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Abstract
Parkinson’s disease (PD) is a neurodegenerative disease associated with motor deficiency and rigidity. The genetic risks of 
the disease is reported to be between 5 and 10% depending on the background of the population. While PD is not considered 
an immune-mediated disease, amounting evidence in recent years suggests a major role of inflammation in the progression 
of PD. Markers of inflammation can be found around the regions of risk and adjacent to the appearance of Lewy bodies 
within the basal ganglia and the substantia nigra (SN) that are associated with PD pathology. Microglia, an important type of 
brain cell, has been reported to play a major role in mediating neuroinflammation and in PD disease pathology. This review 
aims to point out the potential role of microglia in disease progression and suggest that the interaction of microglia with the 
dopaminergic neurons may also facilitate the specificity of the disease in brain regions affected by PD.
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Introduction

Microglia are known as the resident immune cells of the 
brain originating from the yolk sac and derived from mye-
loid progenitors at an early embryonic stage (Tay et al. 
2017). In health, microglial cells play a protective role 
through immune surveillance and removal of cell debris. 
Homeostatic microglial cells appear morphologically uni-
form; however, their physiological responses are heteroge-
neous, possibly dependent on their local environment and 
ongoing neuronal activity (Li et al. 2012; Clark et al. 2015).

Homeostatic microglial cells contribute to brain devel-
opment by eliminating the apoptotic remains of excess 
newborn neurons and enhancing neurogenesis (Peri and 
Nüsslein-Volhard 2008; Shigemoto-Mogami et al. 2014; 
Tay et al. 2017; Lecours et al. 2018). In a healthy adult 
brain, microglial cells contribute to the refinement of syn-
apses, and the activity-dependent wiring of neural circuits, 
which requires microglia-mediated synaptic pruning (Wake 

et al. 2009; Li et al. 2012; Clark et al. 2015). Furthermore, 
microglia-specific ablation of brain-derived neurotrophic 
factor (BDNF) hinders the formation of dendritic spines 
during motor learning in vivo (Parkhurst et al. 2013). Upon 
injury or infection, and even chronic psychological stress, 
microglial cells undergo various functional and morphologi-
cal changes often designated as microglial “activation” or 
“reactivity” (McGeer et al. 1988; Nayak et al. 2014; Tay 
et al. 2017).

Microglial cells are described in different neurodegen-
erative diseases. Their activation levels are directly linked 
to the site of pathology (Hickman et al. 2018). Changes in 
microglial cell density and morphology profoundly impact 
their functions (Perry et al. 2010; Wolf et al. 2017; Bachil-
ler et al. 2018). Nevertheless, their exact role in the pathol-
ogy remains unclear. Several papers refer to an increase in 
different microglia-related cytokines in areas of pathology, 
and different pathways have been suggested to play a role 
in neurotoxicity. It has been suggested that microglia cell 
activity changes during neurodegenerative diseases, such as 
Alzheimer’s disease, and results in impaired and neurotoxic 
phenotype (Keren-Shaul et al. 2017). Furthermore, activated 
microglia cells have been suggested to orchestrate neuro-
inflammation and migration of peripheral immune cells 
(Schwartz et al. 2013). In this review, we focus on the role 
of microglia during the progression of Parkinson’s disease 
(PD).
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Activation of microglia in Parkinson’s 
disease

Parkinson’s disease is a neurodegenerative disease asso-
ciated with a loss of dopaminergic neurons and impaired 
motor activity (Dickson 2012). Pathological phenotypes of 
PD are associated with the appearance of abnormal protein 
aggregations, called Lewy bodies, within the dopaminer-
gic neurons. It has been suggested that the aggregates con-
sisting of alpha-synuclein (αSyn) spread along the nervous 
system in six different stages when disease progresses and 
was found in the autonomic and enteric nervous system 
with clear evidence in both the central and the peripheral 
nervous system (Braak et al. 2003; Boeve 2007). Aggre-
gation of αSyn is linked to severe motor impairment and 
neurodegeneration in the striatum, basal ganglia, and sub-
stantia nigra (SN) (Meade et al. 2019). Inflammation has 
long been proposed as a component of PD (Imamura et al. 
2003; Mount et al. 2007; Doorn et al. 2014). Cytokines 
such as transforming growth factor (TGF)α, TGFβ1, inter-
leukin (IL)-1β, IL-2, IL-4, and IL-6 have been reported 
to increase in the striatum and in the cerebrospinal fluid 
of PD patients (Vawter et al. 1996; Nagatsu and Sawada 
2005). Moreover, the cerebrospinal fluid of PD patients 
has been shown to be toxic to DA neurons in vitro due to 
a high concentration of cytokines (Nagatsu and Sawada 
2005). It has been suggested that since microglia are the 
resident immune cells of the CNS, then they might medi-
ate the inflammatory response in PD (Lecours et al. 2018).

