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Abstract
Copy-number variants (CNVs), in particular rare, small and large ones (< 1% frequency) and those encompassing brain-
related genes, have been shown to be associated with neurodevelopmental disorders like autism spectrum disorders (ASDs), 
attention deficit hyperactivity disorder (ADHD), and intellectual disability (ID). However, the vast majority of CNV findings 
lack specificity with respect to autistic or developmental-delay phenotypes. Therefore, the aim of the study was to investigate 
the size and frequency of CNVs in high-functioning ASD (HFA) without ID compared with a random population sample 
and with published findings in ASD and ID. To investigate the role of CNVs for the “core symptoms” of high-functioning 
autism, we included in the present exploratory study only patients with HFA without ID. The aim was to test whether HFA 
have similar large rare (> 1 Mb) CNVs as reported in ASD and ID. We performed high-resolution chromosomal microarray 
analysis in 108 children and adolescents with HFA without ID. There was no significant difference in the overall number of 
rare CNVs compared to 124 random population samples. However, patients with HFA carried significantly more frequently 
CNVs containing brain-related genes. Surprisingly, six HFA patients carried very large CNVs known to be typically present 
in ID. Our findings provide new evidence that not only small, but also large CNVs affecting several key genes contribute to 
the genetic etiology/risk of HFA without affecting their intellectual ability.
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Background

Autism spectrum disorder (ASD) is a neurodevelopmental 
disorder behaviorally defined by the deficits in reciprocal 
social interaction and communication as well as presence 
of restricted and repetitive behaviors. In the DSM-5 and 
in recent conceptualizations, these two behavioral dimen-
sions represent the core defining features of ASD. Further-
more, frequently associated dimensions, such as language 
and intellectual disability (ID), contribute significantly to 
the heterogeneity of ASD phenotype. Individuals with ASD 
vary greatly in cognitive development, ranging from above 
average to ID. Multiple family and twin studies with con-
cordance rates for ASD ranging up to 90% in monozygotic 
twins and up to 10% in dizygotic twins, respectively, showed 
the major role of heritability in the etiology of ASD (Hall-
mayer et al. 2011; Rosenberg et al. 2009; Tick et al. 2016; 
Colvert et al. 2015; Frazier et al. 2014; Sandin et al. 2014). 
However, the exact genetic mechanisms are not yet com-
pletely understood and identifying those genes is challenging 
(Freitag et al. 2010). In earlier studies, including case–con-
trol association, linkage- and genome-wide association stud-
ies chromosome regions including 2q (Consortium 2001; 
Vorstman et al. 2005), 5p (Vorstman et al. 2005; Wang et al. 
2009), 7q (Consortium 2001; Chiocchetti et al. 2015), 11q 
(Vorstman et al. 2005), 15q (Marshall et al. 2008; Depienne 
et al. 2009), 16p (Consortium 2001; Marshall et al. 2008; 
Fernandez et al. 2009), and 16q (Vorstman et al. 2005; Was-
sink et al. 2008) showed significant association to autism 
(Yingjun et al. 2017).

The role of rare large and small copy-number variations 
(CNVs) as susceptibility loci in common and complex 
genetic diseases has been intensively investigated (Pinto 
et al. 2010; Kaminsky et al. 2011), and large CNVs have 
been detected in about 10% of patients with ASD (Shishido 
et al. 2014). It was described in an extensive genome-wide 
associations study (GWAS) that individuals with ASD carry 
a significant higher general burden of rare CNVs (1.19 fold), 
especially affecting loci and genes previously detected in 
ASD and/or ID (1.69 fold) (Pinto et al. 2010).

Results from Marshall and Scherer (2012) showed that 
some CNVs are pleiotropic and cause different clinical 
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presentations (Marshall and Scherer 2012). The authors 
assume that a CNV at a particular locus may affect intel-
ligence quotient (IQ) in individuals with ASD and, e.g., 
inflexible behavior in obsessive–compulsive disorder 
(OCD) patients at the same time. Additionally, rare and 
common variants in genes seem to be associated with syn-
aptic plasticity (Zoghbi 2003) and brain connectivity (Vis-
sers et al. 2012), and are linked to ASD. Moreover, another 
study showed that rare and large CNVs have been observed 
in both ASD and ID. However, these variants lack speci-
ficity towards ASD in contrast to developmental delay 
(DD) presentations (Girirajan et al. 2013). Girirajan and 
colleagues found that as the size of deletions increases, 
the non-verbal IQ decreased with no further impact on 
autism severity (Girirajan et al. 2013). In another study, 
the authors (Girirajan et al. 2011) reported that the fre-
quency of large CNVs (> 1 Mb) was significantly higher in 
ID-associated phenotypes compared to autism phenotypes. 
They also concluded that large CNV burden was posi-
tively correlated with the ID severity. At the same time, 
the increase in CNV burden was modest when comparing 
autistic participants without ID with controls.

Here, we concentrated on a special population of ASD 
representing the core defining features of ASD including 
patients with high-functioning autism (HFA) only. HFA is 
characterized by features like those of Asperger syndrome 
and autism; however, the patients are cognitively “high 
functioning” (Chiang et al. 2014). Although there are cur-
rently no explicit diagnostic criteria for HFA, the defini-
tion is commonly used for autistic children with an IQ 
above 65–70 (Gillberg 1998). In the DSM-5, these patients 
are characterized by the specifier “without intellectual 
impairment” (American Psychiatric Association 2013).

