suggests that the role of tauopathies in 
PD-MCI and PDD should be further explored.

Neuropathology of PDD

There is a large number of extensive reports about the 
neuropathological substrates of PDD, most of them dis-
cussing the convergence and interactions of αSyn, tau and 
Aβ pathologies and their contribution to dementia patho-
genesis, the relations between PD and AD, associated dys-
functions of various neurotransmitter systems, metabolic 

disorders (Compta et al. 2011; Coughlin and Irwin 2022; 
Hall et al. 2014; Halliday et al. 2014; Irwin et al. 2012, 
2013; Jellinger 2012b; Kalaitzakis and Pearce 2009; Liu 
et al. 2019; Smith et al. 2019; Wills et al. 2010), the influ-
ence of co-pathologies on cognition in PD (Coughlin and 
Irwin 2022; Daida et al. 2018; Homma et al. 2015; Smith 
et al. 2019) or discussing specific changes, like protein 
pathology (Kouli et al. 2020; Tu et al. 2022), neuroinflam-
mation (Kouli et al. 2020) or mitochondrial disorders in 
PDD (Garcia-Esparcia et al. 2018; Gatt et al. 2016).

Lewy/αSyn pathology

Although few cortical LBs are found in virtually all cases of 
sporadic PD, there is no consensus on the structural basis of 
CI in PD (Jellinger 2009; Sonnen et al. 2010). The function 
of αSyn remains under investigation, but it is localized in 
presynaptic neuronal membranes and regulated endocytosis 
and trafficking (Bendor et al. 2013; Vargas et al. 2014). Due 
to the ubiquitous deposition of αSyn in the central nervous 
system with high enrichment in presynaptic terminals, PD is 
denoted a synucleinopathy (Uversky 2009), showing specific 
synaptic pathology of αSyn aggregation (Schulz-Schaeffer 
2010). The morphological substrate of PDD is heteroge-
neous and includes (1) Lewy/αSyn pathology in cortical, 
limbic, and subcortical structures, (2) AD-related neuro-
pathological changes (ADNC) (diffuse and neuritic plaques, 
neurofibrillary tangles and CAA), and (3) a combination 
of these pathologies that has been shown to most robustly 
correlate with the severity of CI (Compta et al. 2011; Hal-
liday et al. 2014; Irwin et al. 2012; Jellinger 2012b; Smith 
et al. 2019). Based on a large autopsy series of PD patients, 
a stereotypical pattern of spread of Lewy body pathology 
(LBP) from brainstem regions and olfactory bulb via limbic 
areas to neocortical areas was suggested (Braak et al. 2003), 
and later modified (Beach et al. 2009). The reasons for this 
selective vulnerability to accumulate LBP of these regions 
remains unclear but may be due to the fact that the longer, 
poorly myelinated axons or functionally connected networks 
may be prone to develop pathology and favor transsynap-
tic neuronal spread of pathogenic αSyn (Braak et al. 2004; 
Surmeier et al. 2017), suggesting a prion-like mechanism of 
αSyn pathology in PD.

Limbic and neocortical LBP are approximately 10 times 
higher in PDD cases than in PDND ones (Apaydin et al. 
2002). CI in PD is often correlated with the density of LBs 
in frontal cortex and Lewy neurites and neuritic degenera-
tion in hippocampus and periamygdaloid cortex, causing a 
disruption of the limbic loop similar to that described in 
AD (Mattila et al. 1999). The severity of LBP in the CA2/3 
region of the hippocampus has been shown to correlate with 
episodic memory loss (Adamowicz et al. 2017; Harding 
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et al. 2002), although hippocampal atrophy and cell loss 
are not necessarily involved in memory impairment in PD 
(Joelving et al. 2006). The severity of CI correlates strongly 
with Braak PD stage (Braak et al. 2005). In a large autopsy 
series, 50% of PDD patients showed Braak Lewy neurite 
stages 4–6, particularly when cases with coexistent ADNC 
were excluded (Mattila et al. 2000). PDD cases also showed 
higher LBP in subcortical regions compared to PDND cases. 
In the striatum, insoluble αSyn levels were twice as high 
(Wills et al. 2010), while in the amygdala and hippocam-
pus, LB density correlated with dementia severity (Apaydin 
et al. 2002; Churchyard and Lees 1997; Halliday et al. 2011; 
Mattila et al. 2000). Parahippocampal αSyn scores showed 
excellent sensitivity (91–93%) and specificity (84–88%) 
for separating PD cases with and without dementia (Hard-
ing and Halliday 2001). PDD cases usually showed higher 
LBP in subcortical regions relative to PDND ones. In a 
large study, the severity of cortical LBP was the factor that 
best correlated with dementia (Irwin et al. 2012), and in a 
community-based study of 872 autopsies, 103 showed neo-
cortical LBP associated with increased odds of dementia and 
more rapid decline in all cognitive domains, whereas a lim-
bic distribution was specifically associated with more rapid 
decline in visuospatial skills, which was not modified by 
coexistent AD pathology (Schneider et al. 2012). It should 
be considered, however, that not all patients with cortical 
LBP may develop dementia (Colosimo et al. 2003; Irwin 
et al. 2012; Kempster et al. 2010), although LB densities in 
temporal lobe were significantly higher in PDD compared 
to PDND cases, which was not observed in frontal or lim-
bic cortical regions (Harding and Halliday 2001). The more 
severe increase of αSyn in inferior frontal gyrus in PDD 
patients compared to those without dementia (Wills et al. 
2010), enhances the discussion in defining the underlying 
substrate of CI in PD, in particular with regard to the impact 
of neocortical LB burden (Jellinger 2007b; Kalaitzakis and 
Pearce 2009; Selikhova et al. 2009). However, the findings 
of more increased αSyn burden in the inferior frontal cortex 
in PDD subjects appear to favor increased LBP in neocortex 
contributing to dementia.

