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Abstract
Extrapyramidal movement disorders include hypokinetic rigid and hyperkinetic or mixed forms, most of them originating 
from dysfunction of the basal ganglia (BG) and their information circuits. The functional anatomy of the BG, the cortico-BG–
thalamocortical, and BG–cerebellar circuit connections are briefly reviewed. Pathophysiologic classification of extrapyrami-
dal movement disorder mechanisms distinguish (1) parkinsonian syndromes, (2) chorea and related syndromes, (3) dystonias, 
(4) myoclonic syndromes, (5) ballism, (6) tics, and (7) tremor syndromes. Recent genetic and molecular–biologic classifica-
tions distinguish (1) synucleinopathies (Parkinson’s disease, dementia with Lewy bodies, Parkinson’s disease–dementia, and 
multiple system atrophy); (2) tauopathies (progressive supranuclear palsy, corticobasal degeneration, FTLD-17; Guamian 
Parkinson–dementia; Pick’s disease, and others); (3) polyglutamine disorders (Huntington’s disease and related disorders); 
(4) pantothenate kinase-associated neurodegeneration; (5) Wilson’s disease; and (6) other hereditary neurodegenerations 
without hitherto detected genetic or specific markers. The diversity of phenotypes is related to the deposition of pathologic 
proteins in distinct cell populations, causing neurodegeneration due to genetic and environmental factors, but there is fre-
quent overlap between various disorders. Their etiopathogenesis is still poorly understood, but is suggested to result from 
an interaction between genetic and environmental factors. Multiple etiologies and noxious factors (protein mishandling, 
mitochondrial dysfunction, oxidative stress, excitotoxicity, energy failure, and chronic neuroinflammation) are more likely 
than a single factor. Current clinical consensus criteria have increased the diagnostic accuracy of most neurodegenerative 
movement disorders, but for their definite diagnosis, histopathological confirmation is required. We present a timely overview 
of the neuropathology and pathogenesis of the major extrapyramidal movement disorders in two parts, the first one dedicated 
to hypokinetic-rigid forms and the second to hyperkinetic disorders.
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Abbreviations
AGs  Argyrophilic grains
ALS  Amyptrophic lateral sclerosis
ALS/PDC  Guamanian ALS–Parkinson’s disease 

complex
AP  Astroglial plaque
APP  Amyloid precursor protein
AR-PD  Akinesia-and-rigidity type PD
AS  α-Synuclein

AutD  Autosomal dominant
AutR  Autosomal recessive
βSyn  β-Synuclein
BG  Basal ganglia
BHC  Benign hereditary chorea
BIBD  Basophilic inclusion body disease
CAA   Cerebral amyloid angiopathy
CAG   Polyglutamine
CBD  Corticobasal degeneration
CBGTC   Cortico-BG-thalamocortical
CBS  Corticobasal syndrome
ChAc  Chorea-acanthocytosis
ChAT  Choline-acetyl transferase
CI  Cognitive impairment
CN  Caudate nucleus
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CNS  Central nervous system
CS–TD  Cortico-striatal–temporal difference
DA  Dopamine
DLB  Dementia with Lewy bodies
DLB-AD  Dementia with Lewy bodies and Alzheimer’s 

disease
DRD  Dopa-responsive dystonia
DRPLA  Dentatorubral-pallidoluysian atrophy
DS  Dystonia syndrome
ENK  Enkephalin
ET  Essential tremor
FTDP-17  Frontotemporal degeneration and parkinson-

ism linked to chromosome 17
FTLD  Frontotemporal lobar degeneration
GABA  γ-Aminobutyric acid
GBA  Glucocerebrosidase gene
GCase  Glucocerebrosidase
GCIs  Glial cytoplasmic inclusions
GDNF  Glia-derived neurotrophic factor
GNIs  Glial nuclear inclusions
GPe  External segment of globus pallidus
GPi  Internal segment of globus pallidus
GTP  Guanosine triphosphate
HD  Huntington’s disease
HTT  Huntingtin
iLBD  Incidental Lewy body disease
IT  Intratelencephalic
LB  Lewy body
LC  Locus ceruleus
LID  l-Dopa-induced dyskinesia
LP  Lewy body pathology
MCI  Mild cognitive impairment
MD  Menkes’ disease
MJD  Machado-Joseph disease
MSA  Multiple system atrophy
MSA-C  Multiple system atrophy with predominant 

cerebellar features
MSA-P  Multiple system atrophy with predominant 

parkinsonism
MSN  Medium spiny projection neuron
NA  Neuroacanthocytosis
NBIA  Neurodegeneration with brain iron 

accumulation
NBM  Nucleus basalis of Meynert
NCIs  Neuronal cytoplasmic inclusions
NFTs  Neurofibrillary tangles
NIID  Neuronal intranuclear inclusion disease
NM  Neuromelanin
NNIs  Neuronal nuclear inclusions
NT  Neuropil threads
OCD  Obsessive-compulsive disorder
OPC  Olivopontocerebellar
OPCA  Olivopontocerebellar atrophy

OS  Oxidative stress
pAS  Phosphorylated α-synuclein
PC  Purkinje cell
PD  Parkinson’s disease
PDC  Parkinson’s disease complex
PDD  Parkinson’s disease dementia
PEP  Postencephalitic parkinsonism
PGF  PSP with progressive gait freezing
PHFs  Paired helical filaments
PiD  Pick’s disease
PKAN  Pantothenate-kinase associated 

neurodegeneration
PPN  Pedunculopontine nucleus
PPT  Pedunculo-pontine tegmental
PSP  Progressive supranuclear palsy
PSP-CBS  PSP presenting with corticobasal syndrom
PSP-P  Progressive supranuclear palsy-parkinsonism
PSP-RS  Richardson’s syndrome
Put  Putamen
SCA3  Spinocerebellar ataxia type 3
SN  Substantia nigra
SNc  Substantia nigra pars compacta
SNr  Substantia nigra pars reticulata
SP  Substance P
STN  Subthalamic nucleus
TA  Tufted astrocyte
TDPD  Tremor-dominant type of PD
TH  Tyrosine hydoxylase
TS  Tourette’s syndrome
VaP  Vascular parkinsonism
VM  Ventromedial
VTA  Ventral tegmental area
WD  Wilson’s disease
XDP  X-linked dystonia-parkinsonism

Introduction

Extrapyramidal movement disorders are divided into 
hypokinetic rigid, hyperkinetic, and mixed forms, most of 
which have their origin in dysfunction of the dorsal basal 
ganglia (BG), which have a multitude of functions associ-
ated with cognition and reward, but are primarily involved 
in motor control. Dysfunction of the cortico-BG–thalamo-
cortical (CBGTC) circuits due to disruption of downstream 
network activities in cortex, thalamus, and brainstem result 
in a number of landmark motor disorders such as Parkinson’s 
and Huntington’s diseases, which disturb motor control in 
markedly different contexts.
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Structure and function of the basal ganglia

The BG are a cluster of subcortical nuclei which include 
(1) input nuclei [caudate nucleus (CN), putamen (Put), and 
nucleus accumbens], (2) output nuclei [internal segment of 
globus pallidus (GPi) and substantia nigra pars reticulata 
(SNr)], and (3) intrinsic nuclei/external segment of globus 
pallidus (GPe), subthalamic nucleus (STN), and substan-
tia nigra pars compacta (SNc). According to the current 
model of the BG circuitry, they are viewed as components 
of segregated networks that emanate from special cortical 
areas, traverse the BG and ventral thalamus, and return to the 
frontal cortex, interacting with internal re-entering circuits 
engaging motor, associative, and limbic cortical territories 
in the control of movement, behavior, planning, and emo-
tions, related to a functional interconnection of these areas 
(Klaus et al. 2019).

The fundamental understanding of the essential anatomi-
cal pathways—CBGTC—and the alterations of the neuro-
transmitter systems located in these circuits are essential for 
understanding potential pathophysiological mechanisms in 
the landmark extrapyramidal motor disorders. The functions 
of these networks are modulated by three main transmitter 
systems: dopamine (DA), glutamate, and γ-aminobutyric 
acid (GABA). Normal movement is controlled by the 
CBGTC circuits. The striatum integrates motor behavior 
using well-defined circuits, whose individual components 
are independently affected in various movement disorders. 
It receives excitatory glutamatergic input from the cerebral 
cortex, thalamus, and brainstem, mainly from DAergic 
cells and releases GABAergic output to SNc, SNr, GPi, and 
GPi, which project to specific nuclei in thalamus and the 
brainstem tegmentum. The involved thalamic nuclei have 
an excitatory glutamatergic output to specific regions of 
the motor cortex. The GABAergic output of SNc and GPi 
reduces glutamatergic projections from thalamus back to the 
cortex. Other cortical regions project to subthalamic nucleus 
(STN), SN, thalamus, ventral tegmental area (VTA) and via 
pontine nuclei to the cerebellum. GPe, DAergic SNc, and 
STN modulate the main flow of information through the 
BG. The classical model of the involved circuits describes 
a dynamic web of interlinked pathways with inhibitory 
and excitatory functions providing multiple sites of influ-
ence (Young and Sonne 2018) (Fig. 1). Similar to the body 
regions within the sensory motor cortex, the BG nuclei are 
somatotopically organized (Simonyan 2019).

Five BG–thalamocortical circuits form a topographically 
organized functional network: motor and oculomotor cir-
cuits, dorsolateral prefrontal, lateral orbitofrontal, and ante-
rior cingulate or limbic circuits involving different parts of 
the striatum, pallidonigral complex, and medial and ventral 
thalamus (Simonyan 2019). The functions of these networks 
are strongly modulated by the release of DA in the striatum. 

It alters the activity of striatal neurons which, in turn, influ-
ences the (inhibitory) BG output.

A nigrostriatal circuit in which SNc gets a GABAergic 
inhibitory projection from striatum feeds back to striatum 
as the major source of its DAergic innervation. The medial 
SN connects with limbic striatal and cortical regions: the 
ventral SN with associative regions of cortex and striatum 
and the lateral SN with somatomotor regions of striatum and 
cortex encoding different functions (Zhang et al. 2017). The 
retrorubral field (A8) and ventral tegmental area (A10) are 
integrated in the mesostriatal and mesolimbic DAergic pro-
jections. DA induces excitation of striatal neurons that pro-
ject to GPi and SNr and inhibits thalamic nuclei to maintain 
normal movements. It inhibits neurons that project to GPe or 
STN to moderate the normal negative effect on motor speed 
and tone associated with high output from STN. Its outputs 
project to GPi, SNr, GPe, striatum, and PPN. DA modulates 
BG functions, but also acts outside of the striatum, thus con-
tributing to the symptoms of PD and other disorders (Wich-
mann et al. 2018). GPe receives GABAergic input from stri-
atum and projects to STN, which in turn sends glutamatergic 
projections to SNr, GPi, and GPe to inhibit glutamatergic 
excitation of the cortex. Excitatory glutamatergic drive of 
STN neurons along the cortico-subthalamic pathway triggers 

Fig. 1  Schematic representation of key structures and pathways of 
the basal ganglia. Blue arrows: direct pathway; red arrows: indirect 
pathway; yellow arrow: hyperdirect pathway. Amy amygdala, DS dor-
sal striatum, GPi globus pallidus, internal segment, GPe globus pal-
lidus, external segment, Hipp hippocampus, PPN pedunculopontine 
nucleus, SNc substantia nigra compacta, SNr substantia nigra reticu-
lata, STN subthalamic nucleus, Thal thalamus, VA ventral anterior, 
VM ventral median, VP ventral pallidum, VS ventral striatum, VTA 
ventral tegmental area, Glu glutamatergic, GABA gabaergic. Modified 
from (Haber 2016) with permission from Association La Conférence 
Hippocrate-Servier. © AICH-Servier
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GABAergic inhibition of pallidothalamic inputs (Chu et al. 
2015). The STN-GPe system is a major input relais station 
receiving projections from various cortical and subcortical 
regions, thus modulating the downstream effects of the BG 
that control both motor function and emotion (Suryanaray-
ana et al. 2019). Many PD symptoms result directly from 
neurodegeneration; others are driven by aberrant activity 
patterns in surviving neurons. This latter phenomenon, PD 
circuit dysfunction, is an area of intense study in view of 
currently incurable neurodegeneration (McGregor and Nel-
son 2019).

A commonly presented but overly simplistic model 
of motor function suggests that BG output structures are 
controlled by two opposing striatal motor loops, originat-
ing from distinct populations of medium-sized spiny pro-
jection neurons (MSNs) and projecting to different output 
structures (Young and Sonne 2018). The direct pathway is 
a monosynaptic inhibitory projection from the glutamater-
gic cortex to the GABAergic MSNs, containing DA-D1 
receptor neurons projecting to GABAergic neurons in GPi 
and SNr. Activation of striatal MSNs leads to inhibition of 
the inhibitory GPi/SNr output and to disinhibition of BG 
target structures in thalamus and midbrain, thus promot-
ing movement and behavior. The indirect pathway contains 
disinhibitory projections from the glutamatergic cortex to 
striatal MSNs (containing GABA and expressing the DA-D2 
receptor), with striatal projections to GPe, GABAergic GPe 
projections to STN, and glutamatergic STN projections 
to GPi and SNr. The STN as part of the indirect pathway 
drives pallidal GABAergic output through glutamatergic 
synapses. The GPi sends inhibitory projections to the ven-
tral anterior and ventral lateral nuclei of the thalamus and 
will disinhibit motor output by thalamic stimulation of the 
motor cortex. A signal through the indirect pathway (cor-
tex–striatum–GPe–STN–GPi) ultimately terminates a move-
ment. The SNr, an inhibitory GABAergic nucleus, works 
together with the GPi as the final output of the BG’s direct 
and indirect pathways. In turn, both pathways have a reverse 
effect on spontaneously firing thalamocortical neurons and 
ultimate motor activity, i.e., activation of the direct pathway 
facilitates motor activity via disinhibition of thalamocortical 
neurons, whereas activation of the indirect pathway reduces 
motor activity by increasing inhibition of the thalamocortical 
neurons. The thalamus is a neural integrator for the activities 
of the forebrain, but all the cortico-cerebellocortical loops 
make relay in the thalamus (Habas et al. 2019).

The parallel circuit model of the BG (Fig. 1) describes 
how information progresses through the BG in anatomi-
cally and functionally distinct channels. Balance between 
these two pathways at the level of GP and SN is essential 
for normal functioning of the BG–thalamocortical circuits, 
the disruption of which is the major locus of PD-related dys-
function (McGregor and Nelson 2019). Increased inhibition 

of the thalamocortical pathway results in hypokinetic disor-
ders, while decreased inhibition of thalamocortical output 
induces hyperkinetic disorders (Lanciego et al. 2012). These 
networks are modulated by the release of DA in the striatum, 
thus enabling flexible motor and behaviour control (Neu-
mann et al. 2018). In parkinsonism, the loss of striatal DA 
results in the emergence of oscillatory burst patterns of firing 
of BG output neurons, increased synchrony of the discharge 
of neighbouring BG neurons and an overall increase in BG 
output, thus inhibiting their thalamic and midbrain targets. 
In PD, DA loss is predicted to cause imbalanced activity 
between the two pathways.

The reduced activity in the “direct” striato-corti-
cal–nigral–GPi pathway induces akinesia (Beck et al. 2018; 
Wichmann et al. 2018), which may also be associated with 
abnormalities outside the DAergic pathways (Spay et al. 
2018). The two pathways are not separate parallel systems, 
but functionally intertwined in- and outside the striatum, 
collaterals bridging the two pathways (Papa and Wichmann 
2015; Simonyan et al. 2017). Other models suggest that they 
are not alternatively but concomitantly active, and coordi-
nated activity across the two pathways regulates movement 
initiation and execution (Tecuapetla et al. 2016). While the 
classical model predicts that increased BG output induces 
excessive inhibition of thalamus and cortex, leading to a 
paucity of movement, manipulations of the BG in parkin-
sonian and healthy animals suggest that other measures of 
activity such as pattern and synchrony play a role in driving 
PD motor symptoms. According to the “center-surround” 
model of the BG, cortical input activates STN neurons that 
excite GPI neurons, suppressing actions. Concurrently, corti-
cal input to the striatum activates indirect MSNs that shape 
STN activity through the GPe, as well as direct MSNs that 
converge and inhibit a subset of GPi neurons to permit selec-
tive execution of movement. At the striatal level, inhibitory 
connections between MSNs may contribute to consensually 
similar center-surround patterns (McGregor and Nelson 
2019).

A different hypothesis of the BG pathways and DA, 
named the cortico-striatal–temporal-difference (CS–TD) 
model proposes a new modality that integrates the OpAL 
and CS–TD models. It suggests that the intratelencephalic 
(IT–BG pathways represent goodness/badness of current 
options, while the PT-indirect pathway represents the overall 
value of the previous option, and both these have influence 
on the DA neurons, through the BG output. A key assump-
tion is that opposite directions of plasticity are induced upon 
phasic activation of DA neurons in the IT-indirect pathway 
and PT-indirect pathway because of different profiles of IT 
and PT inputs. At PT → indirect MSN synapses, sustained 
glutamatergic inputs generate rich adenosine, which pre-
vents DA-D2 receptor signaling and instead favors adeno-
sine–A2A receptor signaling. Then, DA-induced phasic 
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adenosine, which reflects TD-RPE, causes long-term syn-
aptic potentiation. In contrast, at IT → indirect MSN syn-
apses, where adenosine is scarce, phasic DA causes long-
term synaptic depression via D2 receptor signaling. This 
new model provides new predictions, part of which is in 
line with recently reported activity patterns of GPe neurons 
in the “indirect” pathway (Morita and Kawaguchi 2019).

There are, however, other actions within the BG includ-
ing communication between DA-D1 and DA-D2 receptor 
striatal MSNs, with collaterals in both GPi and GPe: GPe 
projections going back to the striatum, GPi/SNr ones not 
only to the thalamus, but to pedunculo-pontine tegmental 
nucleus (PPT), habenula and superior colliculus, as well as 
a balanced dynamic system regulated by mesolimbic and 
DAergic neuronal circuits (Cazorla et al. 2015; Hegeman 
et al. 2016; Schmidt and Berke 2017).

Two “hyperdirect” pathways include a direct cortico–sub-
thalamic–pallidal pathway that increases GPi activity and 
inhibits thalamocortical targets, thus causing supression of 
all movements (Wichmann et al. 2018), while three paral-
lel but independent neurotrophic circuits between SN and 
GABAergic and cholinergic striatal interneurons may exist 
(Ortega-de San Luis et al. 2018). The hyperdirect and indi-
rect pathways, converging in the STN, are differentially 
involved in cognitive aspects of motor preparation and gait 
control during motor performance (Neumann et al. 2018). 
The thalamostriatal system is a dual system, one originat-
ing from midline and intralaminar nuclei, another one from 
ventral and relais nuclei using glutamate transporters. The 
source of thalamostriatal projections is highly organized in 
striatal compartments that are influenced by their cortical 
and thalamic afferents (Fujiyama et al. 2019). The midbrain 
locomotor region with the cholinergic PPN that is inter-
connected with BG, thalamic and brainstem nuclei, spinal 
effectors, and cerebellum, is crucial for motor and cognitive 
control (Mori et al. 2016; Vitale et al. 2018). BG and cer-
ebellum are reciprocally interconnected with the neocortex 
via oligosynaptic loops (Hintzen et al. 2018) as substrate of 
integrated functional networks between them (Pelzer et al. 
2017). They are topographically organized, so that motor, 
cognitive, and affective territories in the network are inter-
connected, abnormalities in each node can have network-
wide effects (Bostan and Strick 2018). The dorsal motor 
nucleus of the vagus and SN is connected in a recently dis-
covered monosynaptic nigro–vagal pathway, which is dys-
functional in rodent models of PD (Bove and Travagli 2019).

Classification of major movement disorders

Most extrapyramidal disorders related to BG dysfunction are 
neurodegenerative diseases featured by neuronal degenera-
tion and astrocytosis in many parts of the nervous system. 
A classical pathophysiological classification distinguishes: 

(A) hypokinetic-rigid syndromes: parkinsonian syndromes 
with rigidity, akinesia/bradykinesia, resting tremor, and 
postural instability; (B) hyperkinetic syndromes: (1) chorea 
syndromes with irregular movements; (2) dystonia charac-
terized by involuntary muscle spasms and abnormal posture; 
(3) ballism with high amplitude movements of the proximal 
extremities; (4) myoclonus with brief, quick movements; (5) 
tremor syndromes with rhythmic involuntary movements; 
and (6) tic disorders with rapid involuntary movements.

Recent genetic and molecular–biologic classification of 
movement disorders distinguishes (Table 1): (1) Synucle-
inopathies, a heterogeneous group of neurodegenerative 
disorders caused by misfolded α-synuclein (α-Syn) protein 
that forms amyloid-like filamentous inclusions (Alafuzoff 
and Hartikainen 2017; Goedert et al. 2017b). They include 
Lewy body (LB) disorders—sporadic and rare familial forms 
of PD, dementia with Lewy bodies (DLB), pure autonomic 
failure (PAF), and multiple system atrophy (MSA). Neurode-
generation with brain iron accumulation type I (NBIA-I) or 
pantothenate kinase-associated neurodegeneration (PKAN) 
is no longer considered a synucleinopathy (Li et al. 2013). 
(2) Tauopathies, featured by neurofibrillary tau pathology, 
include progressive supranuclear palsy (PSP), cortico-basal 
degeneration (CBD), and frontotemporal lobe degenera-
tion with tau pathology (FTLD/TAU); (3) polyglutamine 
disorders linked to CAG trinucleotide repeats, such as 
Huntington’s disease (HD); and (4) paraneoplastic forms 
(Poplawska-Domaszewicz et al. 2018); those associated 
with neuronal antibodies (Dash and Pandey 2019) or with-
out hitherto detected genetic or specific disease markers. 
The various phenotypes are associated with the deposition of 
pathologic (misfolded) proteins and cytoskeletal abnormali-
ties in distinct neuronal populations, which represent impor-
tant diagnostic signposts. Recent consensus criteria for their 
clinical and neuropathologic diagnosis have been established 
(Ali and Josephs 2018a; Gilman et al. 2008; Hoglinger et al. 
2018; Jellinger 2016; McKeith et al. 2017). The first part of 
this review is dedicated to the hypokinetic-rigid syndromes, 
the second part to the hyperkinetic disorders.