Granted that former studies showed larger CNVs to 
be mainly associated with ID, we tested whether the fre-
quency of large CNVs in HFA patients will be lower, as 
well as to investigate the frequency of rare deletions or 
duplications comparing to controls.

Up to date, there is no CNV analysis in HFA patients 
exclusively. Schaaf et al. (2011) sequenced several genes 
known to cause “syndromic autism” and other cognitive 
disorders only in an ASD population in general by tradi-
tional Sanger method and pyrosequencing.

The present work is, to our knowledge, the first genome-
wide CNV analysis in a rigorous phenotyped cohort of 
patients with HFA using high-resolution chromosomal 
microarray analysis (CMA). By narrowing the broader 
phenotype spectrum of ASD, this cohort represents the 
core defining features of ASD without ID; we aimed to 
increase the knowledge on the pathophysiology and symp-
tomatology of ASD.

Methods

Study sample: children and adolescents with HFA

108 children and adolescents with HFA were recruited at 
the Departments of Child and Adolescent Psychiatry and 
Psychotherapy, University Hospitals of Psychiatry Zurich, 
Switzerland and of the University of Würzburg, Germany.

All HFA patients fulfilled the diagnostic criteria for 
ASD according to the Diagnostic and Statistical Manual of 
Mental Disorders, 5th edition (DSM-5) (American Psychi-
atric Association 2013) and for pervasive developmental 
disorder according to the International Statistical Clas-
sification of Diseases and Related Health Problems, 10th 
Revision (ICD-10) (Dilling et al. 1996).

The diagnosis was confirmed using either the Autism 
Diagnosis Observation Schedule (ADOS) (Rühl et  al. 
2004; Lord et al. 2012) or using Autism Diagnosis Inter-
view-Revised (ADI-R) (Bölte et  al. 2006; Lord et  al. 
1994). In 74 patients, SCQ (Rutter et al. 2007; Bölte and 
Poustka 2006) was additionally available. According to the 
HFA definition (Gillberg 1998), the inclusion criterion, 
which we adopted, was an IQ of at least 70 in standardized 
IQ tests (see below). The choice of different IQ tests was 
influenced by individual clinical necessities. The following 
tests were used: Wechsler Intelligence Scale for Children 
(Petermann and Petermann 2010), Wechsler Intelligence 
Scale for Adults (Wechsler 1981), Kaufman Assessment 
Battery for Children (Kaufman et al. 2009), Culture Fair 
Intelligence Test (Weiss 2006), or the Snijders–Oomen 
Non-Verbal Intelligence Test 5.5–17 (Tellegen et al. 2003). 
Patients underwent a psychiatric investigation conducted 
by a psychologist supervised by a senior or experienced 
child and adolescent psychiatrist, and were additionally 
screened for other psychopathologies as described previ-
ously (Werling et al. 2015; Nyffeler et al. 2014). The fol-
lowing parameters have been used: Child Behavior Check-
list (Döpfner et al. 1998) and the German ADHD rating 
scale, FBB-HKS (Döpfner and Lehmkuhl 2000). The self-
reported ethnicity was Caucasian origin for all subjects.

Exclusion criteria: neurological disorders including epi-
lepsy or known genetic diseases linked to autism and ID 
(IQ < 70) and other severe psychiatric disorders such as 
psychosis and affective disorders (major depression and 
mania). The genetic data of the parents of the included 
patients were not available for analysis.

Control samples

The data of 124 chorionic villi samples of presumably 
healthy donors from Switzerland of Caucasian origin (76 
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males and 48 females, chi2 = 17.98, p < 0.0001 compared 
to the HFA patients) were assessed as previously described 
(Grünblatt et al. 2017). These chorionic villi samples were 
collected from pregnant women who decided to have inva-
sive prenatal diagnosis due to advanced maternal age or 
due to parental wish. They were analyzed in the same man-
ner on the Cytoscan HD Array as the patient samples.

Ethics approval

All procedures were performed with the written informed 
consent of the parents of all participants and the study was 
approved by the local ethics committees of the Canton of 
Zurich (Switzerland, E-36/2009), and of Würzburg (Ger-
many, study numbers 8/06 and 227/09), respectively.

DNA extraction and chromosomal microarray 
analysis (CMA)

Genomic DNA was extracted from whole blood (EDTA 
tubes) with the desalting Proteinase K methodology (Miller 
et al. 1988) in 33 patients and from saliva in 75 patients 
(Oragene DNA, DNA Genotek Inc., Ontario, Canada) fol-
lowing the manufacturer’s protocol. DNA was analyzed with 
the Cytoscan HD Array (containing about 750,000 geno-
type-able SNPs and 1.9 million non-polymorphic probes) 
(Affymetrix Inc., Santa Clara, CA, USA) at a genome-wide 
resolution of 50 kb for both duplications and deletions. 
Array hybridization was performed according to the manu-
facturer’s protocol. Data were analyzed with Chromosome 
Analysis Suite (ChAS) software (Affymetrix) for changes of 
relative intensities. The CNV analyses were based on build 
32.1. Genomic coordinates are based on GRCh37/hg19. 
To exclude common benign CNVs, we used a reference set 
of 820 in-house controls and 1038 Affymetrix controls in 
combination with the Database of Genomic Variants (DGV) 
from the Centre for Applied Genomics (February 2009, 
hg19). The results derived from the Chromosomal microar-
ray analysis are very stable (Asadollahi et al. 2014). Cases 
and controls were treated in separate batches and case DNA 
was extracted from different sources (saliva and blood).

