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Abstract
Mild cognitive impairment (MCI) and chemosensory dysfunction are non-motor symptoms of Parkinson’s disease (PD), but 
their association is unclear. We explored if MCI and the involvement of single cognitive domains influence olfaction and 
taste in PD. The role of demographic, clinical and neuropsychiatric variables was tested. We recruited 50 PD patients without 
dementia, no other reasons for cognitive impairment, no condition that could influence evaluation of cognition, olfaction 
and taste. They underwent a full neuropsychological and chemosensory (i.e., olfaction and taste) test with the Sniffin’ Sticks 
Extended test (SSET), Whole Mouth test (WMT) and Taste Strips test (TST). Fifty age- and sex-matched healthy subjects 
served as controls. Olfactory function and sweet identification were worse in PD than controls. MCI negatively influenced 
odor identification. Factors associated with poor olfactory function were age, overall cognition, apathy, and visuospatial dys-
function. Sour identification was affected by MCI and executive dysfunction, and salty identification by executive dysfunction. 
MCI, age and executive dysfunction worsened TST score. Awareness of olfactory dysfunction was impaired in PD with MCI. 
Education positively influenced SSET and TST scores. Our data confirmed that olfaction is abnormal in PD, while taste was 
only slightly impaired. Olfaction was worse in PD patients with visuospatial dysfunction, while sour and salty identification 
was worse in those with MCI and executive dysfunction, suggesting different underlying anatomical abnormalities. Future 
studies should incorporate neuroimaging and cerebrospinal fluid data to confirm this hypothesis. SSET odor identification 
and TST sour identification could be explored as quick screening tests for PD-MCI.

Keywords Chemosensory function · Cognition · Mild cognitive impairment (MCI) · Olfaction · Parkinson’s disease (PD) · 
Taste

Introduction

Converging studies indicate that olfactory dysfunction has 
a prevalence of up to 90% in Parkinson’s disease (PD) and it 
may occur before motor symptoms (Doty et al. 1988, 2015; 
Haugen et al. 2016). Olfactory bulb is involved by synuclein 
pathology very early in PD (Braak and Del 2009; Jellinger 
2015), and smell impairment has been proposed as a pre-
clinical PD biomarker (Fullard et al. 2016). Taste dysfunc-
tion, even if not as severe as olfactory deficit, was reported 
to a variable extent in PD (Sienkiewicz-Jarosz et al. 2005, 
2013; Lang et al. 2006; Shah et al. 2009; Deeb et al. 2010; 
Kim et al. 2011; Cecchini et al. 2014, 2015) and was found 
to be stable and persistent in a longitudinal study (Ricatti 
et al. 2017). Neurodegeneration in the frontal operculum 
or the orbitofrontal cortex, which are involved late in dis-
ease course (Braak and Del 2009), has been suggested as the 
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anatomical substrate of taste deficit in PD (Shah et al. 2009; 
Deeb et al. 2010; Cecchini et al. 2014, 2015; Jellinger 2015).

Cognitive impairment can occur in early disease stages 
(Wills et al. 2016), and it may range from mild cognitive 
impairment (MCI) to dementia, with PD-related MCI (PD-
MCI) representing a risk factor for PD-dementia (Federico 
et al. 2017). PD-MCI has represented a vague clinical condi-
tion (Jellinger 2013), since the publication of the Movement 
Disorder Society diagnostic criteria (Litvan et al. 2012). 
Neuropsychiatric symptoms, such as depression and apathy, 
may coexist with MCI in PD and stand among the most com-
mon non-motor PD features (Monastero et al. 2013; Herman 
et al. 2015; Weintraub et al. 2015). Olfaction was found to 
be impaired in Alzheimer’s disease (AD) and related MCI 
(Djordjevic et al. 2008; Ottaviano et al. 2016; Jung et al. 
2019), but PD- and AD-related MCI are known to differ 
in terms of predominantly involved cognitive domain and 
underlying neuropathological changes (Besser et al. 2016).