Insoluble αSyn in the striata being substantially higher 
than soluble levels in normal controls showed significant 
increase in both PDND and PDD, with much higher increase 
in PDD (176% vs. 141%) and in inferior frontal cortex (41- 
vs. 20-fold; p < 0.019), suggesting that there is a substantial 
increase of αSyn in both regions, being significantly greater 
in PDD (Wills et al. 2010). Striatal αSyn pathology in PDD 
was associated with Braak LB stage 3, and only mild stri-
atal αSyn burden in PD brains scored LB Braak stages 3–5 
(Jellinger and Attems 2006).

The strong association between extensive αSyn pathol-
ogy and dementia was challenged by some studies that 
reported that 15–44.7% of cognitive intact PD patients were 

associated with severe neocortical LBP (Compta et al. 2011; 
Horvath et al. 2013; Irwin et al. 2012; Kempster et al. 2010), 
while a small study described PD cases without dementia 
despite limbic and neocortical LB pathology and concluded 
that no clear threshold of LB burden can distinguish PD 
cases with and without dementia (Colosimo et al. 2003). 
On the other side, few cases with dementia were described 
without LBs outside the brainstem and only mild or absent 
concomitant AD or cerebrovascular pathology (Libow et al. 
2009), and dementia cases with αSyn pathology confined 
to the brainstem were observed in 14.7% of 109 PDD cases 
(Horvath et al. 2013), while other studies reported much 
lower figures (Aarsland et al. 2005a; Colosimo et al. 2003; 
Compta et al. 2011; Harding and Halliday 2001; Irwin et al. 
2012; Kotzbauer et al. 2012; Sierra et al. 2016; Walker et al. 
2015).