Rare CNVs were defined as aberration in coding 
sequences of genes that were absent in our in-house and 
Affymetrix primary control cohort, as well as not found to 
be reported in the DGV (http://proje​cts.tcag.ca/varia​tion/). 
The DECIPHER (https​://decip​her.sange​r.ac.uk/) database 
was used to search for similar rare CNVs found in the cur-
rent studied sample that occur also in other patients from 
DECIPHER to compare their phenotypes (last search 19th 
June 2019).

Brain-related CNVs were defined prior to the analysis 
if at least one of the genes within CNVs had central nerv-
ous system (CNS) expression or link demonstrated in the 

databases such as GO (Ashburner et al. 2000), Gene Expres-
sion Omnibus (GEO) (Edgar et al. 2002), the Genotype-Tis-
sue Expression (GTEx) database (GTEx Consortium 2013), 
and the Human Protein Atlas database (Uhlen et al. 2015) 
(see Supplementary Table S1).

Statistical analysis

Frequency analysis was conducted using Chi-square test 
and Fisher’s exact test. For continuous measures, the 
Mann–Whitney U test was used.

Statistical analysis was performed with SPSS v.21 (IBM) 
and StatView v.5.0 (SAS Inst.). The level of significance 
was α = 0.05.

Results and discussion

Sample

One hundred and eight patients with HFA, 93 males and 15 
females, have been enrolled in the study (12 patients with 
“childhood autism”, 37 with “atypical autism, and 59 with 
“Asperger syndrome”). The male-to-female ratio of 6.2 is 
representative for HFA, since the most widely reported 
male–female ratio for autism prevalence is 4–5.1, how-
ever, higher at the high-functioning end (Lai et al. 2015). 
The mean age ± SD of the patients at investigation was 
11.29 ± 3.3 years. Only patients with an IQ of at least 70 in 
standardized IQ tests were included (IQ range 70–145) (For 
further details, see Table 1).

Fifty-seven of 108 HFA patients had an additional psy-
chiatric disorder, most often ADHD (38.0%), followed by 
developmental disorders (21.3%, e.g., specific developmen-
tal disorders of scholastic skills, of motor function or mixed 
specific developmental disorders or phonological disorder) 
and OCD (3.7%) (for details, see Supplementary Table S2). 
Thirty-three of the patients received medication (methylphe-
nidate; n = 26) for the treatment of the ADHD symptomatol-
ogy. For more details about demographic data, see Table 1.

Frequency of rare CNVs in HFA

We detected small and large rare CNVs (mean 
size = 640.29 kb, SD 1399.17; range 52–8600 kb) in 42 of 
108 patients with HFA (38.9%; Supplementary Table S1). 
There was no significant difference in the overall number 
of rare CNVs in the HFA sample compared to the control 
population (n = 39, 31.5%; mean size 273.85 kb, SD 234.04; 
range 50–1027 kb; chi2 = 1.4, p = 0.24 for details on control 
population see (Grünblatt et al. 2017)). There was no sig-
nificant difference in the number of rare deletions between 

http://projects.tcag.ca/variation/
https://decipher.sanger.ac.uk/
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HFA (n = 21, 19.1%) and control population (n = 15, 12.1%; 
chi2 = 2.601, p = 0.27).

Although there were no significant group differences 
overall, interestingly, some of the patients with HFA were 
carriers of unexpected large CNVs, both deletions (cases 
A114: 2200 kb; A039: 4200 kb; A044: 8600 kb; A10W: 
4300 kb) and duplications (cases A40W: 1600 kb; A044: 
1600 kb; A092: 1400 kb) in known disease loci (summary 
in Table 2). In the control group, only one control proband 
carried a large duplication of unknown significance (0.8%, 
M40756 1027 kb), while all others carried rather small 

CNVs (see details on control population in (Grünblatt et al. 
2017). Furthermore, there was a significant difference in 
the number of HFA carrying rare CNVs’ spanning genes 
involved in synaptic and brain-related processes (n = 28, 
25.4%), compared to controls (n = 16, 12.9%; chi2 = 6.02, 
p = 0.014). This last finding is in line with previous studies 
on rare CNV, showing that in particularly patients with ASD 
carry CNVs spanning brain-related gene regions (Belmonte 
et al. 2004; Gilman et al. 2011).

As the present sample size is rather small, we cannot rule 
out that the negative results are due to statistical power to 
detect difference between HFA and controls. However, the 
current aims of the study were to see whether patients with 
HFA carry large rare CNVs, as well as large rare CNVs 
similar to those found previously in patients with ASD with 
ID or ID alone.

HFA carrying large rare CNVs (> 1 Mb) frequently 
described in ID

Strikingly, we found in six of our HFA patients very large 
rare CNVs (> 1 Mb) typically described in ID patients 
(Phelan and McDermid 2011; Mefford et al. 2012). There-
fore, we focused on the medical history and the phenotypical 
details of each patient (Table 2) and discussed the findings 
in view of the current literature.

“Patient A10W”

The patient was a 14.9-year-old boy suffering from child-
hood autism (F84.0; IQ = 115) without any comorbidity. At 
the time of investigation, he took risperidone for aggressive 
and impulsive behavior.