Synucleinopathies

This heterogeneous group of neurodegenerative disorders 
caused by misfolded α-synuclein that forms amyloid-like 
filamentous aggregations in many central nervous system 
(CNS) areas, include (1) Lewy body diseases (LBD)—Par-
kinson’s disease (PD) with and without dementia, demen-
tia with Lewy bodies (DLB), and pure autonomic failure 
(PAF), all morphologically characterized by α-Syn-positive 
cytoplasmic inclusions in neurons (Lewy bodies/LBs/) 
and dystrophic neurites (LN) and (2) multiple system atro-
phy (MSA), the morphological hallmarks of which are 
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Table 1  Morphologic and biochemical classification of degenerative diseases with movement disorders

FTLD frontotemporal lobe degeneration, LLRK2 leucine-rich repeat kinase 2, MSA-C multiple system atrophy with predominant cerebellar fea-
tures, MSA-P multiple system atrophy with predominant parkinsonism, TDP-43 transactive response DNA-binding protein 43 kD

α-Synucleinopathies
Invariable forms (consistent α-synuclein deposition)
 Parkinson’s disease (brainstem type of Lewy body disease)
  Sporadic
  Familial with α-synuclein mutation
  Familial with other mutations
  Incidental Lewy body disease (subclinical Parkinson’s disease)
  Pure autonomic failure
  Lewy body dysphagia

 Dementia with Lewy bodies; diffuse Lewy body disease
 Multiple system atrophy
  Striatonigral degeneration (MSA-P)
  Olivopontocerebellar atrophy (MSA-C)

 Pantothenate kinase–associated neurodegeneration (Hallervorden-Spatz disease) (no longer classified as synucleinopathy)
Variable forms (inconsistent α-synuclein deposition)
 Parkinson’s disease with parkin- and LRRK2-linked mutations
 Alzheimer’s disease (and other tauopathies)

Tauopathies
 Progressive supranuclear palsy (4R-tau doublet + exon 19)
 Corticobasal degeneration (same)
 Amyotrophic lateral sclerosis and parkinsonism-dementia complex of Guam (3R + 4R triplet)
 Postencephalitic parkinsonism (3R + 4R triplet)
 Frontotemporal lobar degeneration-tau (FTLD-tau) (formerly referred to as frontotemporal dementia and parkinsonism linked to chromosome 

17/FTDP-17)
 Pallidopontonigral degeneration (4R-tau)
 Pick’s disease (3R-tau doublet without exon 10)
 Advanced Alzheimer’s disease with subcortical neurofibrillary tangles
 Amyotrophic lateral sclerosis and parkinsonism-dementia complex of Guam
 Perry’s syndrome
 Frontotemporal lobe degeneration with MAPT mutation (FTLD-MAPT)

Polyglutamine repeat (CAG) disorders
 Huntington’s disease—rigid type (CAG triplet repeat)
 Choreoacanthocytosis (neuroacanthocytosis)
 Machado-Joseph disease (spinocerebellar ataxia type 3 + type 2)
 Dentatorubral-pallidoluysian atrophy
 X-linked dystonia parkinsonism (Lubag’s disease)
 Fragile X-associated tremor and ataxia syndrome (FXTAS)
 Spinocerebellar ataxia

Other hereditary degenerative disorders
 Hereditary striatal degeneration
 Pallidal degeneration and related variants
 Hallervorden-Spatz disease (without α-synucleinopathy)
 Inherited metabolic disorders (e.g., Wilson’s disease, Menkes’ disease)
 Neuronal intranuclear inclusion and basophilic inclusion disease
 Inherited dystonias and dyskinesias
 Hereditary ferritinopathies
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α-Syn-positive glial cytoplasmic inclusions (GCI) in oligo-
dendroglia and less frequent neuronal inclusions. Synucle-
inopathies account for 73–83% of cases of parkinsonism, 
including 42–63% PD, whereas other degenerative disorders 
mimicking PD account for 9–33% (Dickson 2018; Horvath 
et al. 2013a; Savica et al. 2013a).

α-Syn is a 14 kDa intrinsically disordered presynaptic 
protein with potential for self-oligomerization and fibrillary 
aggregation under pathologic conditions. Increasing phos-
phorylation of α-Syn at serine 129 enhances the accumula-
tion and toxicity (Prasad et al. 2019). Pathological α-Syn 
has the capacity to self-seed and propagate between cells; its 
intercellular transfer has been implicated in the progression 
of synucleinopathies (Dehay 2014; Karpowicz et al. 2019; 
Reyes et al. 2019). For its molecular basis, functions, inter-
action with DA metabolites, and relevant animal models, 
see (Alegre-Abarrategui et al. 2019; Benskey et al. 2016; 
Burre et al. 2018; Das and Eliezer 2019; Dettmer et al. 2016; 
Ghiglieri et al. 2018; Goedert et al. 2017b; Grozdanov and 
Danzer 2018; Huang et al. 2019; Jellinger 2013a; Stefanis 
2012; Wong and Krainc 2017). α-Syn assembles into oli-
gomers, which lead to impairment of axonal transport (Prots 
et al. 2018; Volpicelli-Daley 2017), synaptic dysfunction and 
neuronal death (Calo et al. 2016; McCormack et al. 2019; 
Mehra et al. 2019; Mor et al. 2017; Snead and Eliezer 2014). 
Lipid alterations in membranous compartments may have 
an effect on α-Syn misfolding and neurotoxicity (Canerina-
Amaro et al. 2019). Interaction of α-Syn aggregate species 
with phospholipid membranes causes disruption and cell 
death (Iyer and Claessens 2019). α-Syn is a multifunctional 
player in the regulation of exocytosis, endocytosis, and vesi-
cle recycling (Huang et al. 2019), and a major component 
of LBs, dystrophic Lewy neurites (LNs), and glia in PD and 
DLB (Spillantini et al. 1998; Wakabayashi et al. 2013), in 
neuronal and glial inclusions in MSA (Jellinger and Wen-
ning 2016). Elevated levels of soluble α-Syn oligomers 
were seen in postmortem PD and DLB brains (Tong et al. 
2010) with higher intensity in MSA (Sekiya et al. 2019). 
They mediate early synaptic pathology and cellular dys-
ruption (Bengoa-Vergniory et al. 2017; Roberts and Brown 
2015; Rockenstein et al. 2014). Clearance mechanisms of 
α-Syn are complex and multifaceted in particular related to 
exosomes (Stefanis et al. 2019).

Co-occurrence of α-Syn, tau, β-amyloid (Aβ) and other 
proteins, and interaction between their oligomeric forms, 
promote their mutual aggregation, thereby inducing neuronal 
damage (Bourdenx et al. 2017; Foguem and Manckoundia 
2018; Spires-Jones et al. 2017). Interaction of α-Syn, tau, 
and Aβ (with metal ions) is responsible for the overlapping 
pathology of different proteinopathies that are considered a 
continuum depending upon genetic and environmental fac-
tors (Bengoa-Vergniory et al. 2017; Colom-Cadena et al. 
2017a; Godini et al. 2019; Spires-Jones et al. 2017; Walker 

et al. 2015; Yan et al. 2018). Modification of α-Syn may 
induce both Lewy and tau pathologies, and enhances amy-
loid and tau accumulation, while tau and Aβ enhance α-Syn 
aggregation and toxicity (Gerson et al. 2018; Irwin et al. 
2013c; Yan et al. 2018). Interaction between Aβ and α-Syn 
leads to inhibition of Aβ deposition (Bachhuber et al. 2015). 
In PD and DLB brains, concentrations of soluble pSer129 
α-Syn correlated with the levels of Aβ (Swirski et al. 2014). 
Distinct strains of α-Syn are responsible for propagation and 
regional distribution of lesions in synucleinopathies (Alegre-
Abarrategui et al. 2019; Candelise et al. 2019; Karpowicz 
et al. 2019), and are involved in their heterogeneity (Pee-
laerts et al. 2018; Peng et al. 2018b; Tanaka et al. 2019), as 
observed after the injection of α-Syn aggregates into animal 
models (Goedert et al. 2017c; Ko and Bezard 2017; Peng 
et al. 2018a; Polinski et al. 2018; Thakur et al. 2017).

Lewy body disorders

This group of neurodegenerative disorders is morphologi-
cally featured by the presence of α-Syn-positive inclusions. 
Lewy bodies (LBs), α-Syn-positive cytoplasmic inclusions, 
are the morphological hallmarks of PD and DLB, but are 
also found in a variety of disorders, e.g., in 7–71% of spo-
radic and familial forms of AD (Cairns et al. 2015; Savica 
et al. 2019), in a small proportion of cases of frontotemporal 
lobar degeneration (FTLD) with parkinsonism (Forrest et al. 
2019a), and in 2–61% of aged individuals with or without 
dementia (Buchman et al. 2018; Jellinger 2004; Markesbery 
et al. 2009).

LBs occur in two types: the classical brainstem and the 
cortical type. Classical LBs are spherical cytoplasmic intra-
neuronal inclusions 8–30 µm in diameter with a hyaline 
eosinophilic core and a narrow pale-stained halo. Ultrastruc-
turally, classical LBs are non-membrane-bound, granulofila-
mentous structures composed of radially arranged, 7–20 nm 
intermediate filaments with electron-dense granule material 
and vesicular structures: the core shows densely packed fila-
ments and dense granular material, the periphery radially 
arranged 10-nm filaments (Forno 1996; Tercjak et al. 2014). 
Cortical LBs, eosinophilic, rounded, angular, or reniform 
structures without a halo, are poorly organized, granulofi-
brillary structures with a felt-like arrangement composed 
of 7–27 nm wide filaments (Ishiyama et al. 2006). They are 
found in small neurons in lower cortical layers, particularly 
in insular and entorhinal cortex, amygdala, hippocampal 
sector CA2/3, and cingulate gyri (Armstrong et al. 2014; 
Wakabayashi et al. 2013). Similar granular, pale-staining 
eosinophilic materials displacing neuromelanin (NM) in 
brainstem neurons—”pale bodies”—are precursors of LBs 
(Dale et al. 1992).

Both types of LBs share immuno- and biochemical char-
acteristics (Jellinger 2012b; Rocha Cabrero and Morrison 
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2019). Their major components are α-Syn, ubiquitin (Ub), 
phosphorylated Ub, and others such as structural fibrillary 
elements, α-Syn-binding proteins, those implicated in the 
Ub–proteasome system, synphilin-1, aggresome- and mito-
chondria-related, cytoskeletal, cytosolic, cellular response 
proteins, etc. (Kalia and Kalia 2015; Voronkov et al. 2018). 
LBs have a central Parkin- and Ub-positive domain with 
peripheral α-Syn. Colocalization of α-Syn, synphilin, and 
Parkin suggests that Parkin plays a role in ubiquitination and 
modification of α-Syn, its oligomers inducing Parkin nitros-
ylation (Wilkaniec et al. 2019). Synapsin III, a key com-
ponent of α-Syn fibrils, TH, and choline-acetyl transferase 
(ChAT) are co-localized in cortical LBs (Longhena et al. 
2018). Brainstem LBs show TH and ChAT reactivity with 
peripheral α-Syn (Dugger and Dickson 2010). LBs and pale 
bodies are reactive for autophagic proteins p62 and NBR1 
(Kuusisto et al. 2003; Odagiri et al. 2012), and for TIGAR 
protein regulating TP53, which is absent in MSA inclusions 
(Lopez et al. 2019). LBs further contain 14-3-3 proteins that 
interact with α-Syn and have multiple cellular functions. 
Leucine-rich repeat kinase 2 (LRRK2) is not a major com-
ponent of LBs. Purified inclusions contain approximately 
50 isoforms of α-Syn (McCormack et al. 2016). Proteomic 
analysis of cortical LBs revealed 296 proteins related to 
multiple or unknown functions (Leverenz et al. 2007) and 
204 proteins in PD brainstem (Licker et al. 2014). Differ-
ent conformations of α-Syn fibrils correspond to different 
stages of maturity of LBs (Covell et al. 2017), but none of 
the detected α-Syn variants were LB-specific (Bhattacharjee 
et al. 2019), while phosphorylated NUB1 (an adaptor pro-
tein) distinguishes α-Syn in LBs from that in GCIs in MSA 
(Tanji et al. 2019). Recent studies showed that LBs are rich 
in protein–lipid structures found in other parts of the brain 
(Shahmoradian et al. 2018).

The formation of classical LBs begins with intraneuronal 
dust-like particles related to neuromelanin (NM) or lipofus-
cin that are cross-linked to α-Syn, with granular or diffuse 
deposition of α-Syn and Ub in the center, followed by con-
densation of dense filamentous inclusions, forming “early 
LBs” later developing to LBs. Extraneuronal LBs after dis-
appearance of the affected neuron are degraded by astroglia 
(Wakabayashi et al. 2013).

Cortical LBs show diffuse α-Syn and Ub labeling, 
whereas subcortical LBs have a central Ub-positive domain 
with peripheral deposition of α-Syn. Initial granular accu-
mulation of α-Syn is followed by accumulation of dense fila-
ments, spreading to dendrites, later deformation of LBs, and 
final degradation by astrocytes. Coarse, dystrophic neurites 
(LNs) with α-Syn and Ub inclusions in axonal processes, 
which may evolve into LBs (Kanazawa et al. 2008). LBs and 
LNs occur in virtually all brainstem nuclei and fiber tracts, 
with significant correlations between LBs and LNs, in both 
PD and DLB (Seidel et al. 2015).

Most toxin animal models of PD, e.g., 6-OHDA and 
MPTP, lacked LB pathology, although chronic low doses 
of MPTP occasionally induced α-Syn-positive inclusions 
(Meredith and Rademacher 2011). However, trichloroeth-
ylene caused SN neuron loss, DA depletion in striatum, and 
accumulation of intraneuronal α-Syn (Liu et al. 2010). On 
the other hand, most of the α-Syn tg models exhibit key 
features of human PD including α-Syn-positive inclusions 
similar to human LBs (Dehay and Fernagut 2016; Feany and 
Bender 2000). Injection of α-Syn preformed fibrils (PFF), 
which mimick α-Syn oligomers found in LBs, into the stria-
tum or other brain areas induced PD-like α-Syn pathologies 
and robust LB and LN formations (Ko and Bezard 2017; 
Nouraei et al. 2018; Polinski et al. 2018). Intracellular injec-
tion of synthetic α-Syn fibrils in marmosets produced robust 
LB-like inclusions in TH-positive neurons (Shimozawa et al. 
2017), whereas no LBs were seen in monkeys with over 
10 years of MPTP parkinsonism (Halliday et al. 2009).

Marinesco bodies, intranuclear inclusions in pigmented 
neurons of SN and locus ceruleus (LC), frequently found 
in elderly individuals in the presence of AD, are rare in PD 
and their frequency declines with duration of PD (Abbott 
et al. 2017). Higher LP has been shown to be associated with 
lower prevalence of atherosclerotic cardiovascular disease 
risk factors in PD patients (Driver-Dunckley et al. 2019).

Functional role of Lewy bodies

The pathobiological significance of LBs is poorly under-
stood. As a consequence of α-Syn misfolding, they could 
represent indicators of toxicity or of neuronal protection or 
end products or epiphenomena of unknown responses to 
cellular stress (Chartier and Duyckaerts 2018; Espay et al. 
2019; Rocha Cabrero and Morrison 2019; Sian-Hulsmann 
et al. 2015). LBs interact with DNA to cause nuclear degen-
eration and cell death (Power et al. 2017). Mitochondrial 
DNA deletion was highest in LB positive neurons, indicat-
ing increased mitochondrial damage (Muller et al. 2013), 
while accumulation of mitochondrial DNA deletions triggers 
neuroprotective mechanisms (Ammal Kaidery and Thomas 
2018; Michel et al. 2016). Nuclear localization of α-Syn, the 
effect on gene expression, and its toxicity is modulated by 
phosphorylation on serine 129 (Prasad et al. 2019), which 
indicates an interplay between subcellular location, phos-
phorylation, and toxicity (Pinho et al. 2019). Aggregated 
forms of Ser129-phosphorylated α-Syn can no longer be 
degraded by the proteasome and eventually accumulate 
within LBs (Arawaka et al. 2017). Small α-Syn intermedi-
ates termed “soluble oligomers” lead to synaptic dysfunction 
(Gadad et al. 2011). Their oligomerization in early stages 
of PD (Kalia and Kalia 2015) induces protein aggregation, 
disrupts cellular function, and leads to neuronal death due to 
mitochondrial dysfunction and oxidative stress (OS) (Michel 
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et al. 2016; Mullin and Schapira 2013; Rosborough et al. 
2017; Stefanis 2012; Tzoulis et al. 2016; Yasuda et al. 2013; 
Zeng et al. 2018). The Ub–proteasome system (UPS) and 
the autophagy–liposome pathway (ALP) that render dam-
aged proteins less toxic than their soluble forms contrib-
ute to α-Syn turnover, while alterations in these proteolytic 
pathways result in the accumulation of pathological proteins 
due to impaired clearance (Liu et al. 2019c). Ubiquitinated 
proteins in LBs may be a manifestation of a cytoprotective 
response to eliminate damaged cellular components and to 
delay the onset of neuronal degeneration (Grunblatt et al. 
2018). LBs could be interpreted as markers of surviving 
neurons, since they are present in the remaining neurons at 
post-mortem in PD patients or in tissues of asymptomatic 
individuals, thus reflecting the inability of cells to clear 
waste proteins due to dysfunction of clearing mechanisms 
(e.g., autophagy) with subsequent induction of LP and lys-
osomal stress (Alegre-Abarrategui et al. 2019). All major 
brain cell types are able to internalize and degrade extracel-
lular α-Syn, but glial cells appear to be the most efficient 
scavengers. Impairment of clearance leads to accumulation 
of toxic α-Syn, and dysfunctions of glia, that is involved in 
the progression of neurodegeneration (Brück et al. 2016; 
Chavarria et al. 2018; di Domenico et al. 2019; Filippini 
et al. 2019).

Sporadic Parkinson’s disease

PD, the second-most frequent neurodegenerative move-
ment disorder (prevalence 100–572/100,000; incidence 
4.5–21/100,000 person/year (Marras et al. 2018); proposed 
twofold rise within the next 20 years (Dorsey et al. 2018)), is 
clinically featured by bradykinesia, rigidity, resting tremor, 
postural imbalance, and various nonmotor features. Subtle 
cognitive dysfunction and depression often occur early in 
the disease (Lees et al. 2009), dementia being common in 
later stages (Emre et al. 2007). Progressive degeneration 
of the DAergic nigrostriatal system and many cortical and 
subcortical networks are associated with widespread α-Syn 
pathology. This causes striatal DA deficiency and related 
biochemical deficits that produce a heterogeneous clinical 
phenotype (Fereshtehnejad et al. 2017; Lawton et al. 2015, 
2018; Selikhova et al. 2009; Thenganatt and Jankovic 2014). 
Diagnostic accuracy of clinical diagnosis is 73.8–79.6%, 
according to a recent metaanalysis 82.7% (Rizzo et al. 2016). 
For the diagnosis of definite PD, histopathological confir-
mation is required. Although LBs are not specific to PD and 
occur in a variety of conditions, a positive diagnosis of PD 
is possible by the demonstration of neuronal loss and the 
demonstration of LBs in the midportion of the SN. If no LBs 
are found, two further sections should be examined. Cell loss 
in SN and LC in the absence of LBs or other α-Syn-positive 

inclusions suggests an alternative cause of parkinsonism 
(Dickson et al. 2009).

Neuropathology of Parkinson’s disease

Gross inspection of the brain shows mild cortical atrophy, 
enlargement of the ventricles, and pallor of SN and LC. 
Widespread α-Syn-immunoreactive deposits in neurons 
(LBs) and LNs throughout the nervous system, including 
the brainstem and many visceral organs are present indicat-
ing a multisystem involvement by α-Syn pathology (Beach 
et al. 2010; Gelpi et al. 2014; Jellinger 2012b; Sulzer and 
Surmeier 2013; Wakabayashi et al. 2010).

LP is associated with variable neuronal loss in midbrain, 
other subcortical nuclei and other neuronal systems. Deple-
tion of melanized neurons (45–66%) and DAergic neurons 
immunoreactive for TH, the key enzyme of DA synthesis 
(60–85%), affects the ventrolateral part of the A9 group of 
SNc (91–97% cell loss) projecting to striatum. This cor-
responds to a somatotopic pattern of DAergic terminal loss 
being more severe in the dorsal and caudal Put with later 
involvemen of ventral Put and CN. SN cell degeneration is 
preceded by loss of neurofilament protein, neuronal TH, and 
DAT immunoreactivity, indicating functional neuronal dam-
age. Later, extracellular released NM is taken up by mac-
rophages, with rare neuronophagy, and only minor astroglial 
response. Microglial activation occurs even prior to nigral 
damage (Duffy et al. 2018). The ventrolateral SNc cell clus-
ters are nearly wiped out, while DAergic neuron loss in the 
dorsal tier may be as little as 25% (Surmeier et al. 2017), 
and other DAergic and GABAergic neurons are spared at 
this time. As the disease processes, the nearby ventral and 
then dorsal SN cell clusters and their striatal projections are 
affected (Kordower et al. 2013).

In SN, the proportion of LB-bearing neurons appears 
to be stable throughout the disease duration, between 3.6 
and 15% of surviving SN neurons containing LBs (Greffard 
et al. 2010). SNc cell loss and the reduction of TH and DAT 
immunoreactivity in Put followed by CN and NAC correlate 
with the duration and severity of motor dysfunction (Bern-
heimer et al. 1973). At 4 year post-diagnosis and thereafter, 
DAT staining in dorsal Put is almost completely lost with 
only an occasional DAergic fiber in SNc and a 50–90% loss 
of TH-positive neurons in striatum (Kordower et al. 2013), 
whereas in end-stage PD, a stable proportion of LB-bearing 
SN neurons remains (Greffard et al. 2010). Despite a mas-
sive loss of SN neurons with atrophy of the remaining cells 
(Rudow et al. 2008), degeneration of the striatonigral system 
is not total, even after many years of illness (Djaldetti et al. 
2011). Stereological studies showed no overall loss of neo-
cortical neurons in endstage PD, despite many cortical LBs 
(Pedersen et al. 2005).



942 K. A. Jellinger 

1 3

The A10 group of DAergic neurons—VTA, nucleus 
parabrachialis, and nucleus parabrachialis pigmentosus—
projecting to the striatal matrix, thalamus, cortical, and lim-
bic areas (mesocorticolimbic system) show only an average 
53% cell loss (Alberico et al. 2015), whereas the periret-
rorubral A8 region, which contains only a few DAergic but 
CAB-rich neurons, and the central periventricular gray mat-
ter show little or no involvement (Geibl et al. 2019). Cholin-
ergic neurons in the basal forebrain and PNP are lost, but not 
glutamatergic and GABAergic PPN neurons, while there is 
a modest loss of glutamatergic neurons in the intralaminar 
nuclei of the thalamus and basolateral amygdala (Double 
et al. 2010).

Degeneration of the nigrostriatal system causes denerva-
tion in striatum with DA loss ranging from 44 to 98% and 
progressing from the ventrorostal to posterior Put and CN. In 
earlier disease stages, an increased number of striatal DAer-
gic neurons, representing a compensatory mechanism, are 
more efficient in younger PD patients (de la Fuente-Fernan-
dez et al. 2011). More severe nigrostriatal neuron loss occurs 
in early onset rather than in late-onset PD. At the time of 
motor symptom onset, the extent of striatal DA marker loss 
exceeds that of DAergic SN neurons. Neuron loss is more 
severe in Put (− 98.4%) than in CN (− 89%), whereas in GPi 
(− 89%) and GPe (− 51%), it is not related to the pattern of 
Put DA loss (Rajput et al. 2008). The concept that PD motor 
symptoms first appear when more that 50% of DAergic SN 
neurons are lost (Bernheimer et al. 1973) has been changed 
by the notion that at that time only around 30% of DAer-
gic SN neurons, but 50–60% of their axon terminals have 
been lost (Cheng et al. 2010). This is preceded by loss of 
DA markers in the nigrostriatal terminals in early PD, while 
melanin-containing SN neurons may persist for a longer time 
(Kordower et al. 2013). The duration and severity of motor 
dysfunction, the corresponding decrease of DA, TH, and 
vesicular monoamine transporter-2 (VAT2) in striatum are 
negatively correlated with the total SN α-Syn burden and 
neuronal loss (Cheng et al. 2010). It shows neither correla-
tion with LB formation (Mori et al. 2006) nor with mor-
phological LB stages, clinical severity of PD, and age at 
death (Burke et al. 2008), whereas SNc cell loss and α-Syn 
accumulation are closely related. A significant correlation 
between the nigral α-Syn burden and DAT immunoreactivity 
in striatum suggests that the severity of neurodegeneration 
and local α-Syn burden is closely coupled, whereas nigral 
TH immunoreactivity did not correlate with α-Syn positiv-
ity, which supports the concept of synaptic dysfunction or 
impairment of axonal transport (Chu et al. 2012). Nigral 
pigmentation and nigral DAT density show no significant 
association, wereas pigmentation of the ventral SN tier and 
DAT binding in related striatal areas are closely related 
(Martin-Bastida et al. 2019). LP may or may or may not 
be related to nigral DAergic cell loss (Beach et al. 2009; 

Colloby et al. 2012; Parkkinen et al. 2011). This suggests 
that both lesions are not interchangeable hallmarks for dis-
ease progression or severity, but could be complementing 
to each other (Rietdijk et al. 2017). While there are normal 
levels in the cytosolic fraction of α-Syn without correlation 
with nigral LB density (Tong et al. 2010), PD brains show 
a significant increase in soluble and phosphorylated α-Syn 
(pα-Syn) over the disease course, with progressive decrease 
of soluble α-Syn (Quinn et al. 2012) and changes of serin 
129 pα-Syn (Walker et al. 2013).