Role of AD pathology

Coexisting tau and Aβ pathology of varying severity is com-
mon in PD with CI and relates to a faster onset of demen-
tia (Compta et al. 2011; Halliday et al. 2014; Howlett et al. 
2015; Irwin et al. 2012, 2017; Jellinger et al. 2002). AD-
related changes, severe enough for a secondary contribution 
to CI, were present in about 10% of PDND and in about 35% 
of PDD patients in various autopsy series (Irwin et al. 2012; 
Jellinger 2008; Smith et al. 2019). In general, both LBP and 
ADNC may occur and act synergistically (Colom-Cadena 
et al. 2017; Halliday et al. 2014; Hepp et al. 2016; Irwin 
et al. 2012, 2013; Jellinger 2009; Kotzbauer et al. 2012; 
Lashley et al. 2008; Nelson et al. 2010). In large autopsy 
series around 50% of PDD patients showed Braak LB stages 
4–6 together with severe ADNC (Braak neuritic stages 5 
and 6) (Irwin et al. 2013; Jellinger 2007a), while others sug-
gested a significant positive relationship between cortical 
αSyn deposition and CI (Biundo et al. 2016; Petrou et al. 
2012). ADNC has been considered by some to be a more 
specific correlate of dementia than cortical LBP, since the 
majority of PDD cases with sufficient numbers of cortical 
NFTs could be assigned a diagnosis of PD plus AD (Compta 
et al. 2011; Irwin et al. 2012). However, the proportion of 
PD with comorbid AD varies considerably. The four largest 
studies (n = 88 to n = 200) that defined AD as intermediate 
or high probability by NIA/AA (National Institute on Aging/
Alzheimer’s Association) criteria, showed reasonably con-
sistent results: comorbid AD was diagnosed in 19.3–31.5% 
of total PD cases, while the rate of comorbid AD in PDD 
cases showed much higher variation between 21.5 and 89.4% 
(Braak et al. 2005; Irwin et al. 2012; Jellinger et al. 2002), 
tau pathologies in PDD cases affected the prefrontal cortex 
more severe than the temporal cortex, while the occipital 
cortex was rarely affected (Vermersch et al. 1993). Two 
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reports related advanced ADNC with severe dementia and 
concluded that PDD was particularly related to comorbid 
AD (Bancher et al. 1993; Jellinger et al. 1991), which was 
confirmed by later studies from the same research group 
(Jellinger et al. 2002; Jellinger and Attems 2008). The pat-
terns of Aβ pathology and spread of NFTs in PDD are simi-
lar to that seen in typical AD, although in some cases the 
medial temporal lobe was relatively spared and there were 
some differences in neocortical tau burden (Coughlin et al. 
2019b; Walker et al. 2015). The presence of co-existing 
ADNC relates to faster onset of dementia in PD (Compta 
et al. 2011; Halliday et al. 2014; Irwin et al. 2012, 2017; 
Jellinger et al. 2002). Moreover, AD co-pathology is related 
to older age at disease onset and decreased survival (Irwin 
et al. 2017; Kotzbauer et al. 2012; Sabbagh et al. 2009); 
some reports suggest that ADNC has a greater influence on 
dementia onset than αSyn pathology (Compta et al. 2014; 
Howlett et al. 2015). Co-existent ADNC has been shown to 
produce greater deficits in episodic memory (Coughlin et al. 
2019a; Kraybill et al. 2005; Peavy et al. 2016).

A clinicopathological study identified three subgroups of 
PDD: (1) predominant synucleinopathy (LB Braak stages 
5–6; 38%), (2) synucleinopathy with Aβ deposition but min-
imal or no tau pathology (59%), and (3) synucleinopathy 
with considerable to severe neocortical tau pathology (Braak 
neuritic stages 5–6; 3%). Patients in group II showed signifi-
cantly shorter survival than those with pure synucleinopa-
thy (Kotzbauer et al. 2012). Another study showed three 
groups with different LBP distributions: PD patients without 
comorbid AD, PD with AD (PD-AD) and DLB with AD 
(DLB-AD). The PD-AD group had ADNC with increased 
LBP; the DLB-AD group showed relative preservation of 
SN, while coincident ADNC was associated with increased 
LBP suggesting interaction of both. These cluster-defined 
groups were associated with different rate of progression 
to dementia (Toledo et al. 2016). LBP has typically been 
considered the most significant predictor of dementia in 
PD (Horvath et al. 2013; Irwin et al. 2012; Kövari et al. 
2003; Ruffmann et al. 2016), while in some studies Aβ and 
tau pathologies were suggested to be independent predic-
tors of dementia (Compta et al. 2011; Horvath et al. 2013). 
However, the additive or synergistic effect of αSyn on AD 
pathologies may influence clinical features of PDD, like 
shorter disease duration or more malignant course (Compta 
et al. 2011, 2014; Halliday et al. 2014; Irwin et al. 2017).

Contribution of αSyn, Aβ and tau to PDD

There is increasing evidence that abnormal αSyn, Aβ and 
tau are significant predictors of dementia in PD (Horvath 
et al. 2013; Irwin et al. 2012; Ruffmann et al. 2016). One 
study found that the variance in cognitive scores was related 