Microglial cells are abundant in the regions of the basal 
ganglia and SN, and therefore have been previously sug-
gested to be causally linked to the dopaminergic neuron 
susceptibility to inflammatory mediators (Lawson et al. 
1990; Lecours et al. 2018). PD patients stained positively 
for pro-inflammatory cytokines, such as tumor necrosis 
factor (TNF)α and interleukin (IL)-6 (Imamura et  al. 
2003), and reactive microglial cells in the SN in postmor-
tem brain tissue of patients have been reported as early 
as 1988 (McGeer et al. 1988). Furthermore, an elevation 
of the leucine‐rich‐repeat and pyrin‐domain‐containing 3 
(NLRP3) inflammasome has been observed in microglial 
cells in PD patients’ SN section (Gordon et al. 2018). It 
has been previously reported that an elevation of NLRP3 
inflammasome within microglial cells is linked to an 
increase in the secretion of pro-inflammatory cytokines 
associated with neurodegeneration (Haque et al. 2020).

It has been suggested that oligomeric αSyn, specifically 
its fibrillary form (Hoffmann et al. 2016; Fusco et al. 2017; 
Ferreira and Romero-Ramos 2018), increased TNF-α and 
interleukin-1β (IL-1β) that may lead to neuronal stress 
(Reynolds et al. 2008; Boche et al. 2013; Codolo et al. 
2013; Ndayisaba et al. 2019). However, it has also been 

reported that soluble αSyn can stimulate PD gene-impaired 
microglial cells, leading to an increase in the secretion of 
IL-6, IL-1 β and nitric oxide (NO) (Trudler et al. 2014). 
This may suggest that αSyn in different conformation 
states may play an essential role in the induction of inflam-
mation. Of note, a recent publication has suggested that a 
loss of normal intracellular activity of αSyn in T cells may 
induce a neurotoxic profile through modulation of the tran-
scription factor Nurr1. This suggests that a loss of normal 
intracelular activity of αSyn can attribute to a pro-inflam-
matory profile in PD (Trudler et al. 2020). The elevation 
in TNF-α was linked to an induction of the inflammatory 
response in several neurodegenerative diseases (Ndayisaba 
et al. 2019). A secretion of TNF-α by microglial cells may 
induce oligomerization of αSyn that may be a part of a 
vicious pathogenic cycle of further activation of microglial 
cells. TNF-α can induce neuronal death through interac-
tion with TNF receptor I (TNFR I) through an activation 
of caspase 8 and 10 through glutamate excitotoxicity (Dos‐
Santos‐Pereira et al. 2018). Furthermore, another mem-
ber of the TNF-α family, tumor necrosis factor-related 
apoptosis-inducing ligand (TNFSF10), was reported to be 
secreted by microglial cells and to induce neuronal death 
(Frenkel 2015) (Cantarella et al. 2015).

Positron emission tomography scans of various brain 
regions of patients diagnosed with idiopathic PD show 
increased signals of radiotracers binding selectively to 
inflammatory microglial cells (Gerhard et al. 2006). Inter-
estingly, the presence of activated microglial cells have been 
found not only in patients with long-lasting disease, but also 
in patients recently diagnosed, suggesting that microglial 
cell activation develops at an early stage of the pathology 
(Gerhard et al. 2006). Furthermore, the appearance of acti-
vated microglial cells correlated with decreased DA neuron 
density, suggesting that activated microglial cells might 
contribute to ensuing neuronal damage (Ouchi et al. 2005). 
Microglial cells can produce neurotoxic reactive species 
such as superoxide and nitric oxide, and these can induce 
cellular stress, which may promote neuronal loss in PD 
(Block et al. 2007).