We detected a 4.3-Mb large deletion in 22q13.31 
(hg19 chr22:46885024–51183767), encompassing 50 
genes in total, 31 OMIM-Gene, 11 of which involved in 
synaptic or brain-related pathways (details see Table 2). 
According to DECIPHER, overlapping CNVs (hg19 
chr22:46885024–51183767) were found in 271 individuals 
(female n = 119, male n = 110; n = 42 with unknown sex). 
The ratio between ASD males and females in DECIPHER 
was 1.6 (female n = 11, male n = 18; n = 8 with unknown 
sex). Several patients have been reported with this dele-
tion, and the clinical characterization of 22q13 deletion 
syndrome, known as Phelan–McDermid syndrome (PMS), 
is well established (Phelan and McDermid 2012). It is a 
contiguous genetic disorder on the terminal long arm of 
chromosome 22. These patients show neurological or neu-
rodevelopmental deficits, and 50% of the patients show addi-
tionally autism or autistic-like behavior (Phelan and McDer-
mid 2012). To our knowledge, HFA has not been described 
in patients with Phelan–McDermid syndrome up to now.

Table 1   Demographic data of the HFA sample

HFA high-functioning autism, M male, F female, SON-R Snijders-
Oomen Non-Verbal Intelligence Test Revised, CFT-1 Culture Fair 
Test, WISC Wechsler Intelligence Scale, K-ABC Kaufman Assess-
ment Battery For Children, SD standard deviation

HFA, n = 108

Primary diagnosis
F84.0, Childhood autism 12 (11.1%)
F84.1, Atypical autism 36 (33.3%)
F84.5, Asperger syndrome 60 (55.6%)
Sex
Male (% total) 93 (86.1%)
Female (% total) 15 (13.9%)
Ratio (M/F) 6.2
Age
Range 5–18 years
Mean age standard deviation 11.29 years, SD 

3.3
Medication intake
No medication 75 (69.4%)
Methylphenidate 24 (22.2%)
Dexmethylphenidate 1 (0.9%)
Amphetamine 2 (1.9%)
Atomoxetine 1 (0.9%)
Pipamperone 1 (0.9%)
Risperidone 2 (1.9%)
Methylphenidate and Risperidone 2 (1.9%)
IQ
SON-R, n= 77
SON-R, range 79-140
SON-R, mean (SD) 107.8 (SD 15.97)
CFT-1, n= 68
CFT-1, range 70-145
CFT-1, mean (SD) 105.63 (SD 13.73)
WISC, n= 10
WISC, range 78-129
WISC, mean (SD) 101.2 (SD 17.40)
K-ABC, n= 2
K-ABC, range 115-118
K-ABC, mean (SD) 116.50 (SD 2.12)
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Although the size of the deletion in patients with PMS 
can vary, the critical region includes a deletion of SHANK3, 
encoding for a scaffold protein in the postsynaptic densities 
of excitatory synapses (Phelan and McDermid 2012). This 
gene is known to be involved in the functionality of post-
synaptic structures of the CNS (Egger et al. 2016). Leblond 
et al. (2014) claimed SHANK mutations for about 1% of 
patients with ASD with a specific distribution in terms of 
the cognitive impairment: SHANK1 were not significantly 

present in males with normal IQ; SHANK2 were also not 
significantly detectable and only in patients with mild ID. 
However, SHANK3 was significantly observable, but in cases 
with moderate to profound ID. Due to SHANK3´s frequency 
and impact, the authors advised to screen for mutations in 
clinical practice in individuals with ASD and ID.

Surprisingly, our patient does not show any of the 
described symptom characteristics of PMS except for 
ASD, and although our patient carries a large deletion in 

Table 2   Large (> 1 Mb) rare CNVs typical for  intellectual disability (ID) and/or developmental disorders (DD), discovered in pediatric high-
functioning autism (HFA) patients

Code Sex Age 
(years)

ICD-
10

IQ 
Score

ADOS ADI-R
A/B/C/D

CNV 
size 
(kb)

chromosomal 
location 
(hg19)

Deletion/ 
Duplication

Genes within CNV DECIPHER (overlapping findings, last 
date 19.06.2019)

Evidence in 
literature for the 
link with ID /DD

A114 male 9 F84.1 871 9 8/8/2/2 2200 chr2 2q37.2: 
240633456-
242783384

Deletion LOC150935, MIR4786, NDUFA10, 
OR6B2, PRR21, OR6B3, MYEOV2, 
OTOS, GPC1, PP14571, MIR149, 
ANKMY1, DUSP28, RNPEPL1, 
CAPN10, GPR35, AQP12B, 
AQP12A, KIF1A, AGXT, C2orf54, 
LOC200772, SNED1, MTERFD2, 
PASK, PPP1R7, ANO7, HDLBP, 
SEPT2, FARP2, STK25, BOK-AS1, 
BOK, THAP4, ATG4B, DTYMK, 
ING5, D2HGDH, GAL3ST2, NEU4

https://decipher.sanger.ac.uk/search?q=
2%3A240633456-
242783384#consented-patients/results

113 individuals: 73 deletions/ 40 
duplications
50 reported with ID or/and DD

Doherty and 
Lacbawan 1993; 
Felder et al. 
2009; Imitola et 
al. 2015; Deviilard 
et al. 2010; Leroy 
et al. 2013

A039 male 16 F84.1 1061 2 14/6/1/0 4200 chr3 3q11.1-
q11.2: 
93519464-
97738323

Deletion PROS1, ARL13B, STX19, DHFRL1, 
NSUN3, LOC255025, EPHA6, 
ARL6, CRYBG3, MINA, GABRR3

https://decipher.sanger.ac.uk/search?q=
3%3A93519464-97738323#consented-
patients/results

25 individuals: 9 deletions/ 15 
duplications/ 1 duplication/ triplication
15 reported with ID or/ and DD