Apart from a single study on Korean patients that 
reported PD-MCI to be more likely associated with severe 
olfactory dysfunction than PD with normal cognition (Park 
et al. 2018), the association between MCI and chemosensory 
impairment in PD is largely unexplored. In particular, open 
questions on this topic include (a) whether olfaction and 
taste are differentially affected by PD-MCI, (b) the role of 
single cognitive domain dysfunction, and (c) whether indi-
vidual features of chemosensory function (i.e., threshold, 
discrimination, identification) are differentially involved in 
PD-MCI.

To offer new information on this topic, we recruited a 
group of PD patients, who underwent a thorough neuropsy-
chological testing and a comprehensive subjective and 
objective chemosensory evaluation. Patients were strati-
fied according to the presence of MCI and the involvement 
of single cognitive domains. The effect of demographic, 
clinical, and neuropsychiatric covariates on olfaction and 
taste was also explored. Patients with PD-dementia were 
excluded.

Materials and methods

Subjects

We evaluated 108 consecutive PD patients at the Department 
of Neuroscience, Verona University Hospital, Italy. Inclu-
sion criteria were: (a) diagnosis of idiopathic PD; (b) no PD-
associated dementia (Jellinger 2018); (c) no other reasons 
for cognitive impairment (e.g., delirium, cerebrovascular 
disease, head trauma, metabolic abnormalities, medication 
adverse effects); (d) no other PD-related conditions (e.g., 
severe motor impairment, psychosis, severe motor fluctua-
tions or dyskinesia, excessive daytime sleepiness) that could 

have influenced assessment of cognition (Litvan et al. 2012; 
Federico et al. 2017), olfaction and taste; (e) no history of 
ear nose and throat disorders, middle ear surgery, head or 
face trauma, Bell’s palsy, systemic diseases or any other 
clinical condition that could have interfered with olfaction 
and taste evaluation (Cecchini et al. 2018).

After screening for inclusion criteria (Fig. 1), 50 patients 
(21 females, 29 males; age: 68.1 ± 10.5 years, interquar-
tile range, IQR 57.8–77.3; education: 9.1 ± 3.8 years, IQR 
5.0–13.0) were included in the study.

PD motor symptoms were measured with the modified 
Hoehn-Yahr (H-Y) scale and the Movement Disorder Society 
unified Parkinson’s disease rating motor subscale (UPDRS-
III). Total levodopa equivalent daily dose (LEDD, mg) was 
calculated according to conversion formulae (Tomlinson 
et al. 2010).

Fifty healthy subjects matched for sex (27 females, 
23 males; n.s. vs. patients), age (67.5 ± 9.4  years, IQR 
60.0–72.8; n.s.) and education (9.5 ± 4.5  years, IQR 
4.5–13.8; n.s.) served as controls. Controls were screened for 
cognition with Montreal cognitive assessment (MoCA), and 
underwent a clinical history collection to rule out conditions 
that could have interfered with olfaction and taste evaluation 
(point e) of inclusion criteria for patients.

All procedures were in accordance with the guidelines of 
the local ethical committee. Participants gave written con-
sent prior to inclusion in the study, which was conducted 
according to the 1964 Declaration of Helsinki and its later 
amendments.

Assessed for eligibility
(N = 124)

Eligible and included
(N = 50)

Excluded (N = 74) 

Dementia (N = 21)
Delirium or psychosis (N = 5)

Stroke or cerebrovascular disease (N = 2)
Adverse effects of medication (N = 4)

Severe motor impairment (N = 5)
Severe motor fluctuations or dyskinesia (N = 7)

Excessive daytime sleepiness (N = 2)
Conditions potentially interfering with smell and 

taste evaluation (N = 9)
More than one reason for exclusion (N = 19)

Fig. 1  Flow diagram of the study and reasons for patients’ exclusion
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Neuropsychological assessment

All patients were in a stable ON condition and underwent 
the mini mental state examination (MMSE), MoCA and a 
comprehensive 15-test neuropsychological battery that were 
performed by an expert neuropsychologist (AF) in a quiet 
room (Federico et al. 2015, 2017; Goldman et al. 2015). 
According to the Movement Disorder Society level II criteria 
for PD-MCI, the cognitive battery included at least two tests 
for each of the five cognitive domains (i.e., memory, atten