Microglial cells have been reported to express all dopa-
mine receptors (Pocock and Kettenmann 2007). A stimula-
tion of microglial cells by dopamine can result in an increase 
in ROS production through an elevation of the degrading 
enzyme monoamine oxidase (MAO) B (Trudler et al. 2014). 
An activation of microglial cells through CD14 by lipopoly-
saccharide (LPS) is commonly used to assess their neuro-
toxic phenotype. LPS-activated microglial cells have been 
shown to secrete pro-inflammatory cytokines (IL-1α, IL-1β, 
IL-6, IL-12(p40), TNF-α) in newborn primary cultures, as 
well as in mice, in vivo. Furthermore, an increase in nitric 
oxide (NO) and reactive oxidative species (ROS) produc-
tion has been identified in microglial cells following LPS 
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stimulation (De Jong et al. 2008; Trudler et al. 2014; Park 
et al. 2015). A direct injection of LPS to the striatum leads 
to neuroinflammation, which results in stress to dopamin-
ergic neurons (Liu and Bing 2011). Grouped together with 
reports regarding microglial cell activation in different PD 
mouse brain models (Perry 2012), these results suggest the 
potential role of microglial cell activation in the progression 
of a PD-like pathology.

Microglial cells have been reported to secrete different 
complement components and to interact with them (Zabel 
and Kirsch 2013). It has been suggested that this interaction 
may attribute to synapsis pruning that is associated with 
neurodegeneration (Hong et al. 2016; Koenig and Dulla 
2018). It has been reported that an increase in complement 
components was found surrounding Lewy bodies in PD 
patients suggesting their role in disease pathology (Loeffler 
et al. 2006).

Of note, an activation of microglial cells may play 
a role in the clearance of different abnormal amyloid 

appearances, such as with αSyn, and prevent their propa-
gation across the brain (George et al. 2019). However, 
a recent publication suggests specific changes in micro-
glial cells upon chronic activation in neurodegenerative 
amyloidogenic diseases, such as Alzheimer’s disease 
(Keren-Shaul et al. 2017). Those pathological changes 
might trigger a neurotoxic profile of microglial cells such 
as a propagation of αSyn in the brain (Xia et al. 2019). 
Microglial cells may lead to inflammatory events that can 
promote neurotoxicity to dopaminergic neurons associated 
with PD (Fig. 1). Notably, a loss of dopaminergic neurons 
of the basal ganglia and SN is a common denominator of 
both inherited and sporadic forms of PD (Dickson 2012). 
Therefore, microglial cells may provide a link between 
understanding the sporadic forms of PD by learning the 
mechanisms underlying the genetic forms (Blauwen-
draat et al. 2020). Nevertheless, it remains to be clarified 
whether microglial cell activation is the result of DA neu-
ron degeneration or the cause.

Fig. 1  The effect of therapeutic interventions on the pathologic rela-
tionship between microglial cells and dopaminergic neurons in Par-
kinson’s disease. Dopaminergic neurons undergoing degeneration 
secrete various molecules that cause microglial cell activation, sub-
sequently promoting the secretion of inflammatory molecules that 
may prompt further neuronal stress. Those interactions may result in 
a vicious cycle of neuroinflammation. Several FDA-approved drugs 

(purple) have been shown to positively modulate the inflammatory 
response of microglial cells. Red arrows indicate the effect of the 
drug rasagiline in a genetic PD model. Blue arrows indicate the inhib-
itory effect of the antibiotic minocycline on microglial cell activation 
in a toxin-based model. Pink arrows indicate the effect of the MPO 
inhibitor AZD3241. Green arrows indicate the effect of the NSAID 
compound HCT1026
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Mutations associated with PD and their 
effect on microglial cell activity

It has been suggested that about 5–10% of diseases are 
the product of highly penetrant (i.e., causal) mutations 
which have been discovered in several genes of dominant 
genetic inheritance; such as LRRK2 and the gene encod-
ing αSyn, as well as recessive inheritance, such as Parkin 
(also known as PARK2), DJ-1 (also known as PARK7) 
and PINK1 (Singleton et al. 2017). The mutations in the 
former group are associated with early-onset Parkinsonism 
and a pathological process that is usually restricted to the 
brainstem (Puschmann 2013). Recent reports suggest that 
some of those PD genes may lead to a pro-inflammatory 
response of microglia as found in PD (Trudler et al. 2015).