Increased pα-Syn precedes its aggregation followed by 
the formation of LBs and LNs, but it does not necessarily 
correlate with LP, that shows an inconsistent relationship 
with clinical disease progression (Lue et al. 2012). Lower 
neuron densities in SN occur before LB deposition, sug-
gesting that cellular dysfunction precedes LP related to a 
dying-back mechanism, in which dysfunction is caused by 
accumulation of small α-Syn aggregates at presynaptic ter-
minals (Schulz-Schaeffer 2015). Accumulation of α-Syn is 
triggered by presynaptic dysfunction (Nakata et al. 2012), 
and mediates early synaptic pathology by disrupting synaptic 
vesicles by retrograde degeneration (Tagliaferro and Burke 
2016). α-Syn and synapsin III are suggested to cooperatively 
regulate DA neuron synaptic function (Zaltieri et al. 2015a), 
and synapsins have been shown to regulate α-Syn formation 
(Atias et al. 2019). Early intraaxonal aggregation of α-Syn 
as “pale neurites” at axon collaterals extending centripe-
tally into proximal segments (Kanazawa et al. 2012) dam-
ages the parental neurons by interfering with axonal trans-
port (O’Keeffe and Sullivan 2018; Volpicelli-Daley 2017). 
Axonopathy in presymptomatic PD is followed by neuronal 
degeneration (Longhena et al. 2017), suggesting that the loss 
of DAergic neurons might be a consequence of synaptic loss 
(Yasuda et al. 2013), defining PD as a “synaptopathy” (Bridi 
and Hirth 2018; Imbriani et al. 2018; Longhena et al. 2017).

Parkinson disease: a multiorgan disorder

LB/α-Syn pathology in PD is not restricted to DAergic 
brainstem nuclei, but it is associated with degenerative 
lesions affecting the central, autonomic, and peripheral sys-
tem (Beach et al. 2010; Braak and Del Tredici 2009; Waka-
bayashi and Miki 2018), including the cholinergic basal fore-
brain, and other neurotransmitter systems (Kalia and Lang 
2015; Politis et al. 2010). The extranigral lesions correlate 
with early premotor symptoms (olfactory, autonomic, sen-
sory symptoms, sleep disturbances, pain, and neuropsychiat-
ric dysfunction), later non-motor fluctuations, and advanced 
non-DA-responsive nonmotor features (Coon et al. 2018; 
De Pablo-Fernandez et al. 2017; Jellinger 2015, 2017a, b; 
Klingelhoefer and Reichmann 2017; Lang 2011; Schapira 
et al. 2017; Titova et al. 2017). LP involves the spinal cord 
(Del Tredici and Braak 2012; Nardone et al. 2019), the 
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autonomic and peripheral nervous system, sympathetic and 
parasympathetic ganglia and plexuses, intramural enteric 
nervous system, skin, retina, uterus, submandibular gland, 
bladder, cardiac nervous system, and adrenals (Adler et al. 
2016; Braak and Del Tredici 2008; Ma et al. 2019; Orimo 
et al. 2008; Ortuno-Lizaran et al. 2018; Veys et al. 2019; 
Wakabayashi and Miki 2018). The musculoskeletal system, 
and major parts of the sensory nervous system are generally 
spared (Beach et al. 2009; Cersosimo and Benarroch 2012a, 
b; Obeso et al. 2017; Oinas et al. 2010), whereas peripheral 
sympathetic nerves are affected very early (Donadio 2018; 
Donadio et al. 2019).

Among the earliest involved areas are the olfactory bulb 
and related olfactory brain nuclei (amygdala and perirhi-
nal cortex), suggesting that olfactory dysfunction in PD is 
related to the involvement of central pathways rather than 
peripheral sensory nerve fibers (Attems et al. 2014; Dickson 
et al. 2009). α-Syn aggregation in the olfactory system and 
its spreading to the brain may contribute to PD initiation 
(Cersosimo 2018; Lema Tomé et al. 2013; Rey et al. 2018) 
by inducing lesions in related brain areas (Niu et al. 2018). 
Preferential involvement of the olfactory bulb, dmX, and 
the peripheral autonomic nervous system by LP (Attems 
et al. 2014; Beach et al. 2010) is related to an increase of 
pα-Syn in the olfactory bulb and brainstem (Beach et al. 
2009; Halliday et al. 2012). Affection of the autonomic nerv-
ous system and gastrointestinal tract before involvement 
of the CNS has suggested a route for spreading α-Syn via 
the vagus nerve to the brain (Braak and Del Tredici 2008; 
Holmqvist et al. 2014), confirmed by intragastric rotenone 
administration or α-Syn inoculation into the mouse gastro-
intestinal tract (Pan-Montojo et al. 2010). Resection of the 
vagal nerve interrupted the disease progression to the CNS 
(Uemura et al. 2018), and appendectomy were associated 
with reduced risk of PD (Svensson et al. 2015), suggesting a 
possible role of the gut-brain axis in the pathogenesis of PD 
(Bove and Travagli 2019; Bu et al. 2019; Perez-Pardo et al. 
2017), which has been critically discussed recently (Breen 
et al. 2019; Kujawska and Jodynis-Liebert 2018; Lionnet 
et al. 2018). On the other hand, the appearance of α-Syn 
aggregates in both the submucosal and myenteric plexuses 
of the enteric nervous system, prior to their appearance in 
the brain, indicates a possible gut to brain route of α-Syn 
spread (Felice et al. 2016), and a better understanding of 
the brain-gut microbiota axis could bring a new insight in 
the pathophysiology of PD (Fitzgerald et al. 2019; Mulak 
and Bonaz 2015).

Incidental Lewy body disease (iLBD)

The term iLBD is used when LBs are present in the nerv-
ous system in subjects without clinical parkinsonism. Their 
distribution is similar to that in PD, but often LBs are limited 

to the limbic cortex, whereas in definite PD cases, LP is 
present in all regions. A 70% SN cell loss and decreased TH 
immunoreactivity involve striatum and epicardial nerve fib-
ers, but not to the same extent as in PD (Adler et al. 2010b; 
Beach et al. 2008; DelleDonne et al. 2008; Dickson et al. 
2008), suggesting that it is a preclinical form of PD and 
that the lack of symptoms is due to subthreshold pathology 
(Dickson 2018).

Between 5 and 55% of neurologically unremarkable 
elderly people showed abundant LP with a distribution pat-
tern similar to that seen PD, but relative preservation of pig-
mented SN neurons (DelleDonne et al. 2008; Jellinger 2004; 
Markesbery et al. 2009), while LP may be confined to the 
olfactory bulb. Some had sparse, but widespread LP involv-
ing the cortex (Frigerio et al. 2011), which would violate 
the theory of upward progress from brainstem and would 
suggest a multicentric disease progress from the onset (Dick-
son 2012). LP in the spinal cord and dorsal root ganglia in 
elderly persons was associated with LP in lower brainstem 
due to retrograde spread (Sumikura et al. 2015).

Staging of Lewy pathology

Three major staging systems currently exist for LB disor-
ders: (1) for PD (Braak et al. 2006; Braak and Del Tredici 
2017); (2) for DLB (McKeith et al. 2017); and (3) revised 
guidelines for LB disease (Zaccai et al. 2008). Based on 
semiquantitative assessment of LB distribution in a large 
autopsy series, a staging of the presumed spread of LP was 
proposed to designate the sequence of lesions in the nervous 
system (Table 2). LP initially involves the olfactory bulb 
and related olfactory brain nuclei, the peripheral autonomic 
system, and adrenal medulla in neurologically unimpaired 
subjects referred to as iLBD (Beach et al. 2008; DelleDonne 
et al. 2008; Dickson et al. 2008; Frigerio et al. 2011). In stage 
1, the dmX and intermediate reticular zone are involved, 
while the NBM and midbrain regions are preserved. In stage 
2, LNs involve the enteric nervous system, parasympathetic 
and sympathetic nerves, and medullary nuclei of the level 
setting system (lower raphe nuclei, gigantocellular reticular 
nucleus, and ceruleus–subceruleus complex). These a- or 
presymptomatic stages may explain nonmotor (olfactory 
and autonomic, e.g., gastrointestinal and urinary) symptoms 
that precede motor dysfunctions (Cersosimo and Benarroch 
2012b; Dickson et al. 2009; Halliday and McCann 2010). 
In stage 3, LNs and LBs involve PPN, LC, amygdala, upper 
raphe nuclei, magnocellular nuclei of the basal forebrain, 
hypothalamic tuberomammillary nucleus, posterolateral/
posteromedial SNc, and spinal cord, whereas the allocor-
tex and isocortex are preserved. This stage is associated 
with disturbed sleep, early motor dysfunction, and several 
non-motor symptoms. In stage 4, midline and intralami-
nar thalamic nuclei, anteromedial temporal limbic cortex 
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(transentorhinal and entorhinal region), hippocampus, and 
the second sector of the Ammon’s horn are affected, associ-
ated with severe motor dysfunction. In stage 5, LNs and LBs 
in cortical areas for regulation of autonomic functions, in 
higher order sensory association areas and prefrontal fields, 
are associated with late phase motor disability, and fluc-
tuations. In stage 6, sensory association areas and premotor 
fields, primary sensory, and motor areas or the entire neo-
cortex are involved (Braak and Del Tredici 2009), causing 
late motor disability, fluctuations, and cognitive impairment. 
An increase in the density of α-Syn aggegates and LBs from 
stages 3–6 correlated negatively with the decrease in neu-
ronal density (Dijkstra et al. 2014).

The validity of the Braak staging scheme, which corre-
sponds roughly to the original classification of LB disorders 
into three phenotypes—brainstem predominant, limbic/tran-
sitional, and diffuse neocortical (Kosaka et al. 1988)—has 
gained acceptance (Dickson et al. 2010b; Kingsbury et al. 
2010), but has been debated (Beach et al. 2010; Burke et al. 
2008; Dickson 2012; Jellinger 2009a; Kempster et al. 2010; 
Parkkinen et al. 2008; Sestini et al. 2019). 51–83% of PD 
and DLB cases were compatible with this staging (Beach 
et al. 2009; Jellinger 2009a), but between 6.3% and 47% of 
autopsy-proven PD cases did not not conform to it (Attems 
and Jellinger 2008; Beach et al. 2009; Leverenz et al. 2008; 
Parkkinen et al. 2008). In large autopsy samples, 49–55% 
of individuals with widespread α-Syn pathology lacked 
clinical symptoms (Kalaitzakis and Pearce 2009; Leverenz 
et al. 2008; Zaccai et al. 2008), the determination of cases 
as atypical being dependent on the staging system applied 
(Coughlin et al. 2019).

The Braak hypothesis, suggesting predictable caudo-ros-
tral spreading of LP is based exclusively on distribution of 
LBs but not on neuronal loss, that are not correlated, and it 
is not identical with α-Syn spreading (Alafuzoff et al. 2009; 
Rietdijk et al. 2017). While the Braak staging shows only 

indirect correlations, another scheme based on a limited 
number of PD cases offered a strong correlation between 
SN neuronal loss and α-Syn pathology in Braak stages 3–6 
(p < 0.001), but no correlation between Hoehn and Yahr 
and Braak stages (van de Berg et al. 2012). A negative cor-
relation between neuronal density and α-Syn burden was 
observed in SN, but no relationship with Hoehn and Yahr 
stage or disease duration (Dijkstra et al. 2014). The Braak 
staging is valid for PD patients with young onset and long 
duration with motor symptoms (Halliday et al. 2008), but not 
for those with late onset and rapid disease course (Jellinger 
2019). 10–15% of PD cases associated with genetic muta-
tions show a pattern of LP that is distinct from the Braak 
scheme (Schneider and Alcalay 2017).

A new unifying system for LB disorders correlates with 
nigrostriatal degeneration, cognitive impairment, and motor 
dysfunction (Beach et al. 2009). Whereas the previous sys-
tems left 42–50% of elderly individuals unclassified, this 
new one allowed all cases to be classifiable into one of the 
following stages: I, olfactory bulb only; IIa, brainstem pre-
dominant; IIb, limbic predominant; III, brainstem and lim-
bic; and IV, neocortical. Progression through these stages 
accompanied by stepwise reduction of striatal TH and SN 
pigmented cell loss showed significant correlation with clini-
cal and psychometric data (Table 3).

Neuronal vulnerability

There is a close relationship between differential expres-
sion profiles of α-Syn and selective vulnerability of certain 
neuronal populations (Taguchi et al. 2019). Degeneration in 
PD shows a selective vulnerability of neurons located in the 
caudal and mediolateral region of SNc (area A9), which have 
an anatomical, physiological, and biochemical phenotype 
that predisposes them to α-Syn pathology and mitochondrial 
dysfunction (Surmeier et al. 2017; Surmeier 2018). Some of 

Table 2  Neuropathological staging of Lewy body disease

Kosaka LBD stage Braak 
PD 
stage

Anatomical distribution of Lewy bodies

Brainstem-predominent type 1 Medulla oblongata: dorsal IX/X motor nucleus, intermediate reticular zone; enteric and peripheral 
autonomic nervous system, spinal cord and anterior olfactory nucleus

2 Medulla oblongata and pontine tegmentum: stage 1 plus lesions in the caudal raphe nuclei, gigantocel-
lular reticular nucleus, and ceruleus-subceruleus complex; olfactory bulb

3 Midbrain: stage 2 plus midbrain lesions, pars compacta of the substantia nigra and basal forebrain
Transitional (limbic) type 4 Basal prosencephalon and mesocortex: stage 3 plus prosencephalic lesions. Cortical involvement con-

fined to temporal mesocortex (transentorhinal region) and allocortex (CA2)
Diffuse cortical type 5 Neocortex: stage 4 plus lesions in high order sensory association areas of the neocortex and prefrontal 

neocortex
6 Advanced neocortex: stage 5 plus lesions in first-order sensory association areas of the neocortex and 

premotor areas
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the factors which determine vulnerability to degeneration 
in synucleinopathies are best characterized in the DAergic 
SNc neurons that suffer from an enormous metabolic burden 
due to this architecture (long unmyelinated axons and large 
numbers of synapses),  Ca2+ handling capacity, and DA itself 
being potentially toxic (Post et al. 2018). These neurons con-
tain calbindin (CAB) and glycolytic enzymes, but are poor in 

DAT and arborize profusely in the striatum and extrastriatal 
components of the BG. NM lipid changes, upregulation of 
α-Syn, low intrinsic calcium buffering capacity, change in 
iron levels, long, poorly myelinated, highly branched axons, 
and various risk factors promote the susceptibility to selec-
tive death of these neurons due to disruption of nuclear 
membrane integrity (Giguere et al. 2018; Jiang et al. 2016; 

Table 3  Causes of 
Parkinsonism

CNS central nervous system, HIV human immunodeficiency virus, HH hereditary hemachromatosis, MPTP 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, PKAN pantothenate kinase-associated neurodegeneration

Common causes of neurodegenerative parkinsonism
 Idiopathic Parkinson’s disease (sporadic, familial)
 Multiple system atrophy
 Dementia with Lewy bodies
 Progressive supranuclear palsy (Steele-Richardson-Olszewski  syndrome)
 Genetic Parkinson’s disease (PINK1, PRKN, LRRK2)

Uncommon neurodegenerative causes of parkinsonism
 Vascular pseudoparkinsonism
 Corticobasal degeneration
 Alzheimer’s disease, Pick’s disease
 Frontotemporal lobe degeneration type 17
 Parkinson-dementia complex of Guam
 Metal storage disorder (Wilson’s disease; PKAN, HH, etc.)
 Neuroacanthocytosis
 Huntington’s disease, rigid type
 Spinocerebellar ataxia type 3
 Dentatorubral-pallidoluysian atrophy
 Lubag’s disease (X-linked dystonia-parkinsonism)
 Dopa-responsive dystonia
 Pallidal degenerations, pallidonigroluysian atrophy
 Neuronal inclusion body and neurofilament inclusion body disease
 TDP-43 Perry syndrome
 Guam Parkinson dementia syndrome

Secondary causes of parkinsonism (symptomatic forms)
 Vascular (pseudo-) parkinsonism (lacunar state, leukoaraiosis)
 Drug-induced parkinsonism (dopamine receptor blockers, neuroleptics)
 Toxin-induced disease (e.g., manganese, carbon monoxide, carbon disulfide, MPTP, rotenone)
 Infections and postinfectious diseases (influenza virus, HIV encephalopathy, Creutzfeldt-Jakob disease, 

neurosyphilis, Japanese B encephalitis, herpes encephalitis, paraneoplastic encephalitis)
 Anoxic brain injury

Inherited metabolic disorders:
 Lysosomal storage diseases: Gaucher dis., Niemann-Pick dis., GM1 gangliosidosis
 Disorders of metal metabolism: Wilson’s dis., hemachromatosis, PKAN
 Disorders of amino acid metabolism: phenylketonuria, maple syrup urine dis., methylmalonic aciduria
 Mitochondrial disorders

Other disorders:
 Normal pressure hydrocephalus
 Space-occupying lesions (frontal lobe tumor, CNS lymphomas)
 Posttraumatic parkinsonism (boxer’s encephalopathy, chronic traumatic encephalopathy)
 Basal ganglia calcification (Fahr’s syndrome, hypoparathyroidism)
 Brainstem tumors
 Brainstem lesions due to increased intracranial pressure
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Surmeier et al. 2017; Surmeier 2018). Calcium mediates 
the localization of α-Syn at the presynaptic terminal and an 
imbalance in calcium or α-Syn can cause synaptic vesicle 
clustering (Lautenschlager et al. 2018). Interaction between 
α-Syn, calcium ions and DA leads to imbalanced protein 
turnover of these neurons (Post et  al. 2018), that show 
increased iron (Sian-Hulsmann et al. 2011), but much more 
in microglia obviously originating from phagocytosis of Fe-
laden neurons (Horowitz and Greenamyre 2010). An inhibi-
tory effect of α-Syn on proteasomal activities can contrib-
ute to the selective vulnerability of DAergic neurons in PD 
(Zondler et al. 2017). Dysfunctional synaptic vesicle endo-
cytosis may contribute to selective vulnerability of DAergic 
midbrain neurons (Nguyen et al. 2019). Neurons in STN and 
GABAergic SNr, that are rich in calcium-binding proteins 
(calcineurin and parvalbumin), and glycolytic enzymes are 
either not affected or involved only in the terminal stages 
(Double et al. 2010). The confluence of disruption of the 
cellular metabolic state and α-Syn structural equilibrium, 
and anatomical connectivity as suggested factors to initi-
ate cascades of pathological processes triggered by genetic, 
environmental, or stochastic events was reviewed recently 
(Alegre-Abarrategui et al. 2019).

Lesion patterns in clinical subtypes of Parkinson’s 
disease

Pathological variability of PD contributes to its clinical 
heterogeneity of the disease. Two major clinical subtypes 
of PD show specific morphologic patterns of pathophysi-
ologic importance, with different involvements of striatal 
and cerebello-thalamo-cortical pathways (Figs. 2, 3). The 

two classical motor subtyping systems of PD poorly over-
lap, but their temporal instability undermines their prog-
nostic value in the early stage of PD (Erro et al. 2019).

Fig. 2  Schematic diagram of the basal ganglia-thalamocortical cir-
cuitry under normal conditions and in hypokinetic movement dis-
orders. The width of lines represents the relative change in activ-
ity versus normal. Disrupted lines represent altered patterns with 
an increase or decrease in neuronal activity; dashed arrow, reduced 
activity; solid arrow, increased activity. D1 and D2 dopamine 1 and 2 
receptor subtypes, DYS dystonia, GPe and GPi external and internal 

segment of the globus pallidus, IP/DP indirect/direct pathway, MSA 
multiple system atrophy; normal, normal conditions, PD Parkinson’s 
disease, PPN pedunculopontine nucleus, PSP progressive supranu-
clear palsy, SNc and SNr substantia nigra pars compacta and reticu-
lata, STN subthalamic nucleus, TH thalamus, VL and VM ventrolat-
eral and ventromedial thalamic nuclei. From (Jellinger 2016)

Fig. 3  Model of cerebral mechanisms underlying Parkinson’s disease 
resting tremor. It emerges from the ventral intermediate nucleus of 
the thalamus (VIM)–motor cortex (MC)–cerebellum (CBLM) circuit 
(in blue), when triggered by transient pathological signals from the 
basal ganglia motor loop (in red). In tremor-dominant PD, the basal 
ganglia globus pallidus internus, globus pallidus externus and puta-
men) has increased connectivity with the VIM–MC–CBLM circuit 
through the MC (thick red line), and the basal ganglia is activated at 
critical times in the tremor cycle (onset/offset of tremor episodes). 
These alterations may be caused by loss of dopaminergic projections 
from retrorubral area 8 in red to the GPi and GPe. These alterations 
are different from the dopaminergic denervation of the striatum asso-
ciated with bradykinesia and rigidity. DA dopamine, SNc substantia 
nigra pars compacta, StN subthalamic nucleus, Vop thalamic ventralis 
oralis posterior nucleus. Modified from (Helmich et al. 2011)
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In the akinetic-rigid type (about 50% of PD patients), the 
ventrolateral SNc projecting to dorsal Put degenerates more 
severely than the medial parts projecting to CN and anterior 
Put. Loss of TH- and DAT-reactive fibers and endings pro-
gressing from the dorsal to the ventral Put is associated with 
damage to the met-ENK and SP-rich AChE-poor striosomes 
projecting to the predominantly affected ventrolateral SNc, 
that correlates with DA loss in posterior Put and the severity 
of akinesia/rigidity (Bernheimer et al. 1973). DAergic dener-
vation causes loss of dendrites on type I MSNs, the principal 
targets of DAergic input from the SN, and decline of nigros-
triatal DA. DA modulation of glutamatergic synapses on the 
striato–pallidal GABA and striato–nigral pathways via het-
eroreceptor complexes (Borroto-Escuela et al. 2018) is due 
to the efficacy of inhibitory synaptic plasticity of these BG 
output nuclei (Milosevic et al. 2019). The beneficial effect of 
l-dopa on bradykinesia is associated with normalization of 
the striato–thalamo–cortical motor and STN–cortical motor 
pathways (Gao et al. 2017).

