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Abstract
The most common neurodegenerative disorders, such as Alzheimer’s or Parkinson’s diseases, are characterized by synaptic 
dysfunction, neuronal loss and proteinaceous aggregates in central nervous system. The deposition of misfolded proteins 
constitutes neuropathological hallmarks of these diseases, grouped in the generic term of proteinopathies. Apart from these, 
other neurodegenerative diseases are characterized by genetic abnormalities like unstable repetitive simple sequence tracts 
(microsatellites) dispersed throughout the human genome. They are called repeat expansion disorders and include, for exam-
ple, Huntington’s disease or frontotemporal dementia/amyotrophic lateral sclerosis phenotypes associated to an expansion 
in C9ORF72. The presence of the expanded DNA tract leads to molecular alterations at the DNA, RNA and protein levels 
associated to distinct mechanisms, such as loss-of-function (LOF), gain-of-function (GOF) including misfolding of physi-
ological or mutant proteins, favoring their polymerization and aggregation. Therefore, specific proteinopathies also arise from 
these repeat expansion disorders. The molecular description of the nature and location of expanded tracts, highlighting the 
consequences onto clinical phenotypes will be first described. Specific focuses on the three pathomechanisms of the repeat 
expansions associated to proteinopathies will then be addressed. Lastly, we will show how progress in the understanding of 
these different mechanisms has led to recent advances in new/innovative therapeutic approaches and emergence of associ-
ated biomarkers.

Keywords Proteinopathies · Neurodegenerative disorders · Repeat expansions diseases · RAN translation · Polyglutamine 
diseases · Disease-modifying therapies

Introduction

Neurodegenerative disorders are characterized by progres-
sive loss of selectively vulnerable populations of neurons 
and can be classified according to clinical features and/
or molecular abnormalities (Dugger and Dickson 2017). 
Indeed, the most prevalent neurodegenerative diseases are 
characterized by proteinaceous aggregates (hyper-phospho-
rylated tau and amyloid peptides in Alzheimer’s disease, 
alpha-synuclein in Parkinson’s disease, TDP-43 protein in 
frontotemporal dementia/amyotrophic lateral sclerosis…) 

(Noor et al. 2021). The detection of these aggregates in brain 
samples led to the protein-based molecular classification of 
neurodegenerative diseases (Kovacs 2017) which permits, 
in addition to specific clinical criteria, a definite diagnosis 
for these diseases (McKhann et al. 2011; Rascovsky et al. 
2011; Watson et al. 2021). As a consequence, the concept of 
proteinopathies emerged and can be defined as diseases trig-
gered by the aggregation of one or more physiological pro-
teins becoming pathologically active after post-translational 
modifications and/or conformational changes, leading to an 
increased propensity to self-association and precipitation 
(Bayer 2015). The formation of protein aggregates follows a 
sequential distribution pattern in different brain regions, both 
protein nature and prototypic pattern being therefore spe-
cific to each neurodegenerative disease (Marsh 2019; Kovacs 
2019). The better comprehension of these proteinopathies 
and an improved classification of patients’ cohorts paved 
the way to intensive research with the aim of developing 
effective disease-modifying treatments (Aisen et al. 2020; 
Cummings et al. 2019; Brys et al. 2019).
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Among neurodegenerative disorders, a vast group of dis-
eases is characterized by unstable repetitive simple sequence 
tracts (microsatellites) dispersed throughout the human 
genome. This group of conditions, called repeat expansion 
disorders (Depienne and Mandel 2021), includes most com-
monly inherited neurological disorders, such as Huntington’s 
disease, spinocerebellar ataxias, and most recently fronto-
temporal dementia/amyotrophic lateral sclerosis associated 
to an expansion in C9ORF72 (Loureiro et al. 2016; Rudnicki 
and Margolis 2003). In these diseases, the presence of an 
expanded tract in one specific gene is a mandatory condition 
to trigger various and intertwined molecular mechanisms at 
the DNA, RNA and protein levels, leading to neurodegen-
eration and disease onset (Malik et al. 2021; Schwartz et al. 
2021). These molecular alterations are classically divided 
into loss-of-function (LOF) or gain-of-function (GOF) 
mechanisms (La Spada and Taylor 2010). Some of the lat-
ter may be responsible for the misfolding of physiological 
or mutant proteins, favoring their polymerization and aggre-
gation. For this reason, specific proteinopathies also arise 
from repeat expansion disorders. Proteinopathies’ identifica-
tion in clinical practice is less crucial than for Alzheimer’s 
disease and Parkinson’s disease, as laboratory diagnosis of 
repeat expansion disorders essentially relies on genetic test-
ing (Paulson 2018). Nevertheless, the better understanding 
of the molecular mechanisms secondary to the presence of 
these unstable expansions allows for the conception of new 
disease-specific therapies and associated monitoring bio-
markers (Benn et al. 2021; Hautbergue et al. 2021; Bakkar 
et al. 2015).