to LBP in entorhinal, anterior cingulate and temporal cor-
tices, with smaller contributions from entorhinal and tem-
poral Aβ (Kövari et al. 2003). Braak NFT stage remained 
independently associated with CI, while LBP was consist-
ently the best predictor for dementia (Horvath et al. 2013). 
Another study of 104 PD cases found that the LB score alone 
was the best predictor for dementia (Ruffmann et al. 2016), 
while another study indicated that diagnostic accuracy was 
improved by addition of indicators of Aβ and tau pathol-
ogy (Compta et al. 2011). A multivariate regression analysis 
examining dementia severity found that anterior cingulate 
and entorhinal LB burden together accounted for about 60%, 
while values for Aβ and tau were not significant (Kövari 
et al. 2003). A small study found that cognitive scores in PD 
patients were unrelated to any measure of Aβ, tau and αSyn, 
though the LB score predicted the annual rate of cognitive 
decline causing dementia in PD (Aarsland et al. 2005a, 
2005b), whereas a study using multiple backward regres-
sions showed that the best predictor of annual decline was 
a summated score incorporating both LB and AD patholo-
gies that are both common, particularly in PDD cases in 
the prefrontal cortex (Howlett et al. 2015). There is con-
vincing evidence that coexistence of limbic and neocortical 
αSyn pathology and notable ADNC contribute to dementia 
in PD, and we can reliably conclude that both tau and Aβ 
pathologies are common particularly in PDD cases. While 
one research group found advanced ADNC in most PDD 
cases (Bancher et al. 1993; Jellinger et al. 2002), in other 
studies ADNC was less frequent and less severe; while tau 
indices independently predicted dementia in PD cases in one 
study (Horvath et al. 2013), two other studies found no such 
association (Irwin et al. 2012; Ruffmann et al. 2016). In spite 
of some differences between study groups, the majority of 
results indicates that tau pathology contributes to dementia 
in a majority of PD cases, whereas Aβ was found not to 
be independently related to dementia in most studies. Thus, 
tau has a closer relationship with CI in PD than Aβ, which 
is consistent with observations in AD (Nelson et al. 2012). 
While Aβ deposition was not associated with dementia in 
PD, severe changes were linked with more rapid cognitive 
deterioration and earlier mortality (Compta et al. 2014; Hal-
liday et al. 2011; Jellinger et al. 2002; Kotzbauer et al. 2012; 
Ruffmann et al. 2016; Sabbagh et al. 2009).

The relationship between αSyn deposition and dementia 
is strong despite some variations between studies. Global 
cortical αSyn burden was the best predictor of dementia 
(Horvath et al. 2013; Irwin et al. 2012; Kövari et al. 2003; 
Ruffmann et al. 2016), although the addition of tau and Aβ 
scores improved predicative accuracy for dementia (Compta 
et al. 2011). On the other hand, significant αSyn burden in 
limbic and neocortical areas were found in 15–45% of PD 
cases without CI (Compta et al. 2011; Irwin et al. 2012; 
Kempster et al. 2010) and other studies found severe αSyn 
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as well as Aβ and tau pathologies in elderly PD cases with-
out CI (Parkkinen et al. 2005), which probably might be 
explained by higher cognitive reserve in these patients (Hin-
dle et al. 2014). Human brain autopsy findings and both cell 
and animal model data provide evidence for a synergistic 
interaction of αSyn, tau and Aβ pathologies inducing each 
other and their spreading in the brain (Bassil et al. 2020, 
2021).

In conclusion, whereas there has been a discussion about 
the role of individual pathologies causing dementia in PD, 
there is increasing evidence from multiple clinicopathologi-
cal studies for a synergistic effect between αSyn pathology, 
age and ADNC (both tau and Aβ) as the main drive of cogni-
tive decline in PD, suggesting a triad of neurodegeneration, 
the molecular pathogenesis remains to be further elucidated 
(Dickson et al. 2009b; Halliday et al. 2014; Jellinger 2011; 
Pletnikova et al. 2005; Wills et al. 2010). A recent study on 
the disease-specific patterns of αSyn multimer destabiliza-
tion in PD, based on local regional neuronal vulnerability 
and "prion-like" aggregation transmission enabled by desta-
bilization of local endogenous αSyn protein, revealed differ-
ences of the cytosolic unfolded, monomeric form of αSyn 
(αSU) and helically folded multimeric form (αSH) equilib-
rium comparing demented and cognitively intact PD patients 
(de Boni et al. 2022). These data suggest that different brain 
region-specific susceptibility of LBP might be important for 
development of cognitive impairment in PD.

Impact of other co‑pathologies on cognition 
in PD

Other common neuropathologies associated with age can 
influence the course of PD. Cerebrovascular disease and 
WMHs have been demonstrated to be associated with cog-
nitive dysfunction in PD (Chahine et al. 2019; Mak et al. 
2015; Malek et al. 2016; Rektor et al. 2009), while other 
studies did not find such an association (González-Redondo 
et al. 2012; Haugarvoll et al. 2005). Among the different 
subtypes of cerebrovascular disease, cerebral small vessel 
disease has been associated with cortical thinning in the 
frontoparietal regions with concomitant decline in memory 
(Foo and Kandiah 2016). A meta-analysis of the influence 
of cerebral small vessel disease showed different effects on 
cognitive function in PD, most effective on executive ability, 
memory and overall cognitive function (Wan et al. 2022). 
Higher perivascular space in the basal ganglia and WMH 
severity are independent positive predictors of future cogni-
tive decline in PD (Chen et al. 2022). 