In early PD stages, overactivation of the BG as a com-
pensation of the DA deficit in the striatal motor circuit 
(Reetz et al. 2009) and decreased excitation of D1-bearing 
neurons lead to reduced activity of the “direct” pathway, 
whereas reduced inhibition of D2-bearing neurons results in 
decreased activity in striatopallidal GPe projections. In later 
stages, this filtering mechanism is deranged, and DA deple-
tion shifts the BG toward inhibiting movements by increased 
activity in the GABAegic “indirect” GPe–STN–GPi network 
and decreased activity in the “direct” cortico–Put–GPi cir-
cuit due to loss of D1 excitation (Calabresi et al. 2009). 
Excessive glutamatergic drive from GP/SNr leads to an aki-
netic–rigid syndrome through reduced cortical activation 
due to inhibition of thalamocortical and brainstem motor 
systems or due to loss of DA input to prefrontal or motor 
cortex (Fig. 2).

The tremor-dominant type (about 25% of PD patients) 
that shows a better prognosis and slower disease progres-
sion has less severe depletion of lateral SNc, but damage to 
the retrorubral A8 field, which is usually preserved in AR 
PD (Paulus and Jellinger 1991). It projects to the matrix of 
the dorsolateral striatum and VM thalamus, and influences 
striatal efflux via the SNc and thalamus-to-prefrontal cor-
tex (Fig. 3). Resting tremor severity is inversely correlated 
with raphe serotonin transporter availability which, together 
with Put DA depletion may contribute to it (Pasquini et al. 
2018). Resting tremor is associated with increased activity 
of the ventral intermediate (VIM) thalamus and dysfunc-
tion of cerebellar connections (Elias et al. 2008) and is 
produced by pathological interaction between BG and the 
cerebello–thalamo–cortical circuit in the presence of striato-
pallidal DAergic dysfunction (Dirkx et al. 2017; Helmich 
2018). Deficits in cerebellar function with decreased excit-
ability of the cerebello–thalamo–cortical pathway may 

generate postural tremor, indicating that resting and pos-
tural tremor in PD is mediated by different pathways (Ni 
et al. 2010).

Motor complications, dyskinesia, and freezing

α-Syn pathology in striatum, progressive loss of DAergic 
neurons and of TH- and DAT-reactive nigrostriatal fibers 
increase with progression of PD (Sorrentino et al. 2019), and 
are substrates for motor deficits and decreased efficacy of 
DAmimetic therapy in late stages of PD (Lane 2019). Preva-
lence of l-dopa-induced dyskinesia (LID) ranges from 3 to 
94% (Rosqvist et al. 2018; Tran et al. 2018). LID can also be 
present in MSA and PSP, although less frequently, and with 
varying clinical manifestation (Jost et al. 2019). Dysregula-
tion of striatal projecting neurons in advanced PD (Beck 
et al. 2018) and degeneration of striatal efferents with trans-
gression to non-DAergic systems cause loss of postsynaptic 
D2, and muscarinic cholinergic receptors in striatum and 
of N-methyl-d-aspartate (NMDA) receptors and glutamater-
gic synapses degenerate, favoring drug resistance and motor 
complications (Picconi et al. 2008). Impairment of synaptic 
plasticity of striatal MSNs contributes to the development 
of motor fluctuations and dyskinesias (Bagetta et al. 2010).

Hyperstimulation of DAergic receptors and impairment 
of synaptic plasticity of striatal MSNs causing excessive 
striato-cortical connectivity in response to l-dopa pro-
duce aberrant signals that trigger involuntary movements 
(Herz et al. 2015) and overreaction of the mesocortical 
and mesolimbic systems results in hyperdopaminergism 
(Voon et al. 2017) (Fig. 2). Presynaptic dysregulation of 
DA release after l-dopa, causing stimulation of striatal intra-
neurons (D1-MSNs), may trigger LIDs (Klietz et al. 2016; 
Mosharov et al. 2015; Perez et al. 2017). It has become 
evident that striatal interneurons are major determinants of 
network activity and behavior in PD and LID (Zhai et al. 
2019). Peak-dose dyskinesias are caused by the follow-
ing mechanisms: (1) marked fluctuation of DA concentra-
tions occur in synaptic clefts of striatal neurons after each 
l-dopa dose; (2) supersensitive cortico-striatal synapses of 
direct-pathway spiny neurons; (3) increased production of 
GABA in the spiny neurons and their axon terminals; (4) 
each l-dopa dose causes excessive release of GABA into 
the output nuclei of the BG, resulting in their abnormal fir-
ing (Tomiyama 2017); and (5) modifications in perisomatic 
GABAergic connectivity and neuronal activation of MSN, 
leading to an imbalance between excitation and inhibition in 
striatal activity (Gomez et al. 2019). Sprouting of DAergic 
terminals may contribute to increased DA release/turnover, 
and increased DA sensitivity of striatal cholinergig neurons, 
predisposes to motor complications (Bordia and Perez 2019; 
Perez et al. 2018). Pre- versus postsynaptic mechanisms, 
changes in DA receptor subtypes, glutamate receptors, 



948 K. A. Jellinger 

1 3

striatal spreading depolarization contributing to abnormal 
BG activity, and non-DAergic transmitter systems including 
serotonergic and cholinergic mechanisms are also related to 
LIDs (de Iure et al. 2019; Pagano et al. 2018; Politis et al. 
2014). Monoaminergic dysregulation in limbic domains 
(Engeln et al. 2015) and structures outside the CBGTC cir-
cuit, as well as cerebellar dysfunction of the PPN-GB sys-
tem, may also contribute to LID (Cenci et al. 2018; French 
and Muthusamy 2018). Since the PPN is densely connected 
with the BG and the brainstem dysfunctions of this system 
(Bohnen et al. 2019) or of cerebellar connections (Bhatia 
et al. 2018) lead to advanced symptomatic progression in 
PD (French and Muthusamy 2018). The recently described 
bidirectional connections between BG and cerebellum indi-
cate a key role of the cerebellum in the generation of LID. 
This model suggests that aberrant neuronal synchrony in 
PD with LID may propagate from the STN to the cerebel-
lum and “lock” the cerebellar cortex in a hyperactive state. 
The motor responses are worsened by the lack of normal 
subcortico-cortical inputs from cerebellum and BG due to 
of the aberrant plasticity at their own synapses (Kishore and 
Popa 2014). Animal models of LID in rats and mice with 
nigrostriatal 6-OHDA lesions treated with l-dopa developed 
involuntary movements with both hyperkinetic and dystonic 
components, which enabled insight into the mechanisms of 
LID (Cenci and Crossman 2018; Keber et al. 2015).

Freezing of gait (FOG), one of the most disabling motor 
symptoms in PD, reflects a combined motor and cognitive 
de-automatization deficit, which may be related to struc-
tural changes in the PPN network affecting prefrontal corti-
cal areas involved in executive inhibition function (Fling 
et al. 2013; Snijders et al. 2016), a functional decoupling 
between the cognitive cortical control network and the BG 
(Shine et al. 2013), or specific changes in the frontostriatal 
pathways rather than brainstem lesions (Hall et al. 2014), 
while others found correlations between the severity of FOG 
and the density of cortical LB-containing neurons (Virmani 
et al. 2015).

Pathology of cognitive impairment in Parkinson’s disease

Cognitive impairment (CI), which may precede the onset 
of dementia up to 10 years, was observed in 19–30% of 
untreated PD patients (Aarsland and Kurz 2010; Poletti et al. 
2012), mild cognitive impairment (MCI), often progressing 
to dementia in 21–62%, and a mean of 25.8% (Aarsland and 
Kurz 2010; Jellinger 2013b). The point cumulative preva-
lence of dementia in PD (48 and 78%), with a mean of 75% 
after more than 10 years, of 83% after 20 years (Hely et al. 
2008) is up to 95% by age 90 years (Rongve and Aarsland 
2013). PD dementia (PDD) has a prevalence of 31.3% (95% 
CI 20.1–42.1) and incidence rates from 42.6 to 112.5/1000 
person/years (Marder 2010), indicating that around 10% 

of a PD population develop dementia per year (Emre et al. 
2007). The pathological substrate of CI in PD is heterog-
enous, related to both LB and AD pathologies, multiple neu-
rotransmitter deficits, and changes in gray and white matter 
(Hall and Lewis 2019; Wilson et al. 2019). Neuropathol-
ogy of MCI in PD (PD-MCI) with brainstem–limbic, and 
rare neocortical LB lesions, amyloid but only rare neuritic 
plaques in cerebral cortex, mild cerebral amyloid angiopathy 
(CAA), and lacunar state in BG (Adler et al. 2010a; Jellinger 
2013b), or cortical or limbic predominant LB disease, but 
rare coexisting AD (Molano et al. 2010), is similar to that 
found in MCI cases without PD (Markesbery 2010; Petersen 
et al. 2006). Structural brain analyses found unilateral insula 
involvement in PDD-MCI extending to bilateral insula 
involvement in PDD indicating both increasing brain atrophy 
in PD with CI and suggesting the existence of sub-typing in 
PD-MCI (Mihaescu et al. 2018). In PD-MCI, cholinergic 
fiber depletion was evident, which was correlated with loss 
of neurons in hippocampal subfield CA2, whereas only PDD 
cases had significantly greater LP in CA2 (Liu et al. 2019a).

Cognitive deficits in early PD are associated with 
impaired striatal and extrastriatal DAergic function (Siepel 
et al. 2014), due to abnormal processing in the cortico–BG 
circuit with reduced prefrontal and parietal metabolism 
(Ekman et al. 2012) and dysfunction of the salience net-
works of the medial temporal lobe (Christopher et al. 2015). 
Dysfunction of subcortico–cortical networks is a result of 
neuronal loss in brainstem and limbic areas, cholinergic 
deficits in cortex, thalamus, and NBM, striatal DA loss, 
degeneration of the medial SN, and striatosubfrontal and 
mesocorticolimbic loops. Cortical cholinergic denervation 
and early posterior cortical atrophy contribute to CI in PD 
(Bohnen et al. 2015; Sampedro et al. 2019). Reduction of 
cholinergic markers is due to early degeneration of the cor-
ticopetal basal forebrain projection involving the NBM (70% 
loss of cholinergic neurons in PDD) (Liu et al. 2018; Ray 
et al. 2018; Schulz et al. 2018). Muscarinic acetylcholine 
receptors (mAChRs) are important in the regulation of the 
striatal network which may have implications in the motor 
and CI in PD (Ztaou and Amalric 2019). Galanin upregula-
tion in the NBM as a response to loss of cholinergic neu-
rons was higher in the transition between PD and PDD, but 
failed with increasing AD pathology, thus being uncommon 
in established AD and DLB (Alexandris et al. 2019). The 
noradrenergic LC, serotonergic DRN, and VTA are also 
involved (Del Tredici and Braak 2013; Espay et al. 2014; 
Halliday et al. 2014; Vermeiren and De Deyn 2017). Aβ 
pathology is not the primary driver of CI and dementia in PD 
(Melzer et al. 2019). A systemic review of autopsy studies of 
PDD was published recently (Smith et al. 2019).

PD patients without dementia may have AD pathol-
ogy largely restricted to the limbic system (Braak neuritic 
stages < 4), whereas in 10–50% of PDD cases, it was severe 
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enough to attain the diagnosis of definite AD (Hepp et al. 
2016). Neocortical or limbic LP was considered as the 
most significant correlate of dementia in PD (Horvath et al. 
2013b), while recent studies revealed increasing evidence of 
tau pathology in PD (Whitwell 2018; Zhang et al. 2018b). 
PD patients with AD co-pathology harbor greater neocorti-
cal α-Syn pathology, the latter contributing uniquely to the 
heterogeneity of CI diseases (Coughlin et al. 2018), while 
both cognitive and gait disturbances in PD show common 
underlying pathological mechanisms related to AD pathol-
ogy (Lim et al. 2018).

Molecular pathology of depression in Parkinson’s disease

Depression is a predominant non-motor symptom involving 
30–40% of PD patients (Reijnders et al. 2008). However, 
the neuropathology of this comorbitity is still unclear. Early 
neuropathological studies indicated a higher prevalence of 
lesions in depressed compared to non-depressed PD patients 
particularly in catecholaminergic brain areas (neuron loss 
in LC, DVN, and SNc), suggesting that depression in PD 
is related more to catecholaminergic than serotonergic sys-
tems (Frisina et al. 2009). Decreased DAT binding in the CN 
suggested that depressive symptoms in PD are associated 
with DA loss in this region related to degeneration of DAer-
gic projections from the VTA (Vriend et al. 2014). Later, 
imaging studies presented conflicting data about the role of 
serotonergic degeneration in depression in PD: while some 
studies suggested that abnormalities in serotonin 1A receptor 
neurotransmission in the limbic system may be involved in 
the neural mechanisms underlying depression in PD patients 
(Ballanger et al. 2012) and emphasized a prominent role of 
the serotonergic degeneration in apathy, anxiety, and depres-
sion in de novo PD (Maillet et al. 2016), others found no 
association between raphe serotonin transporter availabil-
ity and depression and other psychiatric symptoms in early 
drug-naive PD patients (Qamhawi et al. 2015). Other imag-
ing studies demonstrated widespread abnormalities within 
the limbic circuits notably the orbitofrontal and anterior 
cingulate cortices, amygdala, thalamus, and ventral stria-
tum involved in the pathophysiology of depression in PD 
(Thobois et al. 2017). Recent diffusion MRI connectom-
etry studies suggested that the prominent circuits involved 
in emotion and recognition (fornices, fronto–occipital fas-
ciculus, genu of corpus callosum, etc.) might be impaired in 
comorbid depressive symptoms in PD (Ansari et al. 2019). 
Other recent studies indicated that an abnormal mesocorti-
colimbic system may account for depressive symptoms in 
PD, suggesting that resting-state functional connectivity of 
midbrain DAergic nuclei might be useful for understanding 
the underlying pathology in PD with depression (Wei et al. 
2018), while others suggested impaired interhemispheric 
synchrony as underlying neural mechanism of depression in 

PD (Zhu et al. 2016). Another study showed significant neg-
ative association between depression scores in PD patients 
and qualitative anisotropy (QA) of left cingulum, genu and 
splenium of corpus callosum, and anterior and posterior 
limbs of the right internal capsule (Ghazi Sherbaf et al. 
2018). Others suggested a possible role of inflammation and 
neuromodulation as pathogenic mechanism of depression 
and cognitive impairment in PD (Pessoa Rocha et al. 2014). 
The inflammatory hypothesis states that depression in PD 
is caused by changes in the serotonergic systems induced 
by neuroinflammation (Santiago et al. 2016), whereas dis-
turbances in monoaminergic transmission and the hypo-
thalamic–pituitary–adrenal axis, increased oxidative and 
neuroinflammatory events, and impaired trophic transport 
may be implicated in the relationship between depression 
and neurodegeneration (Galts et al. 2019). Recent studies 
failed to verify the vascular depression hypothesis in PD 
(Ou et al. 2018).

Neuronal basis of drug‑induced psychoses in Parkinson’s 
disease

Psychotic symptoms in PD have a prevalence of 20–40% 
(Bizzarri et al. 2015) and are associated with high morbid-
ity and mortality (Samudra et al. 2016), but their patho-
genesis is unclear. Factors implicated include DAergic 
medications, neurotransmitter imbalances, neuroanatomic 
alterations, and genetic disposition (Ffytche et al. 2017). 
Other factors include LB deposition in the limbic system, 
cholinergic deficits and impairments of primary visual 
processing (Williams-Gray et al. 2006), or genetics (e.g., 
APOE ε4 allele and tau H1H1 genotype) (Zahodne and 
Fernandez 2008). Current theories on the pathophysiology 
of PD psychosis implicate pathways involving visual pro-
cessing and executive function, including temporo-limbic 
structures and neocortical gray matter with altered neuro-
transmitter functioning (Chang and Fox 2016), while others 
described degeneration of specific hippocampal subfields 
in PD patients with psychosis (Lenka et al. 2018). Unlike 
patients with PD psychosis who have dementia, those with-
out dementia have no higher LB load in amygdala and hip-
pocampus (Harding et al. 2002; Kalaitzakis et al. 2009a). 
Definite neuropathological findings for drug-induced psy-
choses in PD, to the best of our knowledge, are not available.

Genetics of Parkinson’s disease

Familial parkinsonism is rare (5–10%), but the importance 
of genetic factors is increasingly being recognized (Lill 
2016). The heritable estimate of PD is between 23 and 34% 
(Chang et al. 2017). A minority present a Mendelian form 
with autosomal-dominant (AutD), e.g., SNCA, LRRK2, 
and VPS35 genes accounting for 0.1–30% of PD, or with 
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autosomal-recessive (AutR) transmission, e.g., PARK2 (Par-
kin), PARK7 (DJ-1), or PINK1 genes, depending on fam-
ily history, age at onset, and population background (Trinh 
et al. 2018; Volta et al. 2015). Until to date, a total of 23 
loci and 19 causative genes have been associated with PD, 
although some of the PARK loc (PARK3, 10, 12, and 16) 
have not yet been identified (Del Rey et al. 2018). PD GWAS 
confirmed 10 candidate genes previously selected and nomi-
nated 17 novel candidate gens for sporadic PD (Ferrari et al. 
2018). PARK14 (D331Y) PLA2G6 mutation causes degen-
eration of SNc DAergic neurons by inducing mitochondrial 
dysfunction, elevated ER stress, mitophagy impairment, 
and transcriptional abnormality (Chiu et al. 2019). Seven 
novel candidate genes (VCAM1, BACH1, CALM3, EGR1, 
IKBKE, MYC, and YWHAG) may play important roles 
in PD pathogenesis (George et al. 2019). SNCA, the gene 
encoding α-Syn, is central to the pathogenesis of PD (Lubbe 
and Morris 2014; Singleton et al. 2013; Verstraeten et al. 
2015). It is associated with hereditary AutD forms, and vari-
ations of the SNCA gene are associated with increased risk 
for sporadic PD (Nussbaum 2018). In cases harboring SNCA 
missense mutations, several mechanisms could lead to a loss 
of functional mechanisms including haploinsufficiency and 
epigenetic silencing (Voutsinas et al. 2010). A recently iden-
tified SNCA mutation, p.Ala53Glu (A53E), enriches α-Syn 
oligomers and fibrils dependent on the phosphorylation state 
(Picillo et al. 2018). Families with SNCA multiplications are 
rare and globally distributed (Book et al. 2018). A system-
atic Movement Disorder Society (MDS) gene review identi-
fied common variants in SNCA, LRRK2, MAPT and GBA 
genes contributing to increased PD susceptibility (Lill 2016; 
Marras et al. 2017). SNCA, TMEM175, SCARB2, BAG3, 
and GBA have all been shown to be implicated in α-Syn 
aggregation pathways, while other established risk loci, 
such as GCH1 and MAPT, show no effect on age at onset 
of PD (Blauwendraat et al. 2019). Mutations of PARK2 
and LRRK2 cause early onset PD with AutR patterns of 
inheritance. The most common mutation of LRRK2, encod-
ing dardarin, on chromosome 12, a heterozygous G2019S 
mutation, accounts for approximately 3–10% of familial and 
1–8% of sporadic PD (Hernandez et al. 2005). LRRK2 lev-
els are negatively correlated with disease duration; LRRK2 
phosphorylation was reduced with clinical PD (Dzamko 
et al. 2017). Dysfunction or loss of LRRK2 decreased α-Syn 
aggregation and modifies α-Syn spread in mouse models 
and human neurons (Bieri et al. 2019), and may influence 
the accumulation of α-Syn and its pathology to alter cellular 
functions and signaling pathways (Rui et al. 2018). PRKN, 
PINK1 and DJ1 cases are associated with early onset PD 
with slow progression. Mutations in the PRKN gene (encod-
ing parkin) are the most common cause of AutR familial 
PD, representing up to 50% of all early-onset cases (Schulte 
and Gasser 2011). PD patients with PARKIN mutation 

show dystonia at onset and dose-sensitive LID, which is 
suggested to be caused by other mechanisms than the well-
established DA depletion. Since cortical and striatal neurons 
express PARKIN protein, which modulates the function of 
ionotropic glutamatergic receptors, PARKIN may have a 
potential role in controlling the glutamatergic corticostri-
atal synapse transmission. PARKIN transcript variants 3, 
7, and 11 were over-expressed in striatum and cerebellar 
cortex, together with synphilin-1A and 1C, suggesting that 
alterations in the regulation of transcription events that may 
be important for the increased aggregation of α-Syn (Brudek 
et al. 2016). Patients with PARK2 mutations show increase 
in the expression of catechol-O-methyltransferase (COMT) 
and a reduction in DNA methylation in DAergic neurons, 
which may contribute to the initial neuronal dysfunction in 
PD (Kuzumaki et al. 2019). Loss of PARKIN function can 
dysregulate transmission at these synapses where they cause 
maladaptive changes that co-occur with changes due to DA 
loss. This suggests an early striatal synaptopathy as the 
potential cause of early LID in PARKIN mutations (Sassone 
et al. 2019). PD cases with heterozygous variants in AutR 
genes suggest that monogenic and idiopathic PD may have 
shared pathogenic mechanisms (Reed et al. 2019). GBA is a 
major PD risk factor (Davis et al. 2016; Lunati et al. 2018). 
GBA mutations influence the age of disease onset, disease 
severity, motor phenotype, and are associated with a signifi-
cant risk of dementia (Seto-Salvia et al. 2012). Several α-Syn 
point mutations associated with familial PD prone to form 
oligomers tend to form fibrils to a lesser extent (Ruf et al. 
2019). In autopsy-proven PD, mutations of the GBA1 gene 
located on chromosome 1q21 which encodes glucocerebrosi-
dase (GCase) are the most common genetic factor (in 5–20% 
of PD cases) by interference with α-Syn homoeostasis path-
ways (Blandini et al. 2018; Mullin et al. 2019; Sidransky 
and Lopez 2012). GBA mutations induce α-Syn aggregation, 
lysosomal autophagy changes, and endoplasmic reticulum 
stress (Balestrino and Schapira 2018; Maor et al. 2019; 
O’Regan et al. 2017). GCase deficiency, most pronounced 
in SN, leads to mitochondrial dysfunction, decreased mac-
roautophagy, neuronal ubiquitinopathy and axonal lesions 
(Gegg and Schapira 2018), and may promote the spread of 
α-Syn aggregates (Bae et al. 2014; Thomas et al. 2019). 
The GBA1-substrate glucosylceramide (GluCer) can induce 
α-Syn aggregation via conversion of physiological α-Syn 
oligomeric forms into neurotoxic oligomers that are also 
able to seed amyloid fibril formations (Zunke et al. 2018). 
No consensus exists regarding the pathogenic mechanism 
of GBA PD (Mullin et al. 2019). However, the interrelation 
between GCase, glucosylsphingosine and α-Syn parameters 
supports the hypothesis that GCase acts as a modulator of 
PD-DLB (Gundner et al. 2019). Overlap between monogenic 
and sporadic PD genes is seen for SNCA and LRRK2 loci, 
LRRK2 and α-Syn showing interaction in PD brains and in 
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cell models (Daher 2017). Mutations of GCH1 that encodes 
guanosine triphosphate (GTP) cyclohydrolase 1, essential 
for DA synthesis in nigrostriatal cells, may lead to PD and 
Dopa-responsive dystonia (Rudakou et al. 2019; Yoshino 
et al. 2018). Different mutations in a single gene exhibit 
considerable clinical and neuropathologic variables both 
within and between kindreds. COQ2 variants, associated 
with familial MSA, rarely may associate with familial PD 
(Mikasa et al. 2018). Recent meta-analyses of GWAS data 
for target genes of brain microRNAs that have been impli-
cated in PD pathogenesis showed significant associations 
of genetic variants in nine loci (Schulz et al. 2019). PARK1 
overexpression was shown to promote PD-like phenotypes 
by direct phosphorylation of α-Syn at the serine 129 site, 
inducing DA neuron degeneration in PD (Su et al. 2019). PD 
risk loci do not lie in specific cell types or brain regions, but 
rather in global cellular processes detectable across several 
cell types (Reynolds et al. 2019). DJ-1 (PARK7) can induce 
activation of transcriptional factors and change redox bal-
ance that may protect neurons against α-Syn aggregation 
and oligomer-induced neurodegeneration (Dolgacheva et al. 
2019).