Guo et al 2017; 
Uzunova et al.
2016

96 chr16q24.1:84
223309-
84319789

Deletion ADAD2, KCNG4 https://decipher.sanger.ac.uk/search?q=
16%3A84223309-84319789#consented-
patients/results

36 individuals:  19 deletions/ 15 
duplications/ 1 duplication/triplication
18 reported with ID or/ and  DD

--

A40W male 15 F84.1 782 14 23/18/7/4 1600 chr7 7q11.23: 
72659674-
74245599

Duplication GTF2IRD2P1, NSUN5, TRIM50, 
FKBP6, FZD9, BAZ1B, BCL7B, 
TBL2, MLXIPL, VPS37D, DNAJC30, 
WBSCR22, STX1A, MIR4284, 
ABHD11-AS1, ABHD11, CLDN3, 
CLDN4, WBSCR27, WBSCR28, 
ELN, LIMK1, EIF4H, MIR590, LAT2, 
RFC2, CLIP2, GTF2IRD1, GTF2I, 
NCF1, GTF2IRD2

https://decipher.sanger.ac.uk/search?q=
7%3A72659674-74245599#consented-
patients/results

210 individuals: 103 deletions/ 105 
duplications/ 2 triplications
92 reported with ID or/ and DD

Pober 2010; Berg 
et al.; Van der Aa 
et al. 2009; 
Sanders et al. 
2011; Somerville 
et al. 2005; 
Depienne et al. 
2009

A044 male 10 F84.5 871 6 12/12/6/3 8600 chr8 8q24.21-
q24.3: 
131409413-
140043304

Deletion ASAP1, ADCY8, EFR3A, OC90, 
HHLA1, KCNQ3, HPYR1, LRRC6, 
TMEM71, PHF20L1, TG, SLA, 
WISP1, NDRG1, ST3GAL1, ZFAT, 
ZFAT-AS1, MIR30B, MIR30D, 
LOC286094, KHDRBS3, FAM135B, 
COL22A1

https://decipher.sanger.ac.uk/search?q=
8%3A131409413-
140043304#consented-patients/results

75 individuals: 
18 deletions/ 45 duplications/ 2 
triplications
41 reported with ID or/ and DD 

Verheij et al. 
2009; Lowe et al. 
2015; Rauch et 
al. 2012; Curry et 
al. 2008.

1600 chr16 
16p13.11: 
14899277-
16494783

Duplication ABCC6P2, NOMO1, MIR3179-1, 
MIR3179-3, MIR3179-2, MIR3180-1, 
MIR3180-3, MIR3180-2, NPIP, 
PDXDC1, NTAN1, RRN3, MIR3180-
4, MPV17L, C16orf45, KIAA0430, 

https://decipher.sanger.ac.uk/search?q=
16%3A14899277-16494783#consented-
patients/results

443 individuals: 

Nagamani et al. 
2011; Fujitani et 
al. 2017; Hannes 
et al. 2009; 
Ramalingam et 

NDE1, MIR484, MYH11, FOPNL, 
ABCC1, ABCC6, NOMO3, PKD1P1

158 deletions/ 274 duplications/ 3 
triplications/ 1 amplification
125 reported with ID or/ and DD

al. 2011; Allach El 
Khattabi et al. 
2018

A092 male 10 F84.5 1241 6 n.a. 1400 chr16 
16p13.11: 
14927356-
16328781

Duplication MPV17L, C16orf45, KIAA0430, 
NDE1, MIR484, MYH11, FOPNL, 
ABCC1, ABCC6, NOMO3, NOMO1, 
MIR3179-1, MIR3179-3, MIR3179-2, 
MIR3180-1, MIR3180-3, MIR3180-2, 
NPIP, PDXDC1, NTAN1, RRN3, 
MIR3180-4

https://decipher.sanger.ac.uk/search?q=
16%3A14927356-16328781#consented-
patients/results

437 individuals: 
158 deletions/ 275 duplications/ 3 
triplications/ 1 amplification 
162 reported with ID or/ and DD

Nagamani et al. 
2011; Fujitani et 
al. 2017; 
Ramalingam et 
al. 2011; Hannes 
et al. 2009; Allach 
El Khattabi et al. 
2018

A10W male 14 F84.0 1153 15 16/18/11/5 4300 chr22 
22q13.31-
q13.33: 
46885024-
51197838

Deletion CELSR1, GRAMD4, CERK, 
TBC1D22A, LOC339685, FLJ46257, 
MIR3201, FAM19A5, LOC284933, 
MIR4535, LOC100128946, 
C22orf34, BRD1, LOC90834, 
ZBED4, ALG12, CRELD2, PIM3*, 
IL17REL, MLC1, MOV10L1, 
PANX2, TRABD, SELO, TUBGCP6, 
HDAC10, MAPK12, MAPK11, 
PLXNB2, FAM116B, PPP6R2, 
SBF1, ADM2, MIOX, LMF2, 
NCAPH2, SCO2, TYMP, ODF3B, 
KLHDC7B, SYCE3, CPT1B, CHKB-
CPT1B, CHKB, LOC100144603, 
MAPK8IP2, ARSA, SHANK3, ACR, 
RPL23AP82

https://decipher.sanger.ac.uk/search?q=
22%3A46885024-51197838#consented-
patients/results

271 individuals: 
181 deletions/ 86 duplications/ 1 
triplication/ 4 amplifications
153 reported with ID or/ and DD

Phelan and 
McDermid 2012; 
Leblond et al. 
2014; Slavotinek 
et al. 1997; 
Bonaglia et al. 
2011; Harony-
Nicolas et al 
2015.