The first part of this review will focus on a molecular 
description of the nature and location of expanded tracts, 
highlighting the consequences of these genetic alterations 
onto clinical phenotypes. Then, three pathomechanisms of 
repeat expansion disorders leading to proteinopathies will be 
detailed in the second part of this article: the translation of 
mutant proteins containing repeated amino acids, the seques-
tration of RNA-binding proteins and the repeat associated 
non-AUG (RAN) translation of repeat peptides. Finally, the 
emergence of novel therapeutics and biomarkers associated 
to these particular molecular mechanisms will be discussed.

The molecular features of expanded DNA 
tracts in repeat expansion disorders

A first particular characteristic of repeat expansions is their 
dynamic behavior. Expanded alleles in repeat expansion dis-
orders arise from polymorphic repeats in general population 
and often change size within or between tissues of affected 
individuals (Pearson et al. 2005). Moreover, expansions 
and longer normal alleles are more likely to increase than 
smaller normal alleles. Because of the size of these large 

expansions, genetic testing requires specific methodologies 
as high-throughput short-read sequencing remains unable to 
genotype long expansions (Chintalaphani et al. 2021). The 
mechanisms associated with such an instability are now bet-
ter understood and would involve an alteration of DNA met-
abolic processes, such as replication, repair and/or recombi-
nation. Indeed, alternative DNA structures can be observed 
according to repeated sequences, including DNA triplexes, 
G-quadruplexes or hairpins, facilitating the emergence of 
large-scale expansions (Khristich and Mirkin 2020). In 
addition to genetic factors, the role of exogenous agents 
(as an example, different chemical compounds) was also 
explored (Gomes-Pereira and Monckton 2004). In parallel 
to somatic instability, germline instability is also described 
as an important mechanism of enlargement of expansions 
across generations (Bois and Jeffreys 1999). Paternal and 
maternal expansion or contraction biases exist, leading to an 
increased proportion of paternal or maternal disease-causing 
transmission to offspring in some repeat expansion diseases 
(Aziz et al. 2011).

Different phenotypes can be observed according to the 
size of the repeat in a same gene. Fragile X-associated 
tremor ataxia syndrome (FXTAS) is a neurodegenerative 
disorder, with patients around 60 years old exhibiting a 
tremor and an ataxic gait, with possible neuropathy, par-
kinsonism and executive dysfunction. Patients harbor a pre-
mutation in FMR1 with (CGG) repeats included between 
55 and 200. On the contrary, an expansion with more than 
200 (CGG) repeats in the same gene will lead to Fragile 
X syndrome, the most common cause of inherited intellec-
tual disability and autism spectrum disorder (Cabal-Herrera 
et al. 2020). Such a genotype–phenotype correlation between 
repeat length and disease severity, named anticipation, is 
also observed for polyglutamine tract diseases (like Hun-
tington’s disease) and DM1 (Fig. 1): the longer the repeat, 
the more severe the disease with an earlier onset (Fan et al. 
2014; Kamsteeg et al. 2012).

A second characteristic of repeat expansion diseases is 
the important variety of repetitive tracts and their location 
throughout genome. The first expansions discovered were 
trinucleotide repeats including different motifs: (CGG) and 
(CAG) repeats in FMR1 and in AR, respectively, both on 
chromosome X. Trinucleotide repeats represent the major-
ity motif in these diseases; however, repetitions of tetra-
nucleotides, penta-nucleotides, hexa-nucleotides and even 
dodeca-nucleotides can also be found (Malik et al. 2021; 
Loureiro et al. 2016). Expandable repeats are located in 
various regions of their resident genes: coding regions, 5′ 
and 3′ untranslated regions, introns and promoter regions 
(Mirkin 2007). The location of repeats (coding or non-cod-
ing DNA regions as an example) is directly linked to the 
molecular pathomechanisms involved in disease develop-
ment. Only trinucleotide repeats were discovered so far in 
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coding sequences, leading to the formation of polyglutamine 
(repeat of CAG codons) or polyalanine (repeat of GCN 
codons) tracts within proteins (Depienne and Mandel 2021). 
Trinucleotide repeats are also frequently present in non-
coding DNA regions: (CGG) trinucleotide repeats within 
FMR1 5′UTR causing fragile X syndrome (Verkerk et al. 
1991), (GAA) repeat expansions in intron 1 of FXN related 
to Friedreich’s ataxia (Campuzano et al. 1996) and myo-
tonic dystrophy type 1 (CTG) repeats within DMPK 3’UTR 
(Mahadevan et al. 1992) are some examples of these triplet 
repeat disorders. Tetra-nucleotide, penta-nucleotide and 
hexa-nucleotide repetitions are present in intronic regions. 
Interestingly, most penta-nucleotide expansions consist in a 
different expanded pathogenic motif compared to the nor-
mal motif observed in general population. As an example, 
CANVAS, the acronym for cerebellar ataxia, neuropathy and 
vestibular areflexia syndrome, is associated to a recessive 
expansion of a mutated (AAGGG)n repeated unit in intron 
2 of RFC1, whereas the most prevalent motif is (AAAAG)11 
in healthy controls (Cortese et al. 2019).

Finally, the nature of the repeated patterns is not nec-
essarily homogeneous in some expansion diseases. As an 
example, in spinocerebellar ataxia type 1 (SCA1), (CAT) 
trinucleotides, coding for histidine amino acid, interrupt the 
poly(CAG) tract both in normal and expanded alleles. In 
normal alleles, this phenomenon could increase its stabil-
ity. In expanded alleles, such interruptions could delay age 
of onset (Kraus-Perrotta and Lagalwar 2016). Non-coding 
expansions can also include interruptions. In DM1, (CCG), 
(GGC), (CTC) and (CAG) interruptions within 5′ and 3′ends 

of DMPK expansions are found with a global frequency of 
3–5% in DM1 patients and are considered as a potential 
genetic modifier of DM1 phenotype (Pesovic et al. 2018). 
Table 1 presents a description of repeat expansion diseases, 
including the genomic location and the nature of expanded 
alleles.

The translation of mutant proteins 
containing repeated amino acids leads 
to protein deposits

Among repeat expansion disorders with trinucleotide 
repeats in coding sequences, those with a repetition of a 
(CAG) triplet are the most prevalent and lead to an elongated 
polyglutamine (polyQ) tract in the corresponding protein. 
They are often referred to as polyglutamine tract diseases or 
(CAG)-polyglutamine repeat diseases and they share sev-
eral characteristics. Nine diseases are related to this group, 
with Huntington’s disease being the most frequent (Stoyas 
and La Spada 2018). Moreover, spinal and bulbar muscular 
atrophy (SBMA) and numerous SCAs complete this family 
(Table 1). Their onset is typically occurring in the midlife 
after a long time of silent pre-symptomatic stage. Neverthe-
less, as previously described, anticipation phenomena occur 
between generations and a genotype–phenotype correlation 
with higher severity linked to the highest repeat length for 
this group of disease particularly. Larger expansions could 
occur in offspring, mainly when paternal transmission, lead-
ing to a decrease in the disease age of onset in successive 

Fig. 1  Genotype–phenotype correlation between repeat length and disease severity in Dystonic Myotrophy type 1 (DM1)



176 A. Fourier, I. Quadrio 

1 3

Table 1  Overview of repeat expansion diseases,  adapted from Malik et al. (2021) and Depienne and Mandel  (2021)

Gene Disease Pathogenic motif Normal repeat range Pathological repeat 
range

Location Inheritance

ATN1 DRPLA (Dentatorubral-
pallidoluysian atrophy)

CAG 3–35  ≥ 48–93 CDS AD

HTT Huntington disease CAG 6–35  ≥ 36–250 CDS AD
ATXN1 SCA 1 (Spinocerebellar 

ataxia type 1)
CAG 6–38  ≥ 39–91 CDS AD

ATXN2 SCA 2 (Spinocerebellar 
ataxia type 2)

CAG 13–31  ≥ 32–500 CDS AD

ATXN3 SCA 3 (Spinocerebellar 
ataxia type 3)

CAG 12–44  ≥ 55–87 CDS AD

CACNA1A SCA 6 (Spinocerebellar 
ataxia type 6)

CAG 4–18  ≥ 20–33 CDS AD

ATXN7 SCA 7 (Spinocerebellar 
ataxia type 7)

CAG 4–33  ≥ 37–460 CDS AD

PPP2R2B SCA 12 (Spinocerebellar 
ataxia type 12)

CAG 4–32  ≥ 43–78 5' UTR AD

TBP SCA 17 (Spinocerebellar 
ataxia type 17)

CAG 25–40  ≥ 43–66 CDS AD

AR Spinal and bulbar mus-
cular atrophy (Ken-
nedy's disease)

CAG 9–36  ≥ 38–68 CDS XL

ATXN8OS/ATXN8 SCA 8 (Spinocerebellar 
ataxia type 8)

CAG/CTG 15–50  > 74–250 3' UTR AD

JPH3 HDL2 (Huntington 
disease-like 2)

CAG/CTG 6–28  ≥ 41–58 CDS AD

DMPK DM1 (Myotonic dystro-
phy type 1)