Neuropathology of genetic Parkinson’s disease

Neuropathological features of AutD SNCA (PARK/PARK4) 
are similar, with LP in all cases. AutR PARKIN (PARK2) 
mutations usually showed more severe neuronal loss in SNc 
than in LC, most without LP. Many individuals with A53T 
mutations (e.g., in the Contursi kindred) had α-Syn neuritic 
pathology, tau-positive neuritic inclusions, and some had 
both tau and α-Syn lesions (Kotzbauer et al. 2004; Marko-
poulou et al. 2008; Polymeropoulos et al. 1997). LRP10 
gene defects (at chromosome 14) are implicated in the devel-
opment of familial PD and DLB, some showing severe LP 
(Quadri et al. 2018; Sestini et al. 2019). Several forms of PD 
do not have LBs (Jiang and Dickson 2018). DJ1 (PARK7) 
AutR cases showed severe SNc and LC neuronal loss with 
diffuse LP (Taipa et al. 2016) and most GBA PD cases 
showed LP involving cortical areas (Schneider and Alcalay 
2017). LRP10 gene variants showed severe LP (Quadri et al. 
2018). PINK1 (PARK6) and PRKN mutations cause AutR 
early onset PD, with neuronal loss, no LP and inconsistent 
tau pathology (Schneider and Alcalay 2017). In rare muta-
tions in PLA2G6 (PARK14), cell loss in SN and LC with 
rare LBs were associated with spheroids and iron deposition 
in GP (Klein et al. 2016), DJ-1-associated pathology shows 
damage to SN and LC with diffuse LP (Taipa et al. 2016). 
TDP-43 pathology is rare in MAPT and SNCA gene muta-
tions (Schneider and Alcalay 2017).

LRRK2 mutations (PARK8), the most common cause of 
late-onset and AutD PD, are pathologically comparable to 
sporadic PD (Marras et al. 2016; Pont-Sunyer et al. 2017), 

with cell loss in SNc and LC but inconsistent LP (Taka-
nashi et al. 2018). LRRK2 is a complex multi-domain 
protein with kinase and GTPase enzymatic activity. It is 
associated with mitochondrial functions and autophagy 
(Gomez-Suaga et al. 2012). Mutations of α-Syn, LRRK2 
and tau that have been associated with familial and spo-
radic forms of PD show a complex interplay (Outeiro 
et al. 2019a) and a range of tau and TDP-43 pathologies. 
LRRK2 phosphorylates both tau epitopes and amyloid pre-
cursor protein (APP), promotes neurotoxiciy in PD and 
tauopathy (Bailey et al. 2013; Chen et al. 2017), suggest-
ing an overlap between both AD and PD. Neuropathology 
in familial PD due to A30P mutant α-Syn was identical 
to sporadic PD (Seidel et al. 2010). LP was described in 
heterozygous (R275W) mutations of the PARK2 gene 
(Ruffmann et al. 2012), and in a family with early-onset 
PD associated with a heterogenous PARKIN exon 3–4 
deletion (Sharp et al. 2014). The MAPT H1 haplotype 
is related to a higher burden of neocortical LP (Robakis 
et al. 2016). Other AutD forms pathologically resemble PD 
with neuronal loss in SN, with or without LBs and NFTs 
(Tomiyama et al. 2007). G51D SNCA mutations show-
ing neuronal α-Syn and oligodendroglial inclusions may 
represent a link between PD and MSA (Kiely et al. 2013). 
The APOE ε4 allele has been considered to be associated 
also with α-Syn and TDP-43 pathologies (Dickson et al. 
2018; Yang et al. 2018).

Kufor-Rakeb disease (KRS/PARK9), a rare AutR young 
onset disease, the result of mutations of the ATP13A2 gene 
on chromosome 1p (Park et al. 2015), shows parkinsonism, 
pyramidal tract signs, supranuclear gaze palsy, dystonic 
spasms, myoclonus, autonomic dysfunctions, dementia, and 
good response to l-dopa (Kruer 2013), while other KRS 
siblings manifested myoclonus and seizure (Rohani et al. 
2017). Postmortem studies are so far lacking. Sural nerve 
biopsy showed reduced myelin fiber density, axonal degener-
ation, and cytoplasmic inclusion bodies resembling primary 
lysosomes (Paisan-Ruiz et al. 2010); electron microscopy 
revealed dense lamellar deposits ca. 1 µm in size (Maland-
rini et al. 2013). A novel mutation was found in Ashkenazi 
cases (Inzelberg et al. 2018).

Perry’s syndrome, a rare combination of AutD parkin-
sonism, depression, hypoventilation, and weight loss, is an 
early-onset, rapidly progressing disease with neuronal loss 
in SN without LBs and involvement of putative respiratory 
neurons in ventral medulla caused by mutations in dynactin 
p150(Glued) (DCTN1) (Konno et al. 2017; Mishima et al. 
2017, 2018). TDP-43-positive, pleomorphic neuronal inclu-
sions, dystrophic neurites, and axonal spheroids were seen 
in pallidonigral distribution. TDP-43 was neurochemically 
similar to that found in FTLD-U indicating that Perry’s 
syndrome is a unique pallidonigral TDP-43 proteinopathy 
(Mishima et al. 2017; Wider et al. 2009). Three families 
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from distinct parts of the world have been reported (Tacik 
et al. 2014).

Dementia with Lewy bodies

DLB, accounting for 4.6–10.1% of all dementia cases 
(Arnaoutoglou et al. 2019; Kane et al. 2018), has an inci-
dence of 3.5/100,000 person/year (Savica et al. 2013b), 
although it is widely underdiagnosed. A recent meta-anal-
ysis reported a pooled sensitivity, specificity, and accuracy 
of 60.2% (95% CI 30.9–83.7%), 93.8% (83.8–97.6%), and 
79.7% (62.6–90.7%) for the diagnostic criteria of DLB, 
while about 20% of DLB diagnosis are incorrect (Rizzo 
et al. 2018; Skogseth et al. 2017). Diagnostic accuracy of 
DAergic imaging in prodromal DLB has a specificity of 
89%, but a sensitivity of 61% (Thomas et al. 2019), while 
occipital hypometabolism has 91% sensitivity and 80% 
specificity (Hamed et al. 2018). 18FFDG-PET hypometab-
olism in temporo-parietal and occipital cortex was highly 
consistent across DLB cases (Caminiti et al. 2019). Clinical 
features of DLB are spontaneous parkinsonism, recurrent 
visual hallucinations, fluctuating cognition, RBD, sensitivity 
to antipsychotic medication, and reduction in striatal DAT 
(Donaghy and McKeith 2014; Sanford 2018). According to 
international consensus, DLB is diagnosed when CI pre-
cedes parkinsonism, or begins within 1 year of parkinson-
ism; PDD when parkinsonian symptoms precede CI by more 
than 1 year (McKeith et al. 2005). Revised criteria for the 
clinical dagnosis of probable and possible DLB have been 
reviewed recently (Cousins et al. 2019; Outeiro et al. 2019b; 
Yousaf et al. 2019), as well as imaging in prodromal DLB 
(Durcan et al. 2019; Lin and Truong 2019). Complex visual 
hallucinations are the only symptoms which helped identifi-
cation of DLB in the context of a mixed AD + DLB dementia 
(Thomas et al. 2018).

Genetics of Lewy body disease

Our present understanding of the genetic etiology of DLB is 
limited, although a few families with AutD inheritance and 
mutations in SNCA and SNCB have been reported (Nervi 
et al. 2011). The heritable component of DLB was estimated 
at about 36% (Guerreiro et al. 2018). GBA and APOE ε4 are 
the most prevalent risk factors for sporadic DLB (Vergouw 
et al. 2017) and PDD (Brockmann et al. 2015; Sun et al. 
2019). PSEN1 and APP are also common (Geiger et al. 
2016). GBA mutations are associated with cortical LBs but 
not with AD pathology (Geiger et al. 2016). The fact that 
many members of kindreds with mutations in the SNCA 
gene show some features of DLB, and the frequent occur-
rence of LBs in familial and sporadic AD, suggested an 
overlap in their genetic factors, which was not confirmed 
by GWAS metaanalyses (Moskvina et al. 2013; Orme et al. 

2018). MAPT H1 haplotype is associated with enhanced 
α-Syn deposition, suggesting a genetic association between 
MAPT haplotype and synucleinopathies (Colom-Cadena 
et al. 2013b), confirmed by recent GWAS (Outeiro et al. 
2019b). Another GWAS reported a wide variety of copy 
number variations in a large DLB cohort (Kun-Rodrigues 
et al. 2019). LRP10 (encoding the LDC receptor related 
protein 10) is a novel disease gene bridging PD and DLB 
(Quadri et al. 2018). Today, only three genes have been con-
vincingly established to be involved in DLB: APOE, GBA, 
and SNCA (Orme et al. 2018).

Neuropathology of dementia with Lewy bodies

The DLB brain is macroscopically similar to that in PD. 
Unlike AD, it shows relative preservation of the medial 
temporal lobe (hippocampus) (Oppedal et al. 2019). The 
histologic hallmarks are α-Syn/Lewy pathology or a vari-
able mixture of Lewy and AD pathologies, with three main 
patterns: (1) widespread LBs associated with cortical diffuse 
Aβ plaques and low neuritic Braak stages, (2) widespread 
LBs with neuropathological halmarks of AD, fulfilling the 
criteria for both diagnoses (mixed AD/DLB), and (3) “pure” 
LB disease involving widespread cortical areas without sig-
nificant AD pathology (Irwin and Hurtig 2018). LB density 
is assessed semiquantitatively, using α-Syn immunohisto-
chemistry, in five cortical regions. According to the den-
sity and distribution of LBs, patients are allocated to the 
brainstem-predominant (PD), limbic (or transitional) type, 
LBs relatively being restricted to limbic structures, and neo-
cortical type with widespread cortical LBs (Fujishiro et al. 
2008a; McKeith 2007). The pattern of LP in brainstem is 
similar to that of PD (Seidel et al. 2015), but the majority of 
DLB cases have advanced LB stages. Clinical features are 
related to the extent of LP and negatively to the severity of 
tau pathology (Ruffmann et al. 2016; Tiraboschi et al. 2015). 
Correlates of attentional dysfunction and visual hallucina-
tions are impairment of orbitofrontal, anterior cingulate cor-
tex and secondary visual areas (Heitz et al. 2015), neuronal 
loss and α-Syn pathology in the superior colliculus (Erskine 
et al. 2017), less in the pulvinar, which, however, showed 
decreased protein levels and astrogliosis associated with syn-
aptic changes (Erskine et al. 2018). The striatum exhibits a 
variable reduction (more than in AD, less than in PD) in TH 
immunoreactivity, loss of DA markers, reflecting loss of SN 
neurons and low striatal DAT in DLB compared to AD. Cho-
linergic denervation is a result of neuronal loss in NBM and 
cholinergic basal forebrain (Alexandris et al. 2019; Nejad-
Davarani et al. 2019). The insular cortex shows severe α-Syn 
involvement with sparing of insular TH neurons (Fathy et al. 
2019). Recent studies showed upregulation of β-synuclein 
(βSyn) within the frontal cortex and its decrease in occipital 
cortex of DLB patients, while βSyn-containing neurons were 
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consistently devoid of oligomeric α-Syn in frontal cortex. 
There was no overall correlation between total βSyn and 
5G4 levels (marker of oligomeric α-Syn). The autophagy 
markers LC3-II and p62 were increased in the areas of βSyn 
upregulation, which suggests that βSyn changes in DLB may 
exacerbate neuronal dysfunction caused by accumulation 
of α-Syn due to influencing protein degradation pathways 
(Evans et al. 2018).

LP levels were highest in the hippocampal CA2 subre-
gion and entorhinal cortex, while correlation with memory 
performance was strongest with CA1 burden. This suggests 
that LP must reach a critical burden across hippocampal 
circuitry to contribute to memory dysfunction (Adamowicz 
et al. 2017). Phosphorylated α-Syn at the presynaptic ter-
minals in the form of small aggregates may disrupt struc-
ture and function of synapses (Colom-Cadena et al. 2017b; 
Schulz-Schaeffer 2010). Levels of insoluble pS129-α-Syn 
are elevated in DLB, whereas increased levels of aqueous-
soluble o-α-Syn and detergent-soluble pS129-α-Syn are 
observed in PD and AD, suggesting different changes across 
the spectrum of proteinopathies (Vaikath et al. 2018).

All brains in sporadic DLB cases showed important 
deposits of tau, Aβ and α-Syn that are similar in biochemi-
cal quality to those in AD, with less severe tau pathology 
in DLB and DLB + AD than in “pure” AD (Colom-Cadena 
et al. 2013a; Deramecourt et al. 2006). Aβ deposition in 
DLB was associated with more severe hippocampus and 
subiculum atrophy, reflecting an early process of super-
imposed AD pathology (Mak et al. 2019). Over 50% of 
all DLB cases have considerable AD pathology, which is 
associated with a shorter interval between onset of motor 
symptoms and development of dementia, and a shorter 
live span (Irwin and Hurtig 2018). They are classified as 
AD/DLB or LB variant of AD (LBV/AD) (Hansen et al. 
1998). They should be distinguished from cases with more 
prominent AD pathology and LP limited to the amygdala 
referred to as AD with amygdala LBs, considered as a dis-
tinct form of α-synucleinopathy (Fujishiro et al. 2008b; 
Uchikado et al. 2006b). “Pure” DLB cases with diffuse Aβ 
plaques but few neuritic elements or only minimal cerebral 
Aβ deposition show no significant differences in neocorti-
cal synapse density and synaptophysin reactivity, whereas 
AD/DLB has severe synapse protein loss comparable to AD 
(Colom-Cadena et al. 2017b). Downregulation of the post-
synaptic proteins synaptopodin (SYNPO) and neurogranin 
indicates defective neurotransmission as a major factor for 
CI (Bereczki et al. 2016) that is strongly correlated with the 
DLB hypometabolism pattern (Morbelli et al. 2019). Recent 
imaging studies suggested a loss of dynamic interactions 
between the BG-thalamic and large scale cortical networks, 
which may contribute to fluctuations of cognition in DLB 
(Schumacher et al. 2019). α-Syn is an important predictor 
of disease duration, both independently and synergistically 

with tau and Aβ (Ferman et al. 2018), but concomitant LP 
and AD involving widespread association cortices contrib-
ute to visouspatial dysfunction (Kang et al. 2019). Rapidly 
progressing DLB cases, clinically resembling Creutzfeldt-
Jakob disease, showed higher neocortical α-Syn and Aβ load 
than those with low or no AD pathology (Geut et al. 2019). 
CAA in DLB is less severe than in AD, with frontal pre-
dominance of cortical microbleeds (De Reuck et al. 2018). 
Cerebrovascular lesions were lower in DLB than in PD (34.4 
vs. 36.7%) (Jellinger 2003). TDP-43 deposition is common 
in DLB (23.3%) and mixed AD/DLB (52.6%) (McAleese 
et al. 2017). Grey matter aging-related tau astrogliopathy 
(ARTAG) has been reported in 36% of LBD (Kovacs et al. 
2017).

Dementia with Lewy bodies versus Parkinson’s disease 
dementia

According to DSM-5, DLB and PDD are major neurocog-
nitive disorders with LP sharing many clinical, genetic, 
pathophysiological, and morphological features (Ameri-
can P, Association, Force D-T 2013; McKeith et al. 2017). 
A clear and objective distinction between the two entities 
other than the arbitrary timing of the appearance of cogni-
tive and motor impairments (1-year rule) has not yet been 
established (Beach et al. 2009), while others merged the 
two entities (Berg et al. 2014) or considered them as one 
disease (Friedman 2018). The clinical features of both phe-
notypes, DLB (McKeith et al. 2017; Outeiro et al. 2019b) 
and PDD (Dubois et al. 2007; Emre et al. 2007; Goetz et al. 
2008)], despite individual variability, show both overlap-
ping and distinguishing features (Armstrong 2019; Elder 
et al. 2017; Gomperts 2016; Jellinger and Korczyn 2018; 
Joki et al. 2018). The latter are that DLB has less severe 
parkinsonism, and more profound cognitive deficits with 
higher frequency of visual hallucinations. Moreover, DLB 
has a unique genetic risk profile in comparison to PD and 
PDD (Guerreiro et al. 2018; Hansen et al. 2019). The way in 
which SNCA SNPs modulate risk is complex, and different 
patterns in PD and DLB show that the effect of each asso-
ciation signal is phenotype-specific: the strongest signal in 
PD is absent in DLB, while the second signal is significant 
in both (Pihlstrom et al. 2018). Morphology, molecular iso-
forms, histochemistry of LBs and the spreading pattern of 
α-Syn pathology do not significantly differ between both, the 
late LP stages 5 and 6 suggesting a transition between both 
phenotypes, although DLB has a higher density of cortical 
LBs and AD lesions than PDD (Hansen et al. 2019; McKeith 
et al. 2017).

Morphological differences include higher amyloid load 
in striatum (Halliday et al. 2011; Jellinger and Attems 
2006; Kalaitzakis et al. 2011), in cortex (Fujishiro et al. 
2010; Jellinger and Attems 2008; Ruffmann et al. 2016; 
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Walker et  al. 2015), entorhinal cortex, amygdala, and 
putamen in DLB (Hepp et al. 2016), the GP being free 
of amyloid plaques. Moreover Aβ phases, neuritic plaque 
scores and CAA severity and frequency are higher in DLB 
compared to PDD (Halliday et al. 2011; Hepp et al. 2016; 
Ruffmann et al. 2016; Walker et al. 2015), indicating a 
hierarchy in both Aβ and tau burden (Bohnen et al. 2017; 
Kalaitzakis and Pearce 2009; Kalaitzakis et al. 2009b). 
More severe α-Syn load in hippocampal subareas CA 2/3 
and in the entorhinal cortex (EC), implicated a role of the 
EC-CA 2 circuitry in DLB (Adamowicz et al. 2017). Other 
deviations are the severity and distribution pattern of SNc 
lesions (more severe in the ventrolateral cell groups in 
PDD (Dickson et al. 2009) compared to more severe dam-
age in the dorsolateral SN in DLB). Less nigral neuronal 
loss causing less severe postsynaptic DAergic upregula-
tion (Jellinger 2006) may be related to the risk for neu-
roleptic sensibility reaction in DLB. Significantly higher 
5-HT1A receptor-binding density in cortex was seen in 
DLB compared to PDD (Francis and Perry 2007). Thus, 
DLB and PDD are likely to represent two subtypes of an 
α-Syn-associated disease spectrum (LBD), beginning with 
iLBD → PD-nondemented →  PDD → DLB → DLB with 
AD (DLB-AD) at the most severe end, although DLB does 
not begin with PD and does not always progress to DLB-
AD (Jellinger 2018b; Jellinger and Korczyn 2018). The 
pathology underlying PDD and DLB is heterogeneous, 
with some differences in the topography and severity of 
lesions between both phenotypes that need further confir-
mation. An overlap between FTP and DLB was discussed 
recently (Gallucci et al. 2019).

Pathogenetic implications

The etiopathogenesis of PD (and other LB diseases) is 
poorly understood, but the majority is suggested to result 
from complex interactions between genetic background and 
environmental factors (Gasser et al. 2011), multiple etiolo-
gies being more likely than a single factor (Fig. 4). Genetic 
susceptibility, e.g., related to mutations in mitochondria-
related genes (PARKIN, PINK1) in early onset PD, may be 
determined through impaired metabolism of free radicals or 
complex I activity, which, in turn, may be the product of 
nuclear or mitochondrial genomic deficits (Mullin and Scha-
pira 2013). α-Syn undergoes post-translational modifications 
that regulate its structure and function, and may be linked to 
aggregation and/or oligomer formation (Gonzalez et al. 
2019). DA modified α-Syn aggregation results in unique 
DA-induced oligomeric conformations (Mor et al. 2019). 
α-Syn oligomers induce selective oxidation of the ATP syn-
thase β subunit and mitochondrial lipid peroxidation. These 
events open the permeability transmission pore (PTP), trig-
gering mitochondrial swelling and ultimately cell death 
(Ludtmann et al. 2018). Environmental interactions include 
exogenous compounds with uptake and conversion similar 
to MPTP, cyanide, 1-trichloromethyl-1,2,3,4-tetrahy-
dro-beta-carboline (TaClo) (Bringmann et  al. 1995), or 
endogenously generated neurotoxins, such as rotenone or 
tetraisoquinoline, which affect mitochondrial function, pro-
duce reactive oxidative species (ROS) (Jiang and Dickson 
2018) and cause disruption of calcium homeostasis (Free-
stone et al. 2009). The neurodegenerative process in PD is 
thought to be related to a complex cascade of noxious factors 
(Fig. 4) (Lim and Zhang 2013): imbalanced proteostasis (in 

Fig. 4  Etiology of PD. Sporadic 
PD is a complex multifactorial 
disorder with variable contribu-
tion of environmental factors 
and genetic susceptibility. 
Mutations of various genes are 
associated with autosomal-dom-
inant or autosomal-recessive 
parkinsonism. PARK 16–18: 
inheritance unknown. From 
(Jellinger 2012a)

• Parkin (PARK2)
• PINK1 (PARK6)
• DJ-1 (PARK7)
• ATP13A2 (PARK9)
• PARK5 (UCHL1)
• PRKN (PARK2)
• PLA2G6 (PARK14)
• FBX07 (PARK15)

• α-Syn. (PARK1/4)
• LRRK2 (PARK8)
• PARK3
• GBA
• UCHL1 (PARK5)
• Omi/HtrA2 (PARK13)

• LRRKs
• α-Syn. (SNCA)
• Tau (MAP)