n.a. not available, – not relevant, ID intellectual disability, DD, developmental disorder. Bold brain/synapse related genes according to gene 
ontology, Gene Expression Omnibus (GEO), Genotype-Tissue Expression (GTEx) database and the human Protein Atlas database; Red, same 
gene and regions. 1SON-R, 2WISC-IV, 3K-ABC, 4WISC-III, 5WAIS-R, 6CFT-1, * in patient A49W (see Suppl. Table S1)
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this region including the SHANK3 gene, no intellectual 
impairment was detected. Since we analyzed only one tis-
sue (i.e., blood) in our patient, we cannot exclude that the 
observed aberration is present in mosaic or even absent in 
other tissues. Nevertheless, another study investigated 32 
patients with PMS, with ascertained SHANK3 deficiency 
(Soorya et al. 2013). 84% of the aforementioned cases met 
the diagnostic criteria for ASD and 75% for autistic disor-
der, indicating that this syndrome is one of the more highly 
penetrant causes of ASD. Since most of the patients (77%) 
exhibited severe to profound ID this study provides addi-
tional evidence on the severity of intellectual, motor, and 
speech impairments seen in SHANK3 mutations (Soorya 
et al. 2013).

Some other genes on the occurred large CNV deletions 
in patient A10W are discussed: The FAM19A5 (family 
sequence similarity 19) gene is expressed in the brain and is 
possibly related to neuropsychological features, like autis-
tic behavior or general DD (Guilherme et al. 2014). The 
study by van der Zwaag identified BRD1 (Bromodomain-
containing protein 1) gene in 22q13.33 region as a plausible 
novel autism candidate gene within the CNV region (van der 
Zwaag et al. 2009). A study by Prasad et al. (2012) discov-
ered rare variants on the TYMP (thymidine phosphorylase) 
gene, which is also located in chromosome 22q13.33 and it 
associated with ASD. However, no intelligence description 
of these ASD patients has been provided. Finally, PLXNB2 
(Plexin B2) and MAPK8IP2 genes (Mitogen-Activated Pro-
tein Kinase 1), both located on 22q13.33, are considered 
strong candidates for cerebellar phenotypes (Aldinger et al. 
2013).

Interestingly, both in patient A10W and in patient A49W, 
an 8-year-old girl diagnosed with childhood autism (F84.0 
according to ICD-10), the gene PIM3 was deleted. PIM3, 
a proto-oncogene with serine/threonine kinase activity, is 
located on 22q13.33 and is about 775 kb proximal to the 
SHANK3 gene. PIM3 participates amongst others in the 
regulation of the circadian rhythm (Mitz et al. 2018). This 
could possibly explain sleep disturbances often seen in 
ASD patients. However, currently, no literature is available 
describing PIM3 association with ASD or ID.

“Patient A039”

The patient was a 16-year-old boy suffering from atypical 
autism (F84.1; IQ = 106) without any comorbidity or medi-
cation at the time of study participation.

The patient was found to carry a 4.2 Mb large deletion 
in 3q11.1–q11.2 (hg19 chr3:93519464–97738323) involv-
ing 11 genes, 5 OMIM genes. Two genes encompassing the 
deletion are brain-related genes (Table 2). Furthermore, the 
patient was carrier of a small 96-kb deletion on 16q24.1 
(hg19 chr16:84223309–84319789) encompassing the genes 

ADAD2 (Adenosine Deaminase Domain Containing 2) and 
the brain expressed KCNG4 (Table 2).

According  to  DECIPHER,  there  were  25 
and 36 individuals carrying overlapping CNVs 
( h g 1 9  ch r 3 : 9 3 5 1 9 4 6 4 – 9 7 7 3 8 3 2 3  a n d  h g 1 9 
chr16:84223309–4319789, respectively), amongst them 
17/20 male, 4/14 female and 4/2 individuals of unknown sex, 
respectively. There were more female individuals detected 
with ID or DD (0/9 females, 5/6 males). In contrast, there 
were only male individuals detected with autistic symptoms 
(2/3 males, no females). Despite the heterozygote deletion in 
the current patient, the gene ARL13B, also known in Joubert 
syndrome, an autosomal recessive disorder with partial or 
complete agenesis of the vermis and characterized by neu-
rological and phenotypical symptoms and ID, could be of 
interest. Recently, loss of ciliary GTPas Arl13b in interneu-
rons showed impairment in interneuronal morphology as 
synaptic connectivity leading to altered excitatory/inhibi-
tory activity balance (Guo et al. 2017). Indeed, the excita-
tory/inhibitory imbalance has been postulated to be one of 
the mechanisms involved in ASD (Uzunova et al. 2016); 
therefore, this gene might be linked to the phenotype of our 
patient.

“Patient A40W”

The patient was a 15.3-year-old male adolescent present-
ing with atypical autism (F84.1; IQ = 78) with a hyper-
kinetic conduct disorder (F90.1). He was treated with 
methylphenidate.

We detected a 1.6-Mb duplication on 7q11.23 (hg19 
chr7:72659674–74245599), encompassing 31 genes in total, 
24 OMIM genes. Four genes are brain-related (Table 2). The 
duplication encompasses the Williams–Beuren syndrome 
(WBS) region, a well-described microdeletion syndrome 
(Pober 2010b). In contrast, the clinical phenotype caused 
by the reciprocal duplication is less documented and only 
few studies to date report duplication of the WBS region 
(WBCR) (Berg et al. 2007). According to DECIPHER data-
base, 210 individuals were reported to carry overlapping 
CNVs (hg19 chr7:72659674–74245599), in which 80 were 
females and 119 were males (n = 11 unknown sex). Only 
seven conferred autistic behavior with more males individu-
als (male n = 5, female n = 2), while 92 conferred with ID/
DD (male n = 53, female n = 36, n = 3 unknown sex).

In regard to the duplication syndrome, different studies 
detected children with speech delay including autistic symp-
toms (Berg et al. 2007b; Van der Aa et al. 2009; Sanders 
et al. 2011) or without autistic symptoms (Torniero et al. 
2007) as well as cognitive dysfunction ranging from ID to 
normal cognitive abilities (Somerville et al. 2005) or general 
DD (Depienne et al. 2009). Interestingly, WBS is charac-
terized mostly by a highly social and empathic personality 
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(Pober 2010a), which contrasts the autistic symptoms 
observed in the patients with duplications. Our patient fits 
well into the described phenotypic spectrum of HFA with 
the autistic presentation and absent cognitive impairment.

“Patient A092”

The patient, a 10-year-old boy, was diagnosed with Asper-
ger syndrome (F84.5; IQ = 124) without any comorbid-
ity, but showed some ADHD symptoms without fulfilling 
the full diagnosis for ADHD. The patient did not take any 
medication.

We detected a 1.4-Mb large duplication in 16p13.11 
(hg19 chr16:14927356–16328781), encompassing 22 genes 
in total, 10 OMIM genes. Five were brain-related (Table 2). 
According to DECIPHER, 437 individuals carry overlap-
ping CNVs, in which 39 individuals with autistic symptoms 
were found (male n = 24, female n = 10, n = 2 known sex), 
while ID/DD consisted of 62 females and 85 males (n = 11 
unknown sex).

Various studies showed that deletions within chr16p13.11 
are associated with a variety of neuropsychiatric disorders 
such as DD and behavioral abnormalities, like ADHD and 
ASD (Nagamani et al. 2011; Fujitani et al. 2017). Ramal-
ingam and colleagues (Ramalingam et al. 2011) detected 
duplications within chr16p13.11 in patients with ID and 
autistic symptoms. In another study, patients with dupli-
cations in this region were found with clinical features 
including difficulties with social interactions, which were 
comparable with autistic symptoms (Nagamani et al. 2011). 
Duplication in this region has also been previously described 
in patients with speech delay and learning difficulties 
(Hannes et al. 2009).

Interestingly, we found in our patient the same duplica-
tion with similar location (chromosome 16p13.11) as Gaz-
zeloone et al. reported in a pediatric patient who suffered 
from OCD (Gazzellone et al. 2016). However, the duplica-
tion in his study was smaller (783 kb) than in our patient. 
This locus has been associated with neurocognitive disorders 
like autism and OCD (Gazzellone et al. 2016). Despite our 
rather small study sample, we found another patient (A044) 
with overlapping duplication as found in A092 (Table 2). 
The clinical manifestations of our two patients associated 
with 16p13.11 duplications are in agreement with the clini-
cal description in previous studies and suggests pathogenic-
ity in the context of ASD (Allach El Khattabi et al. 2018).

“Patient A044”

The 10-year-old boy was diagnosed with Asperger syndrome 
(F84.5; IQ = 87; details Table 2) with a comorbid OCD and 
congenital hypothyroidism at the time of investigation. 

The patient was medicated with methylphenidate and 
levothyroxine.

Beside a 1.6-Mb duplication on chr16p13.11 (hg19 chr16: 
14899277–16494783), very similar to the one observed 
in the patient A092 and discussed above, we detected an 
additional 8.6-Mb large deletion on 8q24.21–q24.3 (hg19 
chr8:131409413–140033208), encompassing 23 genes in 
total and 14 OMIM genes. Four genes are brain-related.

A case report with a similar deletion described a patient 
with multiple congenital malformations, mental delay, and 
seizures (Verheij et al. 2009). According to DECIPHER, 75 
individuals were found to have overlapping gene variants 
similar to hg19 chr8:131409413–140033208 (34 males, 28 
females, 13 of unknown sex). There was a predominance of 
males showing autistic behavior (males n = 5; females n = 0), 
or ID or DD (males n = 13; females n = 7).

A recent genome-wide study performed a quantitative 
linkage analysis to the autism endophenotype (social respon-
siveness) and identified two loci on chromosome 8 (Lowe 
et al. 2015). They detected a peak SNP on chr8q24.22, where 
ASAP1 is located. Interestingly, this gene is deleted in our 
patient as well. Another gene, the KCNQ3 (Potassium Chan-
nel, Voltage-Gated KQT-Like Subfamily Q, Member 3), a 
brain-related gene, was deleted in our patient A044. In the 
study by Rauch and colleagues (2012), aberrations involv-
ing KCNQ3 in a few families with ID were reported (Rauch 
et al. 2012). Moreover, this gene was found to be involved 
in epilepsy (Miceli et al. 1993). Interestingly, our patient 
had once a seizure at the age of 12 months that did not reoc-
cur since (till age 15). Curry et al. illustrated two unrelated 
patients with ID and large homozygous deletions (> 150 kb). 
One patient with ID showed a deletion in 8q24.2 (Curry 
et al. 2008). Furthermore, FAM135B and COL22A1 (Tsang 
et al. 2013), present in the deleted region of our patient, were 
identified as candidate genes for ASD in some studies, but 
were not investigated particularly in HFA patients up to now.

“Patient A114”

The patient is a 9-year-old boy presenting with atypical 
autism (F84; IQ = 87) with comorbid ADHD (F90.0) medi-
cated with methylphenidate, comorbid transient tic disor-
der (F95.0), and a combined reading and spelling disorder 
(F81.0).

We detected a 2.2-Mb deletion on 2q37.2 (hg19 
chr2:240633456-242783384), encompassing 40 genes in 
total and 23 OMIM genes. Eight genes were brain-related 
(Table 2). According to the DECIPHER, 113 individuals 
conferred with gene variations at the same position as hg19 
chr2:240633456-242783384 (male n = 46, female n = 52, 
n = 15 unknown sex). Nine had autism (male n = 2, female 
n = 3, n = 4 unknown sex), while 50 conferred ID/DD with 



89High-resolution chromosomal microarray analysis for copy-number variations in…

1 3

ratio of 0.7 between sexes (male n = 18, female n = 27, n = 5 
unknown sex).

This deleted region encompasses the 2q37 deletion syn-
drome characterized by hypotonia, mild-to-severe ID, DD, 
and other facial or physical abnormalities and sometimes 
kidney tumor (Wilms tumor) (Doherty and Lacbawan 1993). 
The study by Felder et al. (2009) described a patient with 
2q37 deletion syndrome (features of Albright Hereditary 
Osteodystrophy). The deleted region included the follow-
ing genes FARP2, HDLBP, and PASK (Felder et al. 2009) 
(which were deleted in our patient, too), whose expression 
analyses performed on lymphoblastoid cell lines showed a 
considerably downregulation. They hypothesized that haplo-
insufficiency of these genes are possibly responsible for the 
patient’s phenotype (Felder et al. 2009). In our patient, all 
three genes were affected in the deletion that could explain 
ASD.

Several genes deleted in the patients A114 have been 
linked to ASD, ID and/or DD. For example, Wheeler et al. 
claimed that the deleted region contains next to the coding 
sequence of HDAC4 two uncharacterized non-coding RNA 
sequences like LOC150935 (contained in the deletion our 
patient carries). They concluded that haploinsufficiency of 
HDAC4 does not cause ID in their patients (Wheeler et al. 
2014).

In the study by Imitola et al. (2015), the deleted region 
was identified in a patient fulfilling the criteria for this 
above-mentioned syndrome with DD. This deletion con-
tains those genes which are also affected in our patient: 
DTYMK, SEPT2, THAP4, PPP1R7, and STK25, whereas 
network analysis revealed that STK25 was associated with 
neural development (Imitola et al. 2015). Puffenberger et al. 
(2012) performed an exome sequencing on two children 
from the Wisconsin sibship and revealed that the PRR21 
variant cannot be causative for the general DD and ASD of 
these patients (Puffenberger et al. 2012). The case report 
by Devillard et al. (2010) described a boy with autism and 
a deletion of the distal breakpoint at 2q37.3. He showed a 
cognitive delay (IQ 46–50). High-resolution SNP microar-
ray confirmed the deletion of the gene OTOS and C2orf54 
located at 2q37.3 (Devillard et al. 2010). Smith et al. (2001) 
evaluated four genes mapping in the 2q37.2 region, whereas 
GPC1 is the most likely candidate gene for autism (Smith 
et al. 2001). The patient mentioned in Smith’s work showed 
average score in the intelligence test. The study by Leroy 
and colleagues (2013) described 14 intellectually deficient 
patients with a 2.6–8.8 Mb large 2q37 deletion (Leroy et al. 
2013). Next to the ID, the patient displayed with morpho-
logical and behavioral problems like ASD. They identified 
candidate genes like ATG4B, PASK, HDLBP, and FARP2, 
which were detected in our patient, too (Leroy et al. 2013).

Conclusion

Rare large CNVs have emerged as the major pathogenic fac-
tors, amongst others for ASD and ID. To find etiologically 
relevant factors for social interaction and communication 
deficits together with restricted and repetitive behaviors, 
the core defining features of ASD - HFA - was assumed to 
represent a very specific phenotype for these ASD features. 
Here we present the results of a high-resolution chromo-
somal microarray CNV analysis of children and adolescents 
with HFA, often understudied in ASD genetic studies. Previ-
ous studies demonstrated large chromosomal aberrations in 
ASD to be associated with ID.

In the present study, the patients suffered from high-func-
tioning ASD without ID. Surprisingly, we detected in six 
patients large CNVs, up to now associated with ID and addi-
tional features. A limitation of this study is the fact that only 
one tissue type per patient was analyzed (peripheral blood, 
or saliva). Therefore, we cannot exclude that the abnormali-
ties observed are in reality mosaics, a feature that might 
explain the absent of ID and of other malformations in our 
patients. Another limitation of this study is that no genetic 
data from the parents were available and it was not possible 
to assess whether the CNVs are de novo or inherited.

Comparable to other studies conducted in early onset 
OCD patients (Grünblatt et al. 2017) and HFA (Gilman et al. 
2011), in the present investigation, brain-associated CNVs 
were significantly more often seen in HFA compared to con-
trols and thus confirm the previous findings. Our detailed 
discussion of the individual findings further illustrates the 
phenotypes associated with such CNVs and helps to improve 
genetic counseling in affected families.

In summary, this study suggests that large CNVs can 
be associated with autistic symptoms seen in HFA. Thus, 
our results indicate that a large number of structural vari-
ants like CNVs might still be unreported in psychiatric 
disorders in general and especially for HFA.
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