Cerebral microbleeds (CMB) related to hypertension 
also have been associated with cognitive decline (Qin et al. 
2022), while others did not, but they were seen more fre-
quently in PDD than in PDND patients (Daida et al. 2018; 

Ham et al. 2014). A regression analysis showed that the 
presence of lobar CMBs was strongly associated with PDD 
(Daida et al. 2018). Other recent studies showed that amy-
loid-related CMBs and reduced hippocampal volume are 
associated with PDD (Tsai et al. 2021); earlier studies also 
showed association of severe CAA with PDD (Compta et al. 
2011; Irwin et al. 2012). While according to some authors, 
cerebrovascular and TDP 43 pathologies do not generally 
contribute to PDD (Smith et al. 2019), one study found hip-
pocampal and entorhinal TDP-43 inclusions more often in 
subjects with PDD than in those with PDND and healthy 
controls. Furthermore, significant association between co-
morbid ADNC and TDP-43 was observed (Nakashima-Yas-
uda et al. 2007). Argyrophilic grain disease, another form 
of age-related tauopathy largely related to medial temporal 
lobe (Ferrer et al. 2008), appears to be rare in PD, but has 
been reported as an important factor affecting dementia in 
PD (Homma et al. 2015), while according to others, it was 
not associated with worse cognitive outcome (Aarsland et al. 
2021; Irwin et al. 2012). Many of these pathologies can 
occur in advanced age and make it difficult to disentangle 
their individual contribution to cognitive decline (Compta 
et al. 2011; Coughlin et al. 2019b; Irwin et al. 2017). In gen-
eral, there is likely a complex interaction of various neuro-
pathologies in the expression of cognitive and other clinical 
features in PD (Buchman et al. 2019; Coughlin and Irwin 
2022), which, however deserves further elucidation.

Conclusion and outlook

PD is a common and heterogeneous neurodegenerative 
disorder; it is much more than a movement disorder, and 
a wide range of nonmotor symptoms has been recognized. 
Among them, cognitive decline, in a wide range of sever-
ity and involved domains, is particularly important, due to 
its enormous impact on the quality of life of patients and 
caregivers, as well as the economic burden brought about 
by this severe condition. The morphological and molecular/
biochemical basis of CI is heterogeneous, and modern neu-
roimaging studies revealed widespread changes in cerebral 
GM and WM, involving multiple brain areas and causing 
loss of functional connectivity between critical neuronal net-
works involved in cognitive and behavioral functions due to 
neurodegenerative changes. PD patients who exhibit ‘AD-
like’ patterns of brain atrophy are at a greater risk for future 
cognitive decline. SPARE-AD (Spatial Pattern of Abnormal-
ity for Recognition of Early Alzheimer’s disease), an MRI 
index capturing AD-related atrophy, has been shown to be 
higher in PD-MCI and PDD patients than in PD-NC and 
healthy controls (Charissé et al. 2022).

The majority of autopsy-based studies to date support the 
strong association of limbic and neocortical LBP with CI in 
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PD, while AD co-pathology is often observed as well and 
may play a synergistic role in the development of demen-
tia with some unique cognitive features (episodic memory 
deficits and others). The global number of individuals who 
live with dementia has been expected to increase to 100 mil-
lion by 2050 (Nichols and Collaborators 2019), and research 
challenges are increasingly being recognized for both PD 
and dementia, and further data on the prevalence of PD-
associated CI are urgently warranted. The proposal that 
dementia prior to or simultaneous with or after development 
of motor symptoms might be included in the diagnosis of 
PD (Berg et al. 2014; Postuma et al. 2015) has reopened the 
discussion on whether PDD and DLB should be considered 
the same disease or phenotypes of a spectrum of LB dis-
eases (Friedman 2018; Jellinger 2018; Jellinger and Korczyn 
2018). A deeper understanding of the pathophysiological 
processes underlying these two synucleinopathies, such as 
the relative contribution of Aβ and tau pathologies in cortex 
and striatum, the extent of cortical and entorhinal LBP, the 
severity of neuronal loss in SN and other subcortical nuclei 
and the involvement of various neurotransmitter systems is 
required to better understanding the relationship between 
the different forms of CI in PD and related LB diseases. 
The prospective assessment and validation of CI in PD will 
be improved by combined assessment of neuroimaging and 
biomarker signatures, making decisions more homogenous. 
There is an urgent need for quantitative in vivo biomark-
ers and multicentered autopsy studies of well-characterized 
longitudinally followed patients to further elucidate the 
pathobiological contributions of different neuropathologies 
to CI and domain-specific features in PDD. These and other 
interdisciplinary efforts are critical to the development of 
meaningful disease-modifying therapies and preventive 
measures to slow or halt progression of PD and resultant 
cognitive deterioration.
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