• MPTP
• Rotenone
• Paraquat
• Others

Parkinson‘s disease

Autosomal
recessive

Mutations
in gene encoding

Autosomal
dominant

Mutations
in gene encoding

FamilialSporadic

Genetic
factors

Polymorphisms
in gene encoding

Environmental
factors

Toxins



955Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update—…

1 3

particular misfolded α-Syn and its oligomers) (Lehtonen 
et al. 2019), perturbation of protein degradation systems 
(Maiti et al. 2017), endolysosomal dysfunctions (Kett and 
Dauer 2016; Klein and Mazzulli 2018), formation of free 
radicals, oxidative, nitritive, and proteolytic stress (Janda 
et al. 2012), production of ROS and advanced glycation 
products (Guerrero et al. 2013; Munch et al. 2000). There is 
compelling evidence that the endocytic membrane traffick-
ing pathway plays a relevant role in the etiology of PD (Ban-
dres-Ciga et al. 2019). Mitochondrial dysfunction (Aroso 
et al. 2016; Chen et al. 2019a; Rocha et al. 2018; Wang et al. 
2019; Zaltieri et al. 2015b), impaired bioenergetics (Mullin 
and Schapira 2013), lipid peroxidation, nuclear RNA defi-
cits, protein-iron and NM-iron interactions (Sian-Hulsmann 
et al. 2011; Zucca et al. 2017), cause iron-related nigral 
degeneration (Guan et al. 2019; Sun et al. 2018), and fer-
roptosis dysregulation inducing cell death (Van Do et al. 
2016; Guiney et al. 2017). There is evidence for the exist-
ence of a connection between familial mutations of α-Syn, 
their distinct affinity to lipid membranes and the formation 
of toxic oligomers of the protein mediated by 3,4-dihydroxy-
phenylacetaldehyde (DOPAL) (Lima et al. 2019). A number 
of genetic risk factors of PD, such as PLA2G6 and SCARB2, 
which are involved in glycerophospholipid and sphingolipid 
metabolism either directly or indirectly are associated with 
risk of PD (Alecu and Bennett 2019). ROS-mediated trans-
port impairment occurs early and induces axonal degenera-
tion (Lu et al. 2014), while mitochondrial dysfunction is a 
common downstream pathogenic mechanism for α-Syn 
aggregation (Wang et al. 2019) (Fig. 5). Recent studies 

showed that α-Syn induces a selective loss of the mitochon-
drial protease ClpP in DA neurons of both α-Syn A53T tg 
mice and PD patients, which results in an overload of mito-
chondrial unfolded proteins and increased oxidative damage. 
Compensation for the loss of ClpP reduced mitochondrial 
oxidative damage and α-Syn-associated neuropathology. 
These findings revealed a novel mechanism by which α-Syn 
induces mitochondrial damage to proceed PD-associated 
neurodegeneration (Hu et al. 2019). Further mechanisms 
include transcriptional α-Syn dysregulation (Pinho et al. 
2019), defects in intracellular transport pathways (Abelio-
vich and Gitler 2016), autophagy at presynaptic terminals 
(Pan et al. 2019), cell membrane disruptions (Iyer and Claes-
sens 2019), disturbed proteasis processes (Zhou et al. 2019), 
excitotoxicity, neuroinflammation by activation of microglia 
and production of proinflammatory cytokines (Ferreira and 
Romero-Ramos 2018; Hirsch et al. 2013; Lema Tomé et al. 
2013; Zhang et al. 2018a) and interactions between several 
noxious factors. Degradation of α-Syn by both UPS and 
ALP, and the fact that mutated α-Syn inhibits these path-
ways, support its role as an essential trigger for neurodegen-
eration (Pan et al. 2008; Puska et al. 2018). Poly(ADP-
ribose) accelerates the formation of pathologic α-Syn (Kam 
et al. 2018), which may contribute to OS inducing microglial 
activation and antioxidant responses, that could modulate 
progression of PD (Scudamore and Ciossek 2018) (Fig. 6). 
Microglia is suggested to play a crucial role in α-Syn trans-
mission via exosome pathways (Xia et al. 2019). Exosomes 
seem to be a common pathway in the microglia-mediated 
clearance of toxic aggregated proteins, e.g., Aβ and α-Syn 

Fig. 5  Common pathways 
underlying PD pathogenesis. 
Schematic impairment by 
α-synuclein and gene muta-
tions enhancing α-synuclein 
misfolding, fibril formation an 
Golgi fractionation; impairing 
proteasome and mitochondrial 
functions, altering vesicle traffic 
and translation. From (Jellinger 
2012a)
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(Paolicelli et al. 2019), which can be affected by lysosomal 
deficits (Tremblay et  al. 2019). In DAergic neurons, 
increased calcium conductance and greater production of 
ROS lead to mitochondrial damage. The burden caused by 
mitochondrial dysfunction will reach a pathological thresh-
old, provoking neuronal dysfunction and death (Callizot 
et al. 2019). Disruption of the ceramide metabolism may 
affect endolysosomal and mitochondrial dysfunctions that 
are important in PD/parkinsonism (Lin et al. 2019). Lower-
ing PARKIN levels by extracellular α-Syn oligomers may 
contribute to the propagation of neurodegeneration in PD 
(Wilkaniec et al. 2019). The major components inducing 
neuronal loss in PD are: (1) presynaptic and/or axonal α-Syn 
aggregation, synaptic and axon degeneration (2) mitochon-
drial dysfunction, (3) environmental OS, (4) neuroinflam-
mation and interaction with other noxious factors (Jellinger 
2013a; Kouli et al. 2018). Given that a sequence of molecu-
lar mechanisms including OS, apoptosis, neuroinflamma-
tion, microglia and astrocyte activation and aquaporin 4 
(AQP4) are associated with progression of PD (Tamtaji et al. 
2019), the role of chemokines in the pathogenesis of PD is 
of interest, since they may induce microglia activation and 
apoptosis (Liu et al. 2019b). Microglia activation may con-
tribute to the development of α-Syn pathology, supporting 

the concept that microglia play an integral role in the propa-
gation and spread of α-Syn pathology (Olanow et al. 2019). 
Several rodent models of PD showed impairment of major 
cellular functions (mitochondrial phosphorylation, 
autophagy-lysosomal changes, protein degradation, and 
endoplasmic reticulum stress/unfolded protein response) 
(Jiang and Dickson 2018). Complex cell interactions may 
induce “prion-like” spreading of α-Syn (Braak and Del 
Tredici 2017; Duyckaerts et al. 2019; Longhena et al.2017). 
Postmortem observation of α-Syn pathology within cell 
grafts in the striata of PD patients suggested that the spread 
of α-Syn as a main mechanism underlying disease progres-
sion in PD (Angot et al. 2012; Lema Tomé et al. 2013). The 
three antibodies aSyn-323.1, aSyn-336.1 and aSyn-338.1 
that have the highest affinity to recombinant full-length 
α-Syn were able to neutralize the “seeding” of intracellular 
α-Syn aggregates in an in vitro assay (Li et al. 2019). α-Syn 
aggregates form sequence-dependent polymorphic fibrils 
upon spontaneous aggregation but become seed structure-
dependent upon seeding (Tanaka et al. 2019). Transcellular 
spreading may be responsible for the propagation of neuro-
degeneration (Brundin et al. 2010; Davis et al. 2018; Freundt 
et al. 2012; Iljina et al. 2016; Henderson et al. 2019). Mis-
folded forms of α-Syn and tau can propagate from cell to cell 

Fig. 6  Major pathways 
underlying Parkinson’s 
disease pathogenesis related 
to α-synuclein and dopamine 
metabolism include proteolytic 
and mitochondrial dysfunction, 
oxidative/nitrosative stress, 
resulting in protein aggregation 
and reduced energy biosynthesis 
leading to neuronal degenera-
tion. Modified from (Tsang and 
Chung 2009)



957Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update—…

1 3

and throughout the brain, thereby templating the misfolding 
of native forms of the proteins (Vasili et al. 2019). 14-3-3 
proteins reduce cell-to-cell transfer and propagation of path-
ogenic α-Syn (Wang et al. 2018), whereas ‘aggravators’ may 
induce impaired autophagy and cell-to-cell propagation of 
α-Syn pathology (Johnson et al. 2019). Rab-GTPase proteins 
have a fundamental role in the modulation of α-Syn and 
spreading in PD (Masaracchia et al. 2018). Recent studies 
provided evidence that the gap junction protein connexin-32 
(Cx32) is centrally involved in the uptake and transfer of 
α-Syn oligomers in neurons and oligodendrocytes. Cx32 
levels were significantly decreased in SN of PD and MSA, 
indicating a potential relationship between human α-Syn and 
Cx32 in the pathogenesis of both disorders (Reyes et al. 
2019). Exocytosis can induce spreading (Emmanouilidou 
and Vekrellis 2016) and cell-to-cell seeding that explains the 
formation of LBs and LNs and their wide distribution (Kar-
powicz et al. 2019). The endocytosis of pathological α-Syn 
required to facilitate its transmission through synaptically 
connected neuronal networks has recently be reviewed (Val-
dinocci et al. 2018). However, recent findings indicate that 
cellular prion protein PrPC neither binds α-Syn oligomers 
nor mediates their detrimental actions, suggesting that other 
pathways may co-exist in PD (La Vitola et al. 2019), whereas 
the binding between  PrPC and α-Syn fibrils prevents the for-
mation and accumulation of  PrPSc (De Cecco and Legname 
2018). Hence, the prion hypothesis of human synucleinopa-
thies has to be reconsidered (Gelpi and Colom-Cadena 2019; 
Masaracchia et al. 2018; Tamguney and Korczyn 2018), and 
there is no evidence that proteins underlying PD (or AD) 
transmit disease to humans (Irwin et al. 2013a).  

Multiple system atrophy

This adult-onset, progressive α-synucleinopathy of pre-
sumed sporadic origin, is morphologically characerized 
by prominent α-Syn inclusions with neuronal multisystem 
degeneration (Jellinger 2018b). It is clinically characterized 
by autonomic failure and motor impairment with poorly 
l-dopa-responsive parkinsonism, cerebellar ataxia, tremor, 
and corticospinal tract dysfunction (Krismer and Wenning 
2017). MSA is an orphan disease (prevalence 1.9–4.9 up to 
7.8/100,000, incidence 0.6–0.7/100,000 person-years (Fan-
ciulli and Wenning 2015).

Clinical features of multiple system atrophy

Diagnostic criteria recommend classification into two sub-
types: MSA-P (predominant parkinsonism, 70–80% in the 
Western world) and MSA-C (cerebellar features associated 
with olivopontocerebellar atrophy/OPCA/, 20–67%), more 
frequent in Asian populations (67–84%), with rather fre-
quent mixed phenotypes (Ozawa and Onodera 2017; Yabe 

et al. 2006). Red flag categories—characteristic symptoms 
including inspiratory stridor, pyramidal signs, postural insta-
bility—had a specificity of 98.3% and sensitivity of 84.2% 
(Köllensperger et al. 2008). Revised criteria differentiate 
possible, probable, and definite MSA, the latter confirmed 
by postmortem examination (Gilman et al. 2008). The accu-
racy of clinical diagnosis of MSA with a positive predictive 
value even in later stages from 60 to 90% is still unsatisfac-
tory (Joutsa et al. 2014; Koga et al. 2015; Osaki et al. 2009), 
but the true rate of over- or under-diagnosis is not known. 
Autonomic dysfunction (urogenital dysfunction, orthos-
tatic hypotension) is common in both variants and reflects 
degeneration of the central and peripheral autonomic path-
ways (Ozawa 2007). Motor symptom onset is 56 ± 9 years 
but 40–75% of MSA cases have a prodromal phase with 
non-motor and autonomic symptoms (Fanciulli and Wen-
ning 2015). Akinesia and rigidity are prominent in MSA-P 
but also occur in later stages of MSA-C. Tremor is not rare 
(Kaindlstorfer et al. 2013). Parkinsonian features are more 
severe in the MSA-STR group showing DAergic dysfunction 
than in the MSA-SNc group with predominant pre-synaptic 
tracer uptake loss in the posterior putamen (Ryu et al. 2019). 
The goal of a recently established MDS MSA Criteria Revi-
sion Task Force is to define principles for a revision of the 
second consensus criteria for an MSA diagnosis (Stankovic 
et al. 2019).

Subtypes of multiple system atrophy

MSA diversities are broader than previously considered 
(Koga and Dickson 2018). Various disorders may mimick 
MSA (Krismer and Wenning 2017), e.g. PD and PSP (Koga 
and Dickson 2018); MSA-C may resemble spinocerebellar 
ataxias (Li et al. 2018). A wide range of subtypes does not fit 
into the current classifications of MSA (Koga and Dickson 
2018; Watanabe et al. 2016): “Minimal-change” MSA-P is 
a rare aggressive form with CGIs and neurodegeneration 
restricted to SN and Put (“pure SND”) (Berciano et al. 2002; 
Ling et al. 2015; Wenning et al. 1994), while a case of “mini-
mal” MSA-C showed widespread GCIs, NCIs and NNIs, and 
neuronal loss restricted to OPC areas (Wakabayashi et al. 
2005). Another with limbic-predominant α-Syn pathology 
(Koga and Dickson 2019), and those with limbic-predom-
inant α-Syn pathology, dementia and Pick-like inclusions 
were classified as FTD with α-Syn (FTLD-synuclein) (Aoki 
et al. 2015; Rohan et al. 2015). Incidental MSA with wide-
spread GCIs without clinical disease is rare (Parkkinen et al. 
2007; Wakabayashi et al. 2005; Wenning et al. 1994) as is 
coexistence of MSA and PSP (Uchikado et al. 2006a). Rare 
‘young-onset MSA’ (YOMSA) before age 40 shows more 
common LID and minimal pathological changes (Batla et al. 
2018), while others showed progressed pathological stages 
of MSA-P or MSA-Mix (Jellinger 2018c). MSA progresses 



958 K. A. Jellinger 

1 3

rapidly (Wenning et al. 2013), while MSA-P with slow pro-
gression and prolonged survival is an uncommon “benign” 
subgroup (Petrovic et al. 2012). “Benign” MSA cases show 
slowly progressing parkinsonism and prolonged survival up 
to 15 years or more in 2–3% of MSA patients (Kim and Jeon 
2012; Petrovic et al. 2012), while others with clinical course 
of 18 years showed extensive distribution of GCIs (Masui 
et al. 2012).

Genetics of multiple system atrophy

Familial clustering of MSA is uncommon, but rare familial 
forms with AutR inheritance have been published (Fujioka 
et al. 2014a). A recent GWAS found an estimated heret-
ability at 2–7% (Sailer et al. 2016), but unlike PD, no single 
gene mutation linked to familial forms and no definite risk 
factor have been identified. Screening for PD causal genes 
(MAPT, PDYN, Parkin, PINK1) did not reveal any associa-
tion with MSA (Brooks et al. 2011; Yuan et al. 2015), while 
LRRK2 exonic variants may contribute to its susceptibil-
ity (Heckman et al. 2014). GBA variants were associated 
with autopsy-proven MSA (Sklerov et al. 2017; Sun et al. 
2013), significantly with MSA-C (Mitsui et al. 2015), while 
others found no association (Srulijes et al. 2013). SNCA 
polymorphism as a risk factor for MSA (Al-Chalabi et al. 
2009; Scholz et al. 2009) was not confirmed (Federoff et al. 
2016; Sun et al. 2015). No association of the APOE locus or 
the prion PRPN with increased risk of MSA was observed 
(Chelban et al. 2017; Ogaki et al. 2018), and there is no evi-
dence of AutD MSA or of de novo mutations in this disorder 
(Laurens et al. 2017). A British family with AutD inher-
itance and G51D SNCA mutation shared neuropathologic 
features of both PD and MSA (Kiely et al. 2013). They are 
distinct from PD patients carrying the H50Q or SNCA dupli-
cation (Kiely et al. 2015).

The link between V393A mutations in the COQ2 gene, 
encoding the coenzyme Q10 (COQ10) and familial or spo-
radic MSA in Japan and other Asian populations (Lin et al. 
2015; MSA-Research-Collaboration and Collaboration 
2013; Quinzii et al. 2014; Sun et al. 2016; Zhao et al. 2016) 
was not confirmed in other populations (Ferguson et al. 
2014; Ronchi et al. 2016; Sailer et al. 2016; Sharma et al. 
2014). Decreased COQ10 levels in cerebellum (Barca et al. 
2016; Schottlaender et al. 2016), suggest that its deficiency 
may contribute to its pathogenesis due to cellular dysfunc-
tion (Nakamoto et al. 2018).

Neuropathology and molecular pathology of multiple 
system atrophy

The brain shows diffuse atrophy, green-gray discoloration 
of Put in MSA-P and atrophy of the cerebellum, middle 
cerebellar peduncles, and pons in MSA-C. The pigmented 

brainstem nuclei are pale. Histopathology shows: (1) 
selective neuronal loss and axonal degeneration involving 
multiple NS regions with brunt on the striatonigral and 
OPC systems; (2) cellular α-Syn-immunoreactive inclu-
sions [glial cytoplasmic inclusions (GCIs) within oligo-
dendrocytes, less frequent glial nuclear inclusions (CNIs), 
neuronal cytoplasmic inclusions (NCIs), neuronal nuclear 
inclusions (NNIs)]; (3) astroglial cytoplasmic inclusions 
and neuronal threads of similar composition; (4) myelin 
pallor with reduction of myelin basic protein (MBP); and 
(5) microglial activation. The histologic hallmarks are 
cytoplasmic α-Syn-immunoreactive GCIs within oligoden-
droglial cells, the demonstration of which is required for 
the diagnosis of definite MSA (Trojanowski and Revesz 
2007).

GCIs are argyrophilic, triangular, sickle- or half moon-
shaped or oval cytoplasmic aggregates composed of fibril-
lary α-Syn, Ub, and various multifunctional proteins, includ-
ing 14-3-3 protein, LRRK2, aggresomal proteins (Jellinger 
and Lantos 2010; Jellinger 2018a). They form a meshwork 
of loosely packed filaments or tubules 15–30 nm in diameter 
with a periodicity of 70- to 90-nm and straight filaments, 
both consisting of polymerized α-Syn, granular material, 
and variable types of filaments. The central core is formed 
by phosphorylated (ser129) α-Syn (Gai et al. 2003). The 
soluble α-Syn in GCIs differs from the insoluble form in 
LBs (Campbell et al. 2001). Purification of α-Syn contain-
ing GCIs revealed 11.9% α-Syn, 2.8% αB-crystallin, and 
1.7% 14-3-3 protein compared to 8.5, 2.0, and 1.5% in LBs 
(McCormack et al. 2016). In MSA brain, α-Syn 140 and 122 
isoform levels were significantly increased, whereas α-Syn 
126 was decreased in SN, striatum and cerebellum. Early 
accumulation of p25α (tubulin polymerization-promoting 
protein/TPPP), a potent stimulator of α-Syn aggregation, 
may decrease MBP, favoring both the deposition and fibril-
lation of α-Syn and changing myelin metabolism (Olah et al. 
2017). TDP-43 pathology is rare in MSA, but colocalization 
with α-Syn suggests interaction between the two molecules 
(Koga et al. 2018b). Widespread accumulation of oligomeric 
α-Syn in neurons and oligodendrocytes in neocortex and 
Purkinje cells in MSA is more severe than in PD (Sekiya 
et al. 2019). α-Syn in brain-derived exosomes distinguishes 
MSA from PD (Bitan et al. 2019). Cathepsin-D, calpain-1 
and kallikrein-6 were elevated in the Put, pontine basis, and 
cerebellar white matter, indicating that α-Syn accumula-
tion is not due to reduced activity of these proteases, but 
their upregulation may be compensatory to increased α-Syn 
(Kiely et al. 2019). Decreased complex II/III activity and 
increased complex I and IV activity in MSA cerebellar white 
matter correspond with CoQ10 deficit in MSA and reflect 
the high regional pathological burden of GCIs, indicating 
mitochondrial dysfunction in MSA pathogenesis (Foti et al. 
2019). Iron levels in BG and SN are higher in MSA than in 
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PD and controls, and resemble that in PSP (Kaindlstorfer 
et al. 2018; Lee and Lee 2019).

Neuronal cell loss, reactive gliosis, iron deposition, and 
demyelination involve pons, medulla, Put, cerebellum, SNc, 
spinal cord, and preganglionic autonomic structures (Ahmed 
et al. 2012; Holton et al. 2011; Jellinger 2014). The degree 
and pattern of neurodegeneration and demyelination cor-
relate with the density and distribution of GCIs, and dura-
tion of illness, support a direct association, but there is no 
clear correlation between α-Syn glial burden and neuronal 
degeneration (Jellinger 2018a). Damage to the striatonigral 
system is most severe in dorsolateral caudal Put and lateral 
SN, suggesting transsynaptic degeneration of striatonigral 
fibers. Based on semiquantitative assessment of neuronal 
loss, astrocytosis, and GCIs, four degrees of severity were 
distinguished for both MSA phenotypes (Jellinger et al. 
2005). This grading reflects the initial symptoms, disease 
progression, and clinical key features, but there was a low 
correlation between involvement of the two major systems 
and the natural history of the disorder. Postmortem MRI 
changes in Put (type 1, mild atrophy and isointensity; type 
2, atrophy and diffuse hypointensity with a hyperintense 
putaminal rim [HPR]; type 3, putaminal atrophy and iso- or 
hypointensity with HPR) reflect various degrees of brain 
damage (Matsusue et al. 2008). There is an increasing over-
lap of α-Syn pathology with increasing duration of disease, 
and with the extent of α-Syn pathology (Brettschneider et al. 
2018). Degeneration of GP and STN leads to dysfunction 
of these inhibitory nuclei projecting to the motor thalamus, 
a mechanism similar to that in PSP (Fig. 2). In MSA-C, 
GCIs are most prominent in cerebellum, pons, and medulla 
(Brettschneider et al. 2017). The cerebellar Purkinje cells 
are more severely affected in the vermis, with atrophy of 
olivary nucleus, cerebellopontine fibers, and pontine basis, 
causing disruption of specific cerebello-cortical circuits 
(Ren et al. 2019). The motor subnetwork in MSA-C has 
significant structural alterations in both BG and cerebellar 
connectivity (Shah et al. 2019). The motor neurons in spi-
nal cord show only mild involvement. Involvement of the 
autonomic nervous system underlies the multidomain auto-
nomic failure typical of MSA (Iodice et al. 2012; Ozawa 
2007). The peripheral nervous system shows α-Syn aggrega-
tion in sympathetic ganglia, skin nerve fibres and Schwann 
cells (Doppler et al. 2015; Mori et al. 2002; Nakamura et al. 
2015; Zange et al. 2015). Myelin lesions involve various 
brain regions, but also affect otherwise apparently normal 
areas (Matsuo et al. 1998). Demyelination is associated 
with reduction of myelin proteins by about 50% (Don et al. 
2014). GCIs and microglial burden are greatest in mild to 
moderate white matter lesions and decrease with progres-
sion of myelin damage, but showed no correlation with the 
severity of gray matter damage. Early MSA stages show 
widespread increase of microglia (about 100%) in the white 

matter (Kübler et al. 2019) without concomitant astroglio-
sis or essential oligodendroglial degeneration (Nykjaer et al. 
2017). Both microglial activation and α-Syn containing oli-
godendrocytes trigger neuroinflammation restricted to white 
matter regions (Hoffmann et al. 2019). MSA-C cases showed 
increased microglia in cerebellum, not observed in any other 
region (Kiely et al. 2018). In MSA-C, myoclonus was associ-
ated with more α-Syn in the anterior spinal horns and lateral 
corticospinal tracts (Hwang et al. 2019).

Cognitive impairment (CI) and visual hallucinations, 
characteristic for DLB, are rare symptoms in MSA (Gilman 
et al. 2008), although MCI and executive deficits may occur 
(Fanciulli and Wenning 2015). CI is induced by cortical and 
subcortical gray matter atrophy and neocortical neuronal 
loss (Kim et al. 2015; Lee et al. 2015; Salvesen et al. 2015), 
LB-like inclusions in neocortex (Cykowski et al. 2015), 
globular inclusion in the medial temporal region (Homma 
et al. 2016) or corpus callosum involvement (Hara et al. 
2018). However, others found no pathological differences 
between MSA cases with and without cognitive impairment 
(Asi et al. 2014). Progressive retinal structure abnormalities 
were seen in visually asymptomatic MSA patients (Men-
doza-Santiesteban et al. 2015).

LBs, a classical hallmark of PD, were seen in 10.7–22.7% 
of autopsy-proven MSA cases (Koga et al. 2017a), while 
GCI pathology occurred in familial PD cases with rapid 
disease progression (Houlden and Singleton 2012). α-Syn 
inclusions in astroglia and oligodendroglia, however, occur 
in both PD and DLB (Fellner et al. 2011; Ferrer 2018). Lim-
bic TDP-43 pathology is rare in MSA (Koga and Dickson 
2018; Koga et al. 2018a, b; Robinson et al. 2018). Grey 
matter ARTAG has been reported in 17.1% of MSA cases 
(Kovacs et al. 2017).