Alpha-synuclein is the major component of PD Lewy 
bodies and, clinically, patients with mutated αSyn have a 
relatively young age of onset, rapid progression, and high 
prevalence of dementia, psychiatric, and autonomic dis-
turbances (Dickson 2012). We have recently shown that 
impairment in αSyn activity within T cells enhances their 
pro-inflammatory profile (Trudler et al. 2020). Mutations in 
αSyn have been suggested to lead to abnormal conforma-
tion in αSyn resulting in its increased conversion of soluble 
αSyn into insoluble aggregates that are found in PD (Blau-
wendraat et al. 2020). Microglial cells that were exposed 
to extracellular αSyn show increased pro-inflammatory 
cytokine secretion (Alvarez-Erviti et al. 2011). Microglial 
cell activation following phagocytosis of aggregated αSyn 
also enhances dopaminergic neurodegeneration through the 
production of ROS, in an NADPH oxidase-dependent man-
ner (Zhang et al. 2005). These results suggest that damage to 
neurons in the substantia nigra may release aggregated αSyn 
to the substantia nigra, promoting microglial cells to produce 
pro-inflammatory mediators, thereby further inducing nigral 
neurodegeneration in PD (Zhang et al. 2005).

High leucine-rich repeat kinase 2 (LRRK1) expression 
has been discovered in macrophages and monocytes, lead-
ing to the speculation of a functional role for LRRK2 in 
the immune system (Singleton et al. 2017). Microglial 
cell activation has been shown to trigger LRRK2 expres-
sion. LRRK2 inhibition, by shRNA, has been reported to 
attenuate a microglial cell pro-inflammatory response and 
reduce TNF-α and NO levels following LPS activation 
(Moehle et al. 2012). This suggests that LRRK2 plays an 
important role in mediating pro-inflammatory responses in 
microglial cells. Taken together, these results suggest that 
LRRK2 mutations, which are gain-of-function mutations, 
could change the microglial cells toward a pro-inflamma-
tory phenotype, which then changes the microenvironment 
of the brain, and thereby trigger and/or enhance the patho-
genesis of PD.

The gene PARK7 encodes a small peptidase protein called 
DJ-1, and mutations in this gene have been reported to be a 
loss of function (Blauwendraat et al. 2020). Indeed, the loss 
of DJ-1 function impairs nigrostriatal dopaminergic function 
(Goldberg et al. 2005). Microglial cells can engulf α-syn, 
possibly via the TLR4 receptor (Stefanova et al. 2011). 
Interestingly, the ability of DJ-1 to knock down microglial 
cells from uptaking and degrading soluble αSyn is dimin-
ished (Nash et al. 2017). Dysregulation of glial phagocy-
tosis and degradation have been proposed to play a role in 
PD pathogenesis, and this is further supported by the fact 
that microglial cells uptake and remove dopaminergic cell 
debris in vivo (Tremblay et al. 2019). DJ-1 acts as a multi-
functional protein involved in anti-oxidative defense, among 
other functions. DJ-1-deficient microglial cells have been 
found to have increased monoamine oxidase (MAO) activ-
ity which results in an elevation of intracellular ROS, NO, 
and pro-inflammatory cytokines, leading to increased dopa-
minergic neurotoxicity of microglia (Trudler et al. 2014). 
Furthermore, DJ-1 impaired microglial cells show increased 
sensitivity to dopamine suggesting that impaired microglia 
may play a role in site-specific stress in PD (Trudler et al. 
2014).

Therapeutic Parkinson’s disease approaches 
affecting microglial cell activity

Currently, there is no effective treatment to cure or to pre-
vent Parkinson’s disease progression (Foltynie 2015; Kim 
et al. 2015). Most of the treatments are focused either on 
increasing the concentrations of dopamine, such as levodopa 
(l-Dopa) (Kalilani et al. 2019; Zeuner et al. 2019), or slow-
ing its degradation by an inhibition of MAO-B using FDA-
approved drugs such as safinamide and rasagiline (Youdim 
et al. 2005). The recognition of the importance and contri-
bution of inflammation in PD is increasing (Zeuner et al. 
2019). The use of classical anti-inflammatory drugs such as 
non-steroidal anti-inflammatory drugs (NSAIDs) has been 
suggested to reduce up to 15% of PD incidence in epidemi-
ology studies, however with a limited effect when used in 
treatment mode when PD is well defined (Gagne and Power 
2010). Nevertheless, there is an increase in reports showing 
the effects of various, new and existing treatments for PD, on 
microglial cells’ neurotoxic profile (Table 1, Fig. 1).