CTG 5–37  > 50–10,000 3' UTR AD

TCF4 Fuchs endotehelial cor-
neal dystrophy type 3

CTG 5–31  > 50 Intron AD

XYLT1 Baratela-Scott syndrome CGG 9–20 120–800 Promoter
5' UTR 

AR

FMR1 FXS (Fragile X syn-
drome)

CGG 5–50  > 200 5' UTR XL

FMR1 FXTAS (Fragile 
X-associated tremor 
ataxia syndrome)

CGG 5–50 55–200 5' UTR XL

NOTCH2NLC NIID (Neuronal intranu-
clear inclusion disease)

CGG 7–60  ≥ 61–500 5' UTR AD

LRP12 OPDM1 (Oculopharyn-
godistal myopathy 1)

CGG 13–45 90–130 5' UTR AD

GIPC1 OPDM2 (Oculopharyn-
godistal myopathy 2)

CGG 12–32  ≥ 97–120 5' UTR AD

NUTM2B-AS1 OPML1 (Oculopharyn-
geal myopathy with 
leukoencephalopathy)

CGG/CCG 3–16 40–60 Non-coding
RNA

AD

AFF2 FRAXE (Fragile XE 
syndrome)

CCG 4–39  ≥ 200–900 5' UTR XL

FXN Friedreich’s ataxia GAA 5–34  ≥ 66–1300 Intron AR
GLS Glutaminase deficiency 

(global developmental 
delay, progressive 
ataxia, and elevated 
glutamine)

GCA 8–16  ≥ 680–1400 5' UTR AR

FOXL2 Blepharophimosis ptosis 
and epicanthus inver-
sus syndrome

GCN 14 19–24 CDS AD
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Table 1  (continued)

Gene Disease Pathogenic motif Normal repeat range Pathological repeat 
range

Location Inheritance

RUNX2 Cleidocranial dysplasia GCN 17 27 CDS AD
PHOX2B Congenital central 

hypoventilation syn-
drome

GCN 20 25–29 CDS AD

ARX Early infantile epileptic 
encephalopathy type 1

GCN 16 23 CDS XL

HOXA13 Hand-foot-genital syn-
drome

GCN 14 22 CDS AD

ZIC2 Holoprosencephaly GCN 15 25 CDS AD
PABPN1 Oculopharyngeal muscu-

lar dystrophy
GCN 6–10  ≥ 12–17 CDS AD

HOXD13 Synpolydactyly type 1 GCN 15 24 CDS AD
SOX3 X-linked hypopituitarism GCN 15 26 CDS XL
CNBP DM2 (Myotonic dystro-

phy type 2)
CCTG 11–30  > 50–11,000 Intron AD

RFC1 CANVAS (Cerebellar 
ataxia, neuropathy and 
vestibular areflexia 
syndrome)

AAGGG* Variable  ≥ 400–2000 Intron AR

ATXN10 SCA 10 (Spinocerebellar 
ataxia type 10)

ATTCT 10–32  ≥ 280–4500 Intron AD

DAB1 SCA 37 (Spinocerebellar 
ataxia type 37)

ATTTC** 7–400 ATTTT  ≥ 31–75 ATTTC Intron AD

SAMD12 FAME 1 (Familial adult 
myoclonic epilepsy 1)

ATTTC** 7-exp ATTTT  ≥ 440–3680 Intron AD

STARD7 FAME 2 (Familial adult 
myoclonic epilepsy 2)

ATTTC** 9–20  ≥ 660–735 Intron AD

MARCHF6 FAME 3 (Familial adult 
myoclonic epilepsy 3)

ATTTC** 10–30  ≥ 660–2800 Intron AD

YEATS2 FAME 4 (Familial adult 
myoclonic epilepsy 4)

ATTTC** 7–400 n.a Intron AD

TNRC6A FAME 6 (Familial adult 
myoclonic epilepsy 6)

ATTTC** n.a n.a Intron AD

RAPGEF2 FAME 7 (Familial adult 
myoclonic epilepsy 7)

ATTTC** n.a n.a Intron AD

BEAN1 SCA 31 (Spinocerebellar 
ataxia type 31)

TGGAA*** Variable  ≥ 110–760 Intron AD

TAF1 X-linked dystonia par-
kinsonism

CCC TCT None 30–55 Intron XL

NOP56 SCA 36 (Spinocerebellar 
ataxia type 36)

GGC CTG 5–14  ≥ 650–2500 Intron AD

C9ORF72 Amyotrophic lateral 
sclerosis and/or fronto-
temporal dementia

GGG GCC 2–25  > 30 Intron AD

CSTB EPM1 (progressive 
myoclonus epilepsy 
type 1)

CCC CGC CCC GCG 2–3  ≥ 30–75 Promoter AR

AD autosomal dominant, AR autosomal recessive, CDS coding DNA sequence, UTR  untranslated transcribed region, XL X-linked
*Pathogenic motif different from normal motifs AAAAG, AAAGG, AAGAG, AGAGG 
** pathogenic motif different from normal motif ATTTT 
***Pathogenic motif different from normal motif TAA AAA 
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generation. As a result, phenotypes could sometimes vary in 
the same family (Paulson 2018; Gatchel and Zoghbi 2005).

For all diseases, the normal polyQ repeat length is vari-
able in the non-affected population but above a specific 
threshold of repeats, around 30–40 (CAG), an increasing 
size of the glutamine stretch leads to the production of a 
mutant and toxic isoform of the native protein. Studies 
exploring how the structure of the proteins are modified 
by the extended stretch in mutant polyQ proteins show that 
native proteins are mainly disordered but acquire β-strand 
rich conformations in the mutant isoforms (Wetzel 2012). 
This polyQ stretch in the mutant protein leads to confor-
mational changes, abnormal folding of the protein, tends 
to form oligomers, then promoting aggregation into fibrils, 
finally forming inclusions (Cooper et al. 1998; Hoffner et al. 
2005). Experiments showed that various monomers of dif-
ferent size can assembly into larger polymers called oligom-
ers. These oligomers constitute an intermediate state before 
becoming insoluble and accumulating into larger amorphous 
aggregates (Hands and Wyttenbach 2010). The most toxic 
state of the mutant protein seems to be small or intermediate 
size oligomers but not aggregates, depending on the consid-
ered expansions (Miller et al. 2011; Takahashi et al. 2008). 
However, these inclusions constitute hallmarks of the dis-
eases and can be detected in tissues, particularly in neurons 
where they are mainly but not exclusively localized into the 
nucleus (DiFiglia et al. 1997). In HD for example, neuropile 
inclusions of mutant huntingtin protein (mHtt) seem to be 
much frequent than nuclear aggregates in adult phenotypes 
(Gutekunst et al. 1999) and their size increases according to 
the diseases’ stages. A unique deposition pattern within the 
central nervous system seems to be linked to each disease, 
with a higher extensive number of inclusion associated to a 
highest severity of diseases (Davies et al. 1998).

Inclusions are polymorphic structures, containing dif-
ferent species of proteins. In HD aggregates, mHtt was the 
main component of inclusions, but other proteins have been 
detected such as ubiquitin and wild type Htt (Kazantsev et al. 
1999). MHtt essentially truncated after proteolytic cleavage 
by caspase was also identified into inclusions, even early 
during the first stages of the disease progression in human 
(Goldberg et al. 1996; Wellington et al. 2002). Protein cleav-
age seems then an important feature for disease develop-
ment. Indeed, in a mice model expressing mHtt and resist-
ant to cleavage by caspase-6, mice maintain their neuronal 
functions without developing striatal neurodegeneration 
(Graham et al. 2006). Unfortunately, in these resistant mice 
models, alternative enzyme cleavage can restore the pro-
teolytic event, leading finally to neurodegeneration (Wong 
et al. 2015). In another polyQ disease, spinocerebellar ataxia 
type 3 (SCA3), the inhibition of the calpain cleavage of the 
expanded Ataxin 3 protein appears to stop the formation of 
aggregates, highlighting once again the general importance 

of protein cleavage in the toxicity process (Haacke et al. 
2007; Koch et al. 2011).

Apart from (CAG)-polyglutamine repeat diseases, poly-
alanine (polyA) tract expansions exist and the latter have 
been associated with different developmental diseases 
(Moumne et al. 2008). These polyA extensive tracts also 
give a propensity for the mutant proteins to self-assembly 
and form fibrils, leading to aggregation (Di Lascio et al. 
2020).

RNA gain‑of‑toxicity leads 
to the sequestration of physiological 
proteins into foci

Many repeat expansion disorders are associated to a poten-
tial or proved RNA toxicity (Depienne and Mandel 2021). 
RNAs harboring repeat expansions adopt unusual second-
ary structures, varying according to the repeated motif from 
hairpins to stable G-quadruplexes (Bugaut et al. 2012). 
Other factors can also influence RNAs’ secondary structures 
as sequences flanking repeats, potential repeat interruptions 
and intermolecular associations (Ciesiolka et al. 2017). 
RNAs are then retained in the cell nucleus and sequester 
various RNA-binding proteins (RBPs), forming insoluble 
nuclear inclusions called foci (Chan 2014). Muscleblind-like 
proteins are RBPs sharing structural similarities, including 
four zinc-finger domains critical for recognizing a common 
consensus sequence in pre-mRNA and mRNA targets. As an 
example, Mbnl1 was detected in a variety of repeat-formed 
foci, including (CUG), (CCUG), (CAG) and (CGG) RNA 
inclusions. The sequestration of Mbnl1 directly impairs 
splicing of several key regulatory target pre-mRNAs (CLC2, 
IR2, cTNNT2…) in muscles and neural cells, explaining 
DM1 phenotypic features (Konieczny et al. 2014). Interest-
ingly, the presence of Mbnl1 in RNA–RBP foci was reported 
to be not a consequence, but a necessary condition for the 
formation of foci with RNAs including (CUG) repeats (Que-
rido et al. 2011).

Another example of RBPs’ sequestration is the interaction 
of nucleolin to (CAG) expanded RNAs. Nucleolin is a mul-
tifunctional protein involved in various steps of ribosome 
biogenesis. An alteration of these processes leads to nucleo-
lar stress and apoptosis (Pfister 2019). This protein normally 
binds to an upstream control element of the rRNA promoter, 
thus protecting this region from CpG hypermethylation. 
Because of a competition with (CAG) repeats, nucleolin 
prevents no longer hypermethylation of rRNA promoter, 
leading to a reduction of rRNA expression (Marti 2016).

In C9ORF72, amyotrophic lateral sclerosis and/or fron-
totemporal dementia (ALS/FTD), the biggest group among 
RBPs that bind and co-localize with RNA foci is the het-
erogeneous nuclear ribonucleoprotein group (hnRNPs) 
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(Kumar et al. 2017). On another note, FUS is one of the 
proteins most consistently shown to bind to repeated (GGG 
GCC ) expanded RNA, pinpointing convergent mechanisms 
between FUS ALS and C9ORF72 ALS. However, the 
involvement of RNA foci in disease pathogenesis remains 
debated. May be expanded RNAs’ toxicity could be primar-
ily mediated before integration into foci, developing further 
interrogations and creating new research directions (Swin-
nen et al. 2020).

The products of repeat associated 
non‑AUG (RAN) translation are prone 
to self‑aggregation

Repeat-associated non-AUG (RAN) translation is a non-
canonical translational initiation process enabling elongation 
through a repeat strand in the absence of an (AUG) initiation 
codon and in multiple reading frames according to repetitive 
DNA tracts, producing multiple homo-polymeric proteins, 
dipeptide repeat- and more complex polypeptide-repeat pro-
teins (Green et al. 2016). In 2011, Zu et al. first described 
this mechanism in SCA8 and DM1, harboring CAG and 
CTG repeats, respectively (Zu et al. 2011). Ten years later, 
RAN-translated proteins were described in Huntington’s 
disease and HDL2, DM1 and DM2, FXTAS, SCA2, SCA3, 
SCA8, SCA36 and ALS/FTD associated to C9ORF72. Inter-
estingly, RAN translation can occur from coding and non-
coding regions of both sense and antisense RNA transcripts 
carrying expansions (Fig. 2) (Castelli et al. 2021).

Different RAN products can be accumulated within a 
single cell, suggesting that this process can occur in multi-
ple reading frames in parallel. However, not all theoretical 
repeat peptides are observed in disease. As an example, in 

fragile X-associated tremor/ataxia syndrome (FXTAS) asso-
ciated to CGG repeats in FMR1, no products can be seen in 
(CGG-Arginine) reading frame even at larger repeat sizes 
(above 100 CGG repeats), whereas RAN translation occurs 
in (GGC-Glycine) reading frame within a normal range 
of repeats (Todd et al. 2013). This may suggest that RAN 
translation implies many interdependent factors, including 
the surrounding sequence of the repeat, the nature of amino 
acids that are produced and the length of the repeat (Kearse 
and Todd 2014). Many microsatellite expansion mutations 
are GC-rich sequences that form secondary structures, like 
G-quadruplex (G4) structures, similar to internal ribosome 
entry sites (IRES) (Hellen and Sarnow 2001). In this alterna-
tive initiation pathway, structured RNAs directly recruit the 
preinitiation complex (Komar and Hatzoglou 2011).

The toxicity of RAN peptides was particularly studied 
in ALS/FTD associated to C9ORF72. Five dipeptide repeat 
(DPR) proteins are generated according to (GGG GCC ) 
repeats in both sense and antisense transcripts: poly-GA, 
poly-GP, poly-GR, poly-PR and poly-PA proteins. Marked 
differences exist between these five DPR, the most toxic 
species being poly-GR and poly-PR, due to their arginine-
rich content (Nguyen et al. 2019). Their biophysical prop-
erties favor binding to other proteins such as hnRNPA1/2, 
leading to a disruption in pre-mRNA splicing and RNA 
biogenesis. Consequently, exposures of cell lines to these 
synthetic peptides led to a decrease of cell viability (Kwon 
et al. 2014). Following cellular uptake, the migration of 
poly-PR to nucleoli and the interaction to TIA-1 are associ-
ated to the formation of stress granules (Wen et al. 2014). 
Non-arginine-containing DRP proteins also appear impor-
tant to neurodegeneration: as an example, the expression of 
poly-GA in primary mammalian neurons causes increased 
toxicity through impairment of the ubiquitin–proteasome 

Fig. 2  Repeat-associated non-AUG (RAN) translation: examples of RAN products in Huntington’s disease (HD) and Dystonic Myotrophy type 2 
(DM2)
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system (Green et al. 2016) and enhanced the formation of 
toxic amyloid fibrils (Chang et al. 2016).

Neuropathological examinations of human tissues show 
aggregates of RAN proteins for different repeat expansion 
disorders (Castelli et al. 2021). In HD, RAN proteins (polyA, 
polyS, polyL, and polyC) accumulate most abundantly in 
brain regions with neuronal loss, microglial activation and 
apoptosis, including the striatum (caudate and putamen), a 
region severely affected in HD, but also white matter and 
cerebellum in juvenile-onset cases. Interestingly, polyQ 
aggregates are not detected in regions with the most intense 
RAN protein staining (Banez-Coronel et al. 2015). In DM2, 
anti-LPAC and anti-QAGR antibodies show positive staining 
in multiple brain regions. Cytoplasmic LPAC RAN proteins 
accumulate primarily in gray matter regions of the brain; 
on the contrary, immunohistochemistry shows that QAGR 
RAN proteins accumulate in the white matter regions (fron-
tal cortex, basal ganglia and hippocampus) with punctate 
nuclear aggregates often located at the nuclear membrane 
(Zu et al. 2017). SCA8 human autopsy cases show polyS 
aggregates in the cerebellum, brainstem and cortex, increas-
ing with age and disease progression (Ayhan et al. 2018). 
Finally, c9RAN proteins are a major component of TDP-
43-negative, p62-positive inclusions in ALS/FTD associated 
to C9ORF72. Inclusions of poly-GP and poly-GA are abun-
dant in cerebellum, hippocampus, and neocortical regions 
(Al-Sarraj et al. 2011; Gendron et al. 2015). Interestingly, 
cerebellar poly-GP concentrations seem to vary according to 
the clinical phenotype, with lower values for ALS (Gendron 
et al. 2015). Finally, the observation that DPR inclusions 
are rare in spinal cord (contrary to TDP43 inclusions) and 
absent from motor neurons in patients with C9ORF72 ALS 
(Gomez-Deza et al. 2015) led to the following question: to 
what extent does the production of DPR proteins confer neu-
rodegeneration in vivo (Schmitz et al. 2021)?

The emergence of disease‑modifying 
therapeutic opportunities for repeat 
expansions disorders

Current therapies for neurodegenerative disorders remain 
mostly aimed at symptomatic relief (Sudhakar and Rich-
ardson 2019). However, must research has been undertaken 
to develop disease-modifying treatments. As substantial 
progress has been made in our understanding of the patho-
genesis of neurodegenerative disorders, different gene-based 
therapies are being evaluated today and can be divided into 
DNA-targeting and RNA-targeting approaches (Sun and Roy 
2021), some of them already having a marketing authoriza-
tion to treat spinal muscular atrophy (Lee et al. 2019). The 
possibility of using gene-delivery, gene-editing or knock-
down techniques would vary for each repeat expansion 

disorder, according to the predominant pathological mech-
anism: the loss of-function of a physiological protein, the 
expression of a mutant protein, the presence of RNA foci 
and RAN translation.

The three main DNA-targeting approaches are ZFNs 
(zinc-finger nucleases), TALENs (transcription activator-
like effector nucleases) and CRISPR/Cas (clustered regularly 
interspaced short palindromic repeats/CRISPR-associated 
protein). These approaches combine a specific DNA-binding 
element (small peptides for ZFN and TALEN or a single-
guide RNA for CRISPR/Cas9) and a nuclease, ultimately 
leading to the knocking-out of the targeted gene (Gaj et al. 
2013). These approaches could provide long-term treat-
ment and eliminate inter-generational transmission of repeat 
expansion disorders (Tabrizi et al. 2020). As an example, 
the use of CRISPR-Cas9 reduced mutant Htt protein inclu-
sions in a mouse model of HD (Ekman et al. 2019), reduced 
nuclear RNA foci in the muscle of DM1 mice (Lo Scrudato 
et al. 2019) and reduced RNA foci and DPR levels in human 
cell lines with (GGG GCC ) repeats (Pinto et al. 2017). These 
approaches present several limitations, including viral deliv-
ery of these compounds; thus, immunogenicity, intrathecal 
administration, and potential off-targets could be irreversible 
(Tabrizi et al. 2020).

RNA-based editing alters gene expression at the transcript 
level. Since RNA is transient, there is lesser risk of perma-
nent deleterious effects but, on the contrary, the need for 
repeated administration is challenging (Sun and Roy 2021). 
The administration of small interfering RNAs (siRNAs) or 
microRNAs (miRNAs) leads to RNA interference (RNAi), 
a cellular process promoting the degradation of a target 
messenger RNA (mRNA) with a complementary sequence 
(Lam et al. 2015). Briefly, these small RNAs need to be 
loaded onto an argonaute protein to form the effector com-
plex referred to as RNA‐induced silencing complex (RISC) 
(Nakanishi 2016; Valencia-Sanchez et al. 2006). Like DNA-
targeting approaches, extensive research was performed to 
improve RNAi-inducing therapies delivery to brain cells 
(Sarisozen et al. 2015). RNAi approach improved motor 
coordination, restored cerebellar morphology and resolved 
characteristic ataxin-1 inclusions in Purkinje cells of SCA1 
mice (Xia et al. 2004). Boudreau et al. reviewed the differ-
ent proof-of-concept studies testing therapeutic RNAi for 
repeat expansion and other CNS disorders (Boudreau and 
Davidson 2010). The second RNA-targeting approach relies 
on the use of antisense oligonucleotides (ASOs). These syn-
thetic, single-stranded, modified DNA molecules can bind 
to mRNAs or pre-mRNAs, forming an RNA–DNA hybrid 
that becomes a substrate for RNase H, which results in tar-
get mRNA degradation (Rinaldi and Wood 2018). Since the 
ASOs available today do not cross the blood–brain barrier, 
the application must be carried out by intrathecal injection 
in the case of CNS disorders and needs to be administered 
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on a regular basis (Brenner et al. 2020). Single-dose ASOs 
reduced RNA foci, DPR proteins, and behavioral deficits in 
C9ORF72 mice (Jiang et al. 2016). In a DM1 mouse model, 
ASOs induced degradation of expanded DMPK transcripts, 
disrupted RNA foci and could release binding of Mbnl1 to 
the toxic RNA in skeletal muscle (Lee et al. 2012). Finally, 
in HD patients, the administration of ASO HTT led to a 
dose-dependent decrease in cerebrospinal fluid (CSF) con-
centrations of mHTT and clinical improvements in compari-
son to patients who received placebo (Tabrizi et al. 2020).

The emergence of disease-modifying strategies goes hand 
in hand with the development of biomarkers, which could 
permit to monitor the effectiveness of these treatments. 
As previously described, the measurement of CSF mHtt is 
important for the development of specific therapeutic strat-
egies in HD (Wild et al. 2015). In a same way, poly-GP 
protein, one of C9RAN proteins associated to C9ORF72 
expansions, was already detectable in CSF (Gendron et al. 
2017). In parallel to these biomarkers linked to the patho-
mechanisms involved in a repeat expansion disorder, the use 
of surrogate markers could be of great value. Among these 
markers, neurofilament light chain protein (NfL), a marker 
of neuronal damage, seems particularly interesting, as it can 
be measured both in CSF and in serum (Khalil et al. 2020). 
As this biomarker reflects early neuronal injury, even before 
clinical expression, its iterative determination allows a longi-
tudinal follow-up of patients (Byrne et al. 2017; Lambertsen 
et al. 2020). Moreover, NfL measurement could help moni-
toring treatment response (Yuan and Nixon 2021). Thus, 
biological markers appear as useful tools complementary to 
genetic testing, which remains essential for the diagnosis of 
repeat expansion disorders.

Conclusion

Repeat expansion disorders constitute a various group of dis-
eases leading to neurological degeneration. The diversity of 
repetitive tracts and their location throughout genome cause 
multiple modifications on molecular and protein levels, lead-
ing to cell toxicity. Gain-of-function mechanisms lead to 
proteinopathies: mutant proteins, RNA-binding proteins in 
RNA foci or RAN products can form aggregates, thus lead-
ing to inclusions’ formation. Not all these mechanisms are 
necessarily fully exclusive, as combinations were proven in 
many diseases. The better understanding of these molecular 
and protein dysfunctions has contributed to the development 
of disease-modifying therapeutic strategies, numerous being 
under clinical evaluation. Moreover, it also permitted the 
identification of markers underlying specific pathomecha-
nisms, whose measurements could present interest in the 
monitoring of drug efficacy.
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