Pathogenesis of multiple system atrophy

The role of the neuronal endosomal-lysosomal system in 
the processing of α-Syn in PD is well established, while 
lysosomes contribute to the pathogenesis of MSA, enabling 
oligodendroglial and neuronal uptake of exogenous α-Syn 
(Puska et al. 2018). α-Syn, primarily generated by neurons, 
can be toxic once released to the extracellular environment 
(Guo and Lee 2014), and can spread throughout the brain 
in a “prion-like” manner like other pathological proteins 
(Dhillon et al. 2019b; Duyckaerts et al. 2019; Goedert et al. 
2017a, c; Karpowicz et al. 2019). Extracellular α-Syn inter-
acting with neuronal and non-neuronal cell types, mediates 
neuroinflammation, cell-to-cell spread (Davis et al. 2018; 
Valdinocci et al. 2018). Neuron-to-oligodendrocyte trans-
fer of misfolded α-Syn plays a crucial role in the patho-
genesis of MSA (Reyes et al. 2014). MSA and PD show 
different phosphorylation of α-Syn and distinct α-Syn seed 
characteristics indicating that distinct strains underlie these 
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diseases (Yamasaki et al. 2019). MSA prions show remark-
able stability and resistance to inactivation (Woerman et al. 
2018) and their transmission to transgenic mouse lines pro-
vided evidence that MSA is a prion disease (Woerman et al. 
2019). Human α-Syn forms distinct inclusions and propa-
gates within cultured tg astrocytes exposed to MSA prions, 
indicating that α-Syn expression determines the tropism of 
inclusion formation in certain cells (Krejciova et al. 2019). 
Brain lysates from MSA patients can induce α-Syn pathol-
ogy similar to what is induced by preformed human α-Syn 
fibrils in tg mice. This reinforces the idea that the intrinsic 
traits of the tg mouse model dominates over any prion-like 
strain properties of MSA α-Syn seeds that can induce pathol-
ogy (Dhillon et al. 2019a). However, there is currently no 
evidence of iatrogenic transmission or infectivity of MSA 
(De Pablo-Fernandez et al. 2018; Wenning et al. 2018).

The pathogenesis of MSA is not fully understood, but 
the crucial role of oligodendroglial pathology has been 
confirmed by animal models (Fellner et al. 2015; Stefanova 
2014). Decreased expression of glia-derived neurotrophic 
factor (GDNF) in MSA brains (Ubhi et al. 2010) indicates 
that α-Syn expression in oligodendrocytes impacts their 
trophic transport to neurons. Oligodendroglial changes are 
more widespread than α-Syn-positive GCIs, suggesting that 

primary oligodendroglial pathology is the main driver of 
the disease process, inducing degeneration of the oligoden-
droglia-myelin-axon-neuron complex. Early events are an 
ectopic appearance of α-Syn in oligodendrocytes, loss of 
the cAMP-regulated phosphoprotein of 32 kDa (DARPP 
32) and calbindin indicating calcium toxicity and distur-
bance of phosphorylated proteins (Hayakawa et al. 2013). 
Impaired protein degradation, autophagic and proteasomal 
dysfunction, alterations of the autophagic pathway (Monzio 
Compagnoni et al. 2018; Valera et al. 2017), perturbed iron 
homeostasis (Kaindlstorfer et al. 2018) and lipid dysfunction 
involved in myelin synthesis by oligodendrocytes (Bleasel 
et al. 2014; Grigoletto et al. 2017) are other pathogenic fac-
tors. Apoptosis and neuroinflammation (Valera et al. 2017) 
suggest that that multiple mechanisms interact to result in 
the system-specific pattern of neurodegeneration in MSA 
(Fellner et  al. 2018; Ubhi et  al. 2011) (Fig. 7). TNFα-
dependent neuroinflammation may play a key role in MSA 
pathogenesis, and its relevance has been underlined in vari-
ous models of MSA (Ndayisaba et al. 2019).

Recent animal model studies that only partly replicate the 
human disorder have provided some progress in our under-
standing of MSA pathogenesis (Bassil et al. 2017; Bleasel 
et al. 2016; Fellner et al. 2015; Heras-Garvin et al. 2019; 

Fig. 7  Putative pathogenic 
pathways of multiple system 
atrophy. From (Jellinger and 
Wenning 2016)

Sporadic, genetic (environmental) factors

Myelin protein (p25α) redistribution,
myelin lipid dysregulation

Oligodendroglial soma 

αSyn aggregation, GCI formation, p25α ↓

Disorder neurotrophic transport

Degeneration neurons/oligodendroglia

Multisystem neurodegeneration + gliosis

MSA

Neuronal dysfunction

“Prion-like“
transfer

Modified
αSyn

Microglia
activation

Neuroinflammation

Oxidative stress

?



961Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update—…

1 3

Mandel et al. 2017; Overk et al. 2018; Refolo et al. 2018; 
Stefanova 2014; Valera et al. 2017). Relocation of p25α 
from the myelin sheaths to the oligodendroglial soma (due 
to mitochondrial dysfunction), with formation of cytoplas-
mic p25α inclusions precedes aggregation of transformed 
α-Syn in oligodendrocytes. Endogenous α-Syn and p25α 
orchestrate the formation of pathological α-Syn assemblies 
in oligodendrocytes and provide in vivo evidence of the 
contribution of oligodendroglial α-Syn to the pathogenesis 
of MSA (Mavroeidi et al. 2019). Although large inclusions 
appear at a late disease state, small, soluble assemblies of 
α-Syn promoted by p25α are pathogenic (Olah and Ovadi 
2019). The source of α-Syn in oligodendroglia is unclear, 
but it contains α-Syn mRNA expression and α-Syn may 
be secreted by neurons and taken up by oligodendrocytes, 
which is facilitated by protein Cx32 (Reyes et al. 2019). 21% 
of proteins found consistently in GCIs and LBs were syn-
aptic vesicle-related, which suggests that misfolded α-Syn 
may be targeted via vesicle-mediated transport, which also 
explains the presence of this neuronal protein within GCIs 
(McCormack et al. 2019). Secondary events include reduced 
trophic support to axons and neurons by reduced GDNF. 
Neuroinflammation, OS, proteasomal dysfunction, proteo-
lytic dysbalance, dysregulation of myelin lipids and energy 
failure are important factors leading to neurodegeneration in 
MSA. The disease is currently viewed as a primary synucle-
inopathy with specific glia-neuronal degeneration develop-
ing via the oligo-myelin-axon-neuron complex (Jellinger and 
Wenning 2016). Thus, MSA represents a specific form of 
oligodendroglial proteinopathies (Rohan et al. 2016), while 
others suggest that it is a neuronal disease with secondary 
accumulation of α-Syn in oligodendrocytes (Cykowski et al. 
2015).

Tauopathies

The morphological hallmarks of this heterogeneous group 
of neurodegenerative diseases are filamentous neuronal 
and glial tau inclusions associated with the degeneration of 
affected brain areas showing selective vulnerability (Fer-
rer et al. 2014; Murray et al. 2014; Spillantini and Goed-
ert 2013). Human tau proteins are encoded by the MAPT 
gene consisting of 16 exons on chromosome 17q21. The 
adult human brain has six tau isoforms composed of either 
three (3R) or four (4R) carboxy-terminal tandem repeat 
sequences of 31–32 amino acids that are encoded by exons 
9–12. The triplets of 3R- and 4R-tau isoforms differ as a 
result of alternative splicing to generate isoforms with 29 
or 58 amino acid inserts (Mietelska-Porowska et al. 2014; 
Spillantini and Goedert 2013). In tauopathies, the tau protein 
is hyperphosphorylated, which causes it to lose its affinity 
for microtubules and becomes resistant to proteolysis; this 

results in its accumulation and the formation of NFTs (Birdi 
et al. 2002). Tau filaments comprise two types: straight fila-
ments or tubules with 9–18 nm diameters and “twisted rib-
bons” composed of two parallel aligned components (Arima 
2006). The structures of tau filaments were recently found 
to differ between distinct tauopathies, e.g., between AD and 
Pick’s disease (Falcon et al. 2018; Goedert et al. 2019). The 
patterns of soluble and insoluble tau were the basis for bio-
chemical classification of the major tauopathies (Goedert 
et al. 2017c; Gotz et al. 2019; Hoglinger et al. 2018; Spill-
antini and Goedert 2013): AD (as a secondary tauopathy), 
postencephalitic parkinsonism (PEP), Guamanian amyp-
trophic lateral sclerosis-Parkinson’s disease complex (ALS/
PDC) (3R and 4R triplets), and Pick’s disease (PiD) (pre-
dominant 3R), while PSP and CBD contain predominantly 
4R-tau doublets with two 68- and 64-kD insoluble tau bands 
at exon 10. The morphology of the neuronal and glial inclu-
sions and the patterns of cellular vulnerability are specific, 
but there is frequent overlap between various tauopathies 
(Irwin et al. 2013b). This has lead to the suggestion that 
different molecular conformers or strains of aggregated tau 
exist (Goedert et al. 2017a), which are responsible for the 
heterogeneity and cell-type specificity of tauopathies. Tau 
pathology is suggested to spread through “prion-like” prop-
agation (Ayers et al. 2018; Mudher et al. 2017), but does 
not have a high propensity to spread to peripheral tissues 
(Dugger et al. 2018). Seeding and spreading of tau occurs 
in oligodendrocytes, thereby supporting its spreading in the 
white matter in tauopathies (Ferrer et al. 2019). There are 
potential barriers in cross-seeding between 3R- and 4R-tau 
isoforms (Strang et al. 2018; Weismiller et al. 2018). Despite 
the similarities to prion proteins, there is no evidence that 
pathological tau is infectious (Gibbons et al. 2019).

Progressive supranuclear palsy

PSP, or Steele-Richardson-Olszewski syndrome, a predomi-
nantly sporadic movement disorder, is the most common 
atypical parkinsonian disease with incidence rates increas-
ing with age from 1.7 to 14/100,000/year and an estimated 
prevalence of 6.2–74 1.4/100,000. The annual incidence 
increases with age from 1.7/100,000 at age 50–59 years to 
14.7/100,000 at 80–89 years (Coyle-Gilchrist et al. 2016). 
Mean age at disease onset is 60–65 years, which is older 
than in IPD, and mean survival is 3–5 years (Ali and Josephs 
2018a). PSP is clinically featured by progressive postural 
instability and falls, supranuclear vertical gaze palsy, fron-
tal cognitive disturbances, and absence of resting tremor 
(Agarwal and Gilbert 2019). However, atypical cases with 
a variety of clinical syndromes indicate the heterogeneity 
of PSP. The new MDS PSP criteria outline 14 core clinical 
features and 4 clinical clues that combine to diagnose one of 
eight PSP phenotypes with probable, possible, or suggestive 
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certainty (Armstrong 2018; Hoglinger 2018). The follow-
ing phenotypes have been established: (1) Richardson’s syn-
drome (PSP-RS/classic PSP), with early postural instability, 
falls, vertical gaze palsy and a rapid course (Respondek et al. 
2017); (2) PSP-parkinsonism (PSP-P), which often mimics 
PD; (3) gait freezing form (PSP-PGE), (4) PIGD (postural 
instability and gait disorder), (5) oculomotor dysfunction 
(PSP-OM), several others (Ali and Josephs 2018a, b), and 
overlap with both brFTD (PSP-F) and nfvPPA (PSP-SL) 
(Hoglinger et al. 2018). The clinical syndrome of PSP may 
arise through several pathologic processes: PSP-RS, PSP-
P, FTLD, CBD, LBD, progressive subcortical gliosis, and 
MSA (Ali and Josephs 2018a; Respondek et al. 2017). Given 
these variants, it is not surprising that overall diagnostic 
accuracy is 70–85.7% (Ali et al. 2019). The proposed four 
rules for Multiple Allocations eXtinction (MAX) helped 
to standardize the application of the MDS criteria for PSP 
(Grimm et al. 2019). Incipient PSP comprises three sub-
groups with typical or only mild PSP pathology (Yoshida 
et al. 2017). Divergent brain gene expression patterns associ-
ated with distinct cell-specific tau neuropathology, suggest 
that specific PSP phenotypes may emerge from different tau 
strains (Narasimhan et al. 2017). Tau strains from human 
PSP brains showed transneuronal/transsynaptic spreading in 
a “prion-like” manner via exosomes, nanotubes and endo-
cytosis from the extracellular space (Calafate et al. 2015; 
Tardivel et al. 2016; Wang et al. 2017).

Genetics of progressive supranuclear palsy

The major genetic risk factor for sporadic PSP, which repre-
sents around 85% of all cases, is a variant in the MAP gene, 
with prevalence of A0/A0 and the H1/H1 genotypes (Houl-
den et al. 2001). A GWAS study of autopsy-proven PSP 
identified SNPs mapping to MAPT, STX6, MOBP, STX6, 
and EIF2AK3 (Hoglinger et al. 2011). Rare monogenetic 
inheritance of PSP is associated with MAPT mutations 
(Forrest et al. 2018). Although PSP is defined as a sporad-
ish condition, an increasing number of familial PSP with 
MAPT mutations have been reported (Donker Kaat et al. 
2009; Fujioka et al. 2014b). An atypical PSP-P phenotype 
with rare variants in FBXO7 and VPS35 genes was associ-
ated with LP (Mensikova et al. 2019). PSP variants at MAPT 
and MOBP loci may confer PSP risk via gene expression and 
tau pathology (Allen et al. 2016). There is overlap between 
PSP and CBD in various genes, CXCR4 (chemokine recep-
tor type 4), EGFR (epidermal growth factor), GLDC (gly-
cine dehydrogenase), and MOBP (Yokoyama et al. 2017). 
Recent studies have identified three novel associations of 
MAPT H1 subhaplotypes with risk of PSP and their role in 
susceptibility to and severity of tau pathology (Heckman 
et al. 2019). A recent GWA analysis of copy number vari-
ants found MAPT duplications as a possible genetic cause 

of PSP, particularly in patients presenting with young age 
at onset (Chen et al. 2019b). Variation at the TRIM11 locus 
modifies PSP phenotype (Jabbari et al. 2018).

Neuropathology of progressive supranuclear palsy

Typical PSP cases show pallor of SN, atrophy of STN, mid-
brain, pontine tegmentum, and superior cerebral peduncle; 
with mild cortical atrophy (that differentiates PSP-RS from 
PSP-P) (Schofield et al. 2011). The histological hallmarks 
of PSP are globose tangles (different from the flame-shaped 
cortical NFTs), neuronal threads, and tau deposits in glia 
in BG, diencephalon, many brainstem regions, dentate, and 
inferior olivary nuclei, and spinal gray matter (Dickson et al. 
2011a). Composed of 12- to 15-nm straight tubules/filaments 
containing 4R-tau with a sequence encoded on exon 10, they 
differ from those in AD or PEP. Swollen achromatic neurons 
in cortex and BG contain tau aggregates with straight fila-
ments, which are also present in “tufted” or thorn-shaped 
astrocytes (with straight, irregular 22-nm filaments, in con-
trast to the “astrocytic plaques” of CBD) and in oligodendro-
glia as “coiled bodies” (straight 14-nm filaments) throughout 
the neuraxis, in particular, the white matter. Tau pathology 
predominates in precentral gyrus, entorhinal cortex, hip-
pocampus, dentate granule cells, and A10 midbrain cell 
groups (Dickson et al. 2011a); the distribution of NFTs is 
similar to that in PEP and Guamanian ALS/PDC. Only few 
tangle-bearing neurons but many tau-positive oligodendro-
cytes occur in brainstem and pontine nuclei, not in SNc. 
Neuropil threads, short, tortouous, cell processes of neu-
ronal and oligodendroglial origin, occur in both cortical and 
subcortical gray and white matter, the latter predominantly 
in typical PSP cases (Dickson et al. 2011a). Astrocytic tau 
pathology, the result of abnormal tau released from damaged 
axons (Armstrong 2013), and microglial activation correlate 
with NFT density and neuronal loss (Ito et al. 2008). Severe 
damage to GPi, GPe, SNr, and STN causes dysfunction of 
striatal efflux to motor thalamus, accounting for akinesia-
rigidity and its resistance to DAergic treatment (Fig. 2).

Neuropathological criteria for clinical variants show 
significant morphologic and biochemical differences 
(Respondek et al. 2017): PSP-P and PSP with progressive 
gait freezing (PGF) have a lower tau pathology score with 
more restricted involvement of SN, STN, and Gpi and a 
mean 4R-/3R-tau ratio of 2.8, whereas PSP-RS has more 
severe and more widely distributed tau pathology in BG, 
brain stem, and prefrontal cortex, negatively correlated with 
disease duration (Jellinger 2008b; Williams et al. 2007). 
PSP-corticobasal syndrome (CBS) brains have greater cor-
tical tau pathology than those with PSP-RS, while PSP-P 
and PGF have more severe BG degeneration (Dickson et al. 
2010a). AD neuropathology is seen in about 26% of PSP 
cases (Robinson et al. 2018).
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Cortical tau pathology in PSP, with the highest density 
in prefrontal and limbic areas and mainly in deeper cortical 
layers, differs from its bimodal distribution in AD, while a 
combination of PSP with AD is rare (Sakamoto et al. 2009). 
Although tau lesions in central grey matter, SN, and LC 
are found in both PSP and AD, 4R-selectivity with glial 
component suggests PSP origin (Ebashi et al. 2019). Hip-
pocampal and amygdala pathology is usually minimal, but 
20% of patients show ballooned neurons and argyrophilic 
grains (AGs) in the limbic region (Togo et al. 2002). TDP-
43 pathology in hippocampus, and amygdala may occur in 
PSP (Koga et al. 2017b). Rare variants are PSP associated 
with pallidonigro-luysian degeneration and axonal dystrophy 
(Ahmed et al. 2008; Yokoyama et al. 2016) or presenting 
with CBS. More tau load in frontal and parietal cortices was 
seen in a “cortical” variant (PSP-CBS) (Ling et al. 2014). 
Tau pathology in spinal cord and pyramidal motor system 
structures is very common in PSP and may supplement the 
distinction between classical Richardson’s syndrome from 
other PSP subtypes (Stejskalova et al. 2019).

Nigrostriatal dysfunction in PSP is associated with an 
80–90% reduction in DA and 40–50% reduction in homo-
vanillic acid in CN and Put, whereas the mesocortical and 
mesolimbic DAergic systems remain intact in comparison 
to PD. The cholinergic systems are severely affected, with a 
40–80% reduction in ChAT activity, and 60% loss of neurons 
in the PPNc. Cognitive decline is related to dysfunction of 
striatofrontal or prefrontal circuits as a result of degeneration 
of BG and brainstem tegmental nuclei. Pathogenesis of PSP, 
in addition to genetic factors, is due to a cascade of events, 
such as inflammation and oxidative injury leading to tau 
aggregation in different neuronal populations. Cerebrovascu-
lar lesions in PSP are rare, although PSP has been described 
as a multiinfarct disorder (Josephs et al. 2002). LBs reported 
in approximately 20% of PSP may represent an independ-
ent disease process (Robinson et al. 2018; Uchikado et al. 
2006a). Argyrophilic grains are frequent in PSP (18–80%) 
(Gil et al. 2018a, b) and show overlap with astroglial tau 
pathology and anatomical vulnerability with PSP (Yokota 
et al. 2008). NFTs are positively associated with a brain 
co-expression network enriched for synaptic and PSP can-
didate risk genes, but are negatively associated with immune 
system transcripts, indicating diverse molecular mechanisms 
that underlie cell-specific vulnerability and disease risks in 
PSP (Allen et al. 2018).

Corticobasal degeneration (CBD)

CBD, previously described as corticodentatonigral degen-
eration with neuronal achromatism (Rebeiz et al. 1968), is a 
rare, sporadic, late-onset progressive disorder of unknown 
etiology. This 4R tauopathy is clinically shows non-l-dopa-
responsive rigidity with focal asymmetric cortical signs 

(apraxia and aphasia; “alien hand syndrome”) and frontal 
lobe dementia (Wenning et al. 2011). The estimated inci-
dence of CBD is 0.02–0.92/100,000/year and its prevalence 
4.9–7.3/100,000 (Ali and Josephs 2018b). The syndrome 
is not specific, as clinical features of pathologically proven 
CBD include 4 phenotypes: CBS, frontal behavioral-spatial 
syndrome (FBS), nonfluent variant of primary progressive 
aphasia (naPPA), and PSP syndrome (PSP-S) (Shimohata 
et al. 2015). Current criteria distinguish possible and prob-
able CBD; the diagnosis of probable CBD requires insidi-
ous onset, gradual progression for at least 1 year, age at 
onset > 50 years, no similar family history of known tau 
mutations, and a clinical phenotype with at least one CBS 
feature (Armstrong et al. 2013). These criteria, however, did 
not sufficiently improve the specificity of diagnosis (Alexan-
der et al. 2014; Ali and Josephs 2018b). Their sensitivity for 
CBS was poor within 2 years of disease onset (Ouchi et al. 
2014), which is between 5th and 7th decade; mean dura-
tion is 8 ± 2.65 years. Most CBD cases are sporadic, with 
only rare familial cases of AutD inheritance associated with 
mutations in tau genes (Kouri et al. 2014). Both CBD and 
PSP are characterized by accumulation of an isoform of tau 
containing four tandem repeats in its microtubule-binding 
domain and both are associated with increased frequency of 
MAPT H1/H1 genotype (Kouri et al. 2015). A GWAS identi-
fied new CBS susceptibility loci and showed that CBD and 
PSP share a genetic risk factor other than MAPT and MOBR 
(Kouri et al. 2015). There are shared risk factors between 
CBD, PSP and FTLD (Yokoyama et al. 2017). Novel GRN 
mutations were reported in CBS (Taghdiri et al. 2016), while 
a familial CBS was due to AD pathology and PSEN1 muta-
tions (Lam et al. 2018).

Neuropathology of corticobasal degeneration

Pigment loss in SN and often asymmetric atrophy of the 
posterior frontal, parietal and perirolandic cortex, are asso-
ciated with neuronal loss, superficial laminar spongiosis, 
and gliosis, temporal and occipital lobes being unaffected. 
Histological hallmarks are neuronal and glial cytoplasmic 
tau inclusions (ballooned/achromatic neurons) in cortex, 
BG, brainstem and cerebellum, and extensive accumulation 
of tau-positive thread-like processes throughout the brain, 
which are more widespread than in PSP. The ballooned neu-
rons are similar to those seen in PiD and contain phosphoryl-
ated neurofilament protein and αB-crystallin. The aggregates 
composed of predominantly 4R-tau isoforms with exclu-
sively exon 10 isoforms, identical to PSP and certain forms 
of FTLD-17, do not stain with antibodies to 3R isoforms 
and Ub (Dickson et al. 2011a). Ultrastructurally, they consist 
of 10- to 15-nm filaments, with fewer 25- to 30-nm fila-
ments, granular material, and lipofuscin, resembling those 
in PSP with 20–24 nm. The twisted ribbons and shift from 
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4R to 3R tau in pretangles in CBD are different from the AD 
PHFs (Tatsumi et al. 2014b; Uchihara 2014). In the white 
matter, “astroglial plaques” (APs) and numerous inclusions 
involve both astrocytes and oligodendroglia (“coiled bod-
ies”). They do not stain for α-Syn or Ub and thus differ from 
GCIs in MSA. APs, of diagnostic value in CBD, resemble 
the neuritic plaques in AD, but instead of clustering around 
amyloid cores, the tau-positive processes surround unstained 
neuropil. They involve prefrontal and orbital regions and 
striatum, but are uncommon in brainstem. The presence of 
tufted astrocytes (TA) and APs differentiates PSP and CBD: 
proximal-dominant aggregation of TAs and formation of fil-
amentous NFTs in PSP vs. distal-dominant aggregation of 
APs and less filamentous pretangles in CBD (Yoshida 2014). 
Typical CBD displays asymmetrical frontoparietal cortical 
atrophy (with ballooned neurons), nigral degeneration and 
tau-positive neuronal and glial lesions, especially APs, in the 
affected cortex, while typical PSP shows loss of subcortical 
neurons, accumulation of tau-positive inclusions in neurons 
(NFTs) and in glia (tufted astrocytes). Systemic metaanalysis 
of the distribution of localized atrophies tried to distinguish 
between clinical features (CBS) and histopathological find-
ings (CBD) (Albrecht et al. 2017). Brains with CBD or PSP 
show differences in amino-terminal truncated tau (37 kDa 
for CBD and 33 kDa for PSP) (Clavaguera et al. 2013), indi-
cating differences in tau proteolytic processing. LBs have 
been reported in about 20% of CBD cases, comparable to 
age-matched controls (Robinson et al. 2018). Argyrophilic 
grains are thought to be a constant feature of CBD (Tatsumi 
et al. 2014a).