MAO-B inhibitors, such as rasagiline and safinamide 
have been shown to reduce the active morphology of micro-
glia and their neurotoxic phenotype (Trudler et al. 2014; 
Sadeghian et al. 2016). Furthermore, it has been reported 
that rasagiline, an irreversible MAO-B inhibitor that was 
developed by Youdim and colleagues, can attenuate DJ-1 
impaired microglia and used as a PD-associated microglia 
model which shows an increase in the production of ROS, 
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IL-1b and IL-6 (Trudler et al. 2014). Rasagiline was found to 
attenuate the microglial cells’ neurotoxicity profile to dopa-
minergic neurons.

Nuclear receptor related-1 (Nurr1) is important for the 
development of dopaminergic neurons in the midbrain. 
Genetic deletion of Nurr1 in mice showed a reduction in 
dopaminergic neurons (Dong et al. 2016). A mutation in 
Nurr1 was found in PD. Nurr1 agonists show efficacy in a 
mouse model of PD by attenuating microglial cell activity. 
Similarly, the use of the antibiotic minocycline showed a 
similar effect on microglia cell activity, with a successful 
reduction of oxidative stress and inflammatory cytokine lev-
els (e.g., IL-1β, TNF-α) in a PD model (Wu et al. 2002; Kim 
et al. 2015; Smith et al. 2015).

The use of anticholinergic compounds (AC), such as 
trihexyphenidyl (THP), is also commonly used to treat PD. 
ACs were introduced at the end of the nineteenth century and 
have been shown to possess a relieving effect on PD motor 
symptoms, especially on tremors (L’Episcopo et al. 2011; 
Yoshiyama et al. 2012; Huang et al. 2016; Zeuner et al. 
2019; Hong et al. 2019). Acetylcholine has been reported 
to have an anti-inflammatory effect (Pavlov et al. 2003). 
Indeed, in several models of PD, THP has been shown to 
promote CNS neuroinflammation as well as microglial cell 
activation (Table 1).

Myeloperoxidase (MPO) is a peroxidase expressed in 
immune cells such as macrophage and microglia and plays a 
role in increased ROS production as part of a defense against 
pathogens (Aratani 2018). Its level was reported to elevate 
following inflammation and to promote tissue damage 
(Nakazato et al. 2007). It has been reported that MPO levels 
are elevated in PD (Gellhaar et al. 2017; Posener et al. 2014). 
MPO inhibitors have been shown to reduce ROS production 
and cell proliferation in microglia (Jucaite et al. 2015). Cur-
rently, MPO inhibitors are in clinical trial in PD and show 
efficacy in reducing microglial cell activation in patients.

These results suggest the importance of targeting micro-
glia toward the development of efficient PD treatment.

Conclusions

Microglial cells may play a dual role in PD. On one hand, 
their activation may prevent spreading of oligomeric αSyn 
along the brain, and, on the other hand, their activation can 
lead to dopaminergic neuron stress and death. The ability 
of microglial cells to interact with specific neurons was 
suggested by the expression of specific receptors on their 
surface. Interestingly, microglial cells carrying mutations 
in PD-related genes showed increased sensitivity to dopa-
mine. Furthermore, those microglial cells showed increased 
activity of dopamine-degrading enzyme MAO B. This may 
suggest that besides microglia, a diverse neurotoxic effect Ta
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may be common between different neurodegenerative dis-
eases, suggesting that there may be a specific effect toward 
dopaminergic neurons in PD. Understanding the specificity 
of microglial cells to dopaminergic neuron neurotoxicity 
might shed light on their role in the etiology of the disease. 
Furthermore, several therapeutic approaches in PD that show 
efficacy have an anti-inflammatory effect on microglial cells. 
Targeting microglial cell activity to reduce their neurotox-
icity while preserving their beneficial neuroprotective role 
might be a key point in developing efficient therapeutic 
approaches to prevent disease progression in PD and related 
neurodegenerative diseases.
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