Pathological features of preclinical or early CBD showed 
significant differences in neuronal loss, cortical atrophy, 
white matter volume reduction, and asymmetrical cortical 
tau pathology (Nishida et al. 2015), while early prominence 
of APs suggests that CBD begins as an astrogliopathy and 
neuronal lesions occur later (Ling et al. 2016). Unusual var-
iants include CBD with OPCA and TDP-43/CBD-OPCA 
(Kouri et al. 2013), with accumulation of α-Syn and TDP-
43 (Yamashita et al. 2014), and CBD with TDP-43 pathol-
ogy (45%) presenting with PSP syndrome (Ali and Josephs 
2018b), were associated with lower MAPT H1/H1 geno-
type frequency than TPD-negative CBD (Koga et al. 2018a). 
AGs, which also have a predominance of 4R-tau, occur in 
both PSP and CBD more frequently than in controls, but 
are reliable disease-specific features to CBD (Tatsumi et al. 
2014a). CBS with visual hallucinations and probable REM 
sleep behavior disorders was seen in an autopsy case of 
CBD with LBD confined to the brain stem (Naasan et al. 
2019). Pathogenic factors of CBD are hyperphosphorylated 
tau, neuroinflammation and oxidative injury, but the role 
of MAPT-H1 remains unclear. A significant association 
between tau burden, post-mortem measures of neurodegen-
eration and in vivo volume loss was found in both PSP and 

CBD (Spina et al. 2019). Patients with “vascular CBS” have 
been reported based on MRI findings but none of them was 
confirmed at autopsy (Kim et al. 2009; Kreisler et al. 2007; 
Miyaji et al. 2013). Among 217 patients with an antemortem 
diagnosis of CBS, three were identified as vascular due to 
chronic cerebrovascular disease, with infarcts or white mat-
ter pathology (Koga et al. 2019).

Frontotemporal lobar degeneration‑tau (FTLD‑tau)

Frontotemporal dementia (FTD) is a heterogeneous clini-
cal syndrome associated with frontotemporal lobar degen-
eration (FTLD) as a relatively consistent neuropathological 
hallmark feature. FTD is a diverse condition on the genetic 
and neuropathological basis. A novel molecular classifica-
tion of these conditions distinguished three broad molecular 
subgroups: FTLD with tau, TAR DNA-binding protein 43 
(FDP-43) and FET protein accumulation (FTLD-tau, FTLD-
TDP and FTLD-FET respectively) (Neumann and Macken-
zie 2019).

FTLD-tau, formerly referred to as frontotemporal degen-
eration and parkinsonism linked to chromosome 17 (FTDP-
17), linked the P301L mutation in the MAPT gene, is 
caused by mutations in either the MAPT or the progranulin 
(PGRN) gene. The spectrum of sporadic FTLD associated 
with tau pathology includes PSP, CBD, PiD, and FTDP-17 
MAPT (Taniguchi-Watanabe et al. 2016). Depending upon 
the specific mutation in MAPT, familial FTLD-tau can 
have 3R, 4R, or a combination of 3R and 4R tau (Dickson 
et al. 2011b). Positive family history was seen in 25%, 13% 
with AutD inheritance and 9% MAPT mutations (Forrest 
et al. 2019b). Mixed FTLD-tau and TDP-43 proteinopa-
thy (FTLD-TDP) is rare (Kim et al. 2018). The tauopathy 
associated with FTDP-17 MAPT shows a wide range of 
pathological phenotypes. FTDP-17 mutations contribute to 
the pathogenesis via increased formation of tau oligomers 
(Maeda et al. 2018). Neuropathology shows focal symmetri-
cal frontotemporal atrophy with rust-colored appearance of 
the GP due to increased iron pigment, and depigmented SN 
(Wszolek et al. 2005). Pretangles in neurons show diffuse 
tau immunoreactivity, while some cases have also AD-NFTs, 
globose tangles and astrocytic lesions similar to those in PSP 
or CBD, or tau-positive glial inclusions resembling those in 
PSP, CBD, and AG disease. Despite significant pathologic 
heterogeneity between different mutations, there is broad 
overlap with other sporadic tauopathies (AD, PSP, CBD, 
PiD). Ultrastructurally, the filaments vary in structure and 
appearance, with PHFs, 15- to 27-nm-wide twisted ribbons, 
and 12- to 15-nm or 15- to 20-nm straight tubules, which are 
either paired helical, slender or narrow twisted ribbons or 
straight filaments (Ghetti et al. 2011; van Swieten and Spill-
antini 2007). They cause cell dysfunction, due to abnormal 
proteostasis, impaired axonal transport and mitochondrial 
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damage (Irwin et al. 2015). Neuronal loss and astrogliosis 
affect the frontal, temporal cortical and subcortical gray 
matter and hippocampus. FTDP-17 with Pick body-like 
neuronal inclusions and swollen processes in white matter 
reactive to 3R and 4R tau was associated with a novel tau 
mutation, p.E372G. FTLD-tau-related pathological lesions 
in non-diseased individuals suggest that preclinical stages of 
FTLD-tau exist (Thal et al. 2015). Toxic tau accumulating in 
neuronal soma and dendrites leads to microtubule depolym-
erization and synaptic loss (Bodea et al. 2016). However, the 
hypothesized pathogenic mechanisms by which mutations in 
the MAPT gene promote tauopathy and the ability of mutant 
tau protein to support prion-like propagation do not give 
definite insights into the basis for the reactive vulnerability 
in FTLD-tau (Strang et al. 2019).

Postencephalitic parkinsonism

This progressive disorder, a sequela of encephalitis lethar-
gica and other viral encephalitides, clinically shows rigid 
parkinsonism, oculomotor lesions (ocular palsy and ocu-
logyric crises), and cognitive impairment (Jellinger 2011). 
Depigmentation of SN, marked neuronal loss and astrocy-
tosis in brainstem—particularly in SN (diffuse and more 
marked than in PD)—, is associated with widespread occur-
rence of tau-positive globose NFTs, neuropil threads (NTs), 
glial inclusions in brainstem, BG, NBM, and amygdala, less 
severe in striatopallidum, thalamus, hypothalamus, and cer-
ebellum. NFTs and NTs, composed of 22-nm twisted tubules 
with occasional straight filaments showing 3R- plus 4R-tau 
and Ub immunoreactivity, are identical to those in AD. Tau-
immunoreactive astroglia are seen in affected areas, whereas 
TAs, APs, oligodendroglial inclusions, ballooned neurons 
or Pick bodies are absent. Perivascular lympho-plasmo-
cytic aggregates and microglial activation can be found in 
the midbrain for many years after the initial encephalitic 
illness, but are sparse in long-surviving patients. Cortical 
pathology is common, with NFTs mainly in hippocam-
pus and less often in cortical layers II and III, differs from 
that in AD. The distribution of lesions is similar to PSP, 
although there are subtle deviations: rare involvement of 
cranial nerves IV and XII, inferior olives, and striatopalli-
dum, different cortical involvement, and less tau pathology 
in white matter in PEP (Jellinger 2011). Essential differences 
include PHF and 3 + 4 R tau in PEP, while PSP NFTs have 
straight filaments and 4R tau. TDP-43 pathology is present 
in most PEP brains, but there was no correlation between 
clinical features or hippocampal sclerosis (Ling et al. 2013). 
Lesions in cholinergic subcortical supranuclear centers of 
gaze movement cause gaze palsy and lid apraxia similar to 
that in PSP (Wenning et al. 1997). Amyloid-β deposits are 
rare. Neither LBs nor α-Syn pathology were detected, thus 
classifying PEP it as a “pure” tauopathy (Jellinger 2009b). 

Despite epidemiologic evidence of a viral infection, the eti-
opathogenesis is unknown, and molecular-biologic studies 
have failed to identify influenza virus in archival material 
from PEP brain (Vilensky 2011).

Pick’s disease

This progressive dementia with personality deterioration and 
signs of frontal disinhibition exhibits rare extrapyramidal 
symptoms. Age of onset ranges between 40 and 80 years. 
The prevalence in autopsy series ranged from 8 to 30% 
of FTD (Munoz et al. 2011). The clinical presentation is 
often that of the behavioral variant of FTD or progressive 
non-fluent aphasia, while involvement of the amygdala 
may mimick Kluver-Bucy syndrome. Most cases are spo-
radic, but familial cases, usually with AutD inheritance as 
a result of MAPT mutations (prominently in exon 9) have 
been reported (Forrest et al. 2019b), while the extended hap-
lotype (H1/H1) of the MAPT gene is not associated with 
PiD (Russ et al. 2001). Frontotemporal atrophy, often with 
a “knife blade” appearance of the cortical gyri, is associated 
with dilated ventricles, and degeneration of striatum and 
SN. Loss of neurons, astrocytosis, and spongiosis affect the 
outer cortical layers with swollen neurons (“Pick cells”), 
indistinguishable from the swollen achromatic (ballooned) 
neurons in other conditions. Some brains show extensive 
loss of pigmented SN neurons, in others the SN is preserved. 
Mature tau pathology is more abundant in frontotemporal 
mesolimbic regions than in neocortical regions (Irwin et al. 
2016). Argyrophilic intraneuronal cytoplasmic inclusions 
(Pick bodies) are abundant in the granule neurons of den-
tate fascia and pyramidal neurons of hippocampus. Their 
major component is 3R-tau (Delacourte et al. 1996), with an 
occasional mixture of 3R-tau and 4R-tau (Zhukareva et al. 
2002), due to the presence of concomitant NFT degeneration 
or rare AGRs (Kovacs et al. 2013). Ultrastructurally, they 
consist of narrow protofilaments and of wide filaments (the 
minority) composed of two narrow filaments packed against 
each other. The filamentous tau in PiD shows differences in 
phosphorylation and folding relative to those in AD, indicat-
ing the existence of distinct molecular conformers (Falcon 
et al. 2018; Goedert et al. 2019).

Guamanian and other forms of western Pacific 
parkinsonism

A high incidence of ALS and PDC was recognized in three 
regions of the Western Pacific, the Mariana islands of Guam 
and Rota, the Muro district on the Kii peninsula in Japan, 
and Western New Guinea. A doublet of pathological tau at 
64 and 69 kDa was observed in brain tissue homogenates. 
The incidence of ALS/PDC in Guam has declined since the 
1960s (Waring et al. 2004). Guamanian PDC and ALS/PDC 
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of the Chamorro population may appear clinically similar to 
FTLD-U and ALS, with extrapyramidal symptoms, olfac-
tory dysfunction, oculomotor signs, and dementia. Neuro-
pathology shows cerebral and BG atrophy, depigmentation 
of SN and LC, widespread loss of neurons and gliosis in 
hippocampus, amygdala, NBM, brainstem tegmentum, 
and dentate nucleus, with abundant NFTs, granulovacuolar 
degeneration, and Hirano bodies (Oyanagi et al. 2011). NFTs 
in cortex involve layers II and III, similar to that in PSP. NTs 
and tau-positive thread-like structures are sparse or absent. 
NFTs in both the Japanese and Guamanian forms of PDC 
show similarities to AD (Oyanagi et al. 2011), and marked 
deposition of 43-kDa TAR DNA-binding protein, indicat-
ing a role for proteostasis imbalance (Verheijen et al. 2018). 
Glial pathology is prominent in Guam PDC and includes 
granular astrocytes, coiled inclusions in oligodendroglia, 
and fine granules in motor cortex, frontal white matter, and 
amygdala, all composed of 3R + 4R-tau isoforms (Yamazaki 
et al. 2005). Numerous coiled body-like inclusions occur in 
cerebral white matter (Hasegawa et al. 2008).

The cortex in PDC is distinguished from that in PSP 
by the presence of α-Syn and LBs (Miklossy et al. 2008). 
α-Syn-positive aggregates in the amygdala often colocal-
ize with neurons harboring NFTs, and spherical α-Syn-
positive structures in the molecular layer of cerebellar cor-
tex (Yamazaki et al. 2005). Guam PDC is associated with 
cortical tau-negative, TPD-43-positive dystrophic neurites 
and neuronoglial inclusions in gray and white matter. Bio-
chemical analysis showed FTLD-U-like insoluble TPD-43, 
and spinal cord exhibited tau-positive tangles and TDP-
43-positive inclusions, suggesting that ALS/PDC is a multi-
ple proteinopathy (Mimuro et al. 2018). The Western Pacific 
disease clusters show factors similar to that causing AD and 
other tauopathies, but GWAS failed to identify a single gene 
locus for Guam PDC, supporting the hypothesis of a mixed 
genetic/environmental etiology. The cycad hypothesis sug-
gesting that dietary consumption of cycad toxins or sterol 
glucosides is causative has not been confirmed (Steele and 
McGeer 2008). The etiopathogenesis remains enigmatic.

In ALS/PDC on the Kii peninsula, ALS and PDC clini-
cally occur separately or in combination, and are considered 
as different manifestations of a single disease entity. The 
neuropathological hallmarks are widespread NFTs and NTs, 
most predominantly in medial temporal and frontal corti-
ces, less in other cortices, subcortical nuclei, brainstem and 
spinal cord. Tau-positive astrocytes are also present in the 
white matter (Mimuro et al. 2018). NFTs are ultrastructur-
ally characterized as helical filaments composed of all 6 tau 
isoforms, similar to those in α-Syn and Guamanian ALS/
PDC (Itoh et al. 2003). Kii ALS/PDC differs from AD by 
differential NFT distribution and the lack of abundant senile 
plaques. In addition, various types of α-Syn-positive lesions, 
including NCIs, GCIs and dystrophic neurites are present, 

mainly in the limbic system and brainstem (Kokubo et al. 
2012; Mimuro et al. 2018). A recent study showed phospho-
rylated tau pathology of various types in dentante nucleus 
and Purkinje and glia lcells in the cerebellum (Morimoto 
et al. 2018). Recent PET studies confirmed distinct distribu-
tion of tau pathology and lack of β-amyloid in Kii ALS/PDC 
patients (Shinotoh et al. 2019). Genetic and environmen-
tal factors are implicated in the pathogenesis of the disease 
(Hata et al. 2018).

Secondary parkinsonism

About 10% of all patients with parkinsonism have second-
ary forms with known specific causes, e.g. certain drugs 
and toxins, metabolic disorders, viral infections, multiple 
infarcts, brain tumors, trauma, or hydrocephalus (Table 2).

Vascular parkinsonism (pseudoparkinsonism)

Vascular parkinsonism (VaP) (arteriosclerotic pseudoparkin-
sonism) (Critchley 1981) is a rare akinetic-rigid syndrome 
resulting from cerebrovascular disease, with a variety of 
clinical and pathologic features distinct from those of spo-
radic PD. Its prevalence is estimated at 2–17% of all parkin-
sonian syndromes but it is difficult to diagnose with clinical 
certainty, based on the presence of clinical parkinsonism 
with variable signs and findings of cerebrovascular disease 
(Rektor et al. 2018). Three subtypes are considered: (1) 
acute/subacute post-stroke VaP presenting with acute/suba-
cute onset of parkinsonism responding to DAergic drugs; 
(2) more frequent insidious onset with progressive parkin-
sonism and multiple other symptoms, particularly higher-
level gait disorder; (3) mixed or overlapping syndrome of 
VaP with PD and other neurodegenerative parkinsonism 
(Rektor et al. 2018). Neuropathology shows multiple small 
ischemic lesions in BG, white matter, and less often the SN 
that involve the corticostriatopallidal-thalamic and thalamo-
cortical loops (Jellinger 2008a; Zijlmans et al. 2004). Post-
mortem demonstration of LBs in 13% of patients with multi-
infarct encephalopathy, an incidence twice as common as in 
age-matched controls, suggested subclinical PD, whereas 
vascular lesions were observed in 44–58% of individuals 
without dementia and in up to 94% of those with demen-
tia (Jellinger and Attems 2008). Vascular lesions affecting 
the BG, subcortical and deep white matter changes suggest 
disruption of the striato-thalamo-cortical circuits leading to 
motor and cognitive impairment in VaP (Chen et al. 2014; 
Sibon and Tison 2004).

Drug‑ and toxin‑related parkinsonism

Drug-induced parkinsonism, which can be clinically con-
fused with AR PD, is often associated with neuroleptic 
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drugs, antipsychotics, calcium channel blocking agents, 
and other substances causing DA depletion, blockage of 
postsynaptic D1 and D2 receptors, or loss of striatonigral 
TH immunoreactivity (Wenning et al. 2011). Drug-induced 
parkinsonism affects 15–60% of patients treated with typical 
neuroleptics, depending on their type, dose, and the underly-
ing susceptibility of the patients, but neuropathologial data 
are poor (Shuaib et al. 2016). The mechanisms of DIB and 
other extrapyramidal effects (dystonia, akathisia, etc.) are 
thought to be due to antagonistic binding of DAergic recep-
tors in the BG and the mesolimbic and mesocortical path-
ways (Kamin et al. 2000). Frequent age-related SNc cell loss 
or iLBD are predisposed to adverse drug effects as a result 
of relative DA deficiency. Parkinsonism resulting from car-
bon monoxide, carbon disulfide intoxication or postnarcotic 
encephalopathy is caused by anoxic lesions with necrosis 
of GP and SN (Ginsberg 1985). Methamphetamine abuse 
is linked to injury of SN neurons and increased risk of PD 
(Rumpf et al. 2018). Methanol intoxication causes bilateral 
putaminal necrosis and necrosis of subcortical white mat-
ter (Franquet et al. 2012). Severe parkinsonism after poi-
soning with potassium cyanide is due to neuronal loss and 
gliosis in GP, Put, and SNr, while SNc was spared (Uitti 
et al. 1985). Chronic lead intoxication causes SN damage, 
and manganese encephalopathy, e.g., due to welding expo-
sure, is associated with an l-dopa resistent akinetic-rigid 
syndrome (Racette et al. 2012), related to neuronal loss and 
gliosis, particularly in GPi, and in striatum with little or no 
SN damage and absence of LBs (Perl and Olanow 2007). 
Accumulation of manganese in BG associated with hepatic 
cirrhosis is a rare disorder with parkinsonism, ataxia, and 
cognitive impairment (Maffeo et al. 2014). Chronic expo-
sure to trichlorethylene (TCE) and carbondisulfide  (CS2) 
can cause parkinsonism through mitochondrial complex I 
inhibition (Gash et al. 2008). Severe l-dopa-responsive par-
kinsonism developed after exposure to MPTP—a synthetic 
heroin drug that leads to mitochondrial damage and neu-
ronal death—shows diffuse neuronal loss and gliosis in SN, 
extracellular NM and activated microglia but no typical LBs 
(Langston et al. 1999). Eosinophilic inclusion bodies resem-
bling LBs have been seen in SN and LC of MPTP-treated 
aged monkeys, but their ultrastructure differed from that of 
human LBs (Forno et al. 1996). Other toxins that may cause 
parkinsonism include paraquat, rotenone, other herbicides 
and pesticides (Hoglinger et al. 2006; Taba 2017).

Other lesions causing parkinsonism

Parkinsonism has been observed in a wide variety of dis-
orders involving the brainstem or SN, or both, that affect 
DAergic projections, such as destruction of the SN by bullet 
injury, after direct traumatic impact, herniation-contusion of 
the upper brainstem or midbrain damage caused by increased 

intracranial pressure, with loss of the nigrostriatal pathway 
(Formisano and Zasler 2014). Chronic traumatic encepha-
lopathy (punch drunk, pugilistic encephalopathy, boxer’s 
dementia), a consequence of repetitive mild traumatic brain 
injury, often accompanied by parkinsonian symptoms, is 
characterized by diffuse cortical atrophy; degeneration of 
corpus callosum and cerebellum; cell loss in SN, LC, and 
striatum, deposition of p-tau protein as NFTs, astrocytic tan-
gles in superficial cortical layers, thread-like neurites and 
astrocytic inclusions around small blood vessels at the sulcal 
depths of the cortex (McKee et al. 2015, 2018). Parkinson-
ism has also been observed in rare cases of tuberculoma, 
brainstem tumors, solid tumors causing brainstem compres-
sion, calcification of the BG (Fahr’s disease), viral encepha-
litis, including HIV infections, subacute sclerosing panen-
cephalitis, multiple sclerosis, paraneoplastic syndromes 
(Grant and Graus 2009; Yap et al. 2017), normal-pressure 
hydrocephalus (Wenning et al. 2011), and cerebrovascular 
diseases (Grabli et al. 2011; Mehanna and Jankovic 2013). 
Parkinsonism may occur in a variety of inherited metabolic 
disorders, like Gaucher disease (linking GBA mutations 
to PD) (Mullin et al. 2019; Sidransky and Lopez 2012), 
Niemann-Pick disease (parkinsonism with mutated NPC1), 
lysosomal storage diseases, disorders of amino acid metabo-
lism (phenylketonuria, maple syrup urine disease, methyl-
malonic acidemia) and inherited mitochondrial disorders, 
showing genetic evidence of common pathways with PD 
(Limphaibool et al. 2018). There are links between PD and 
metal storage disorders (Botsford et al. 2018), in particular 
iron accumulation causing nigral cell death (Pietracupa et al. 
2017). The most frequent metal storage disorders associated 
with parkinsonism are hereditary hemochromatosis, PKAN 
and Wilson’s disease (Botsford et al. 2018).

Vision for future research

Despite considerable clinical and pathologic overlapping, 
most types of movement disorders, particularly those of 
neurodegenerative origin, show characteristic pathologic 
pictures. The deposition of pathologic fibrillary proteins or 
the distribution patterns of CNS lesions may or may not be 
typical cytoskeletal signposts pointing to the correct diagno-
sis and to their pathophysiology. Because in vivo markers for 
most of these disorders (except those with known molecular 
genetic backgrounds) are still poor, the diagnosis usually 
depends on clinicomorphologic features. Specific identifica-
tion and correct diagnosis of some of these disorders may 
be difficult because they share clinical and morphologic 
phenotypes with other neurodegenerative diseases or have 
considerable intrafamilial, interfamilial, and interindividual 
differences. Therefore, comprehensive morphologic studies 
using modern methods of neuropathobiology are needed to 



968 K. A. Jellinger 

1 3

distinguish the different disease entities. Consensus data on 
clinical and neuropathologic criteria, together with molecu-
lar genetic and biochemical data, will aid in correct classify-
ing and diagnosing neurodegenerative movement disorders 
and provide further insight into their pathophysiology and 
pathogenesis as a basis for options of treatment and further 
directions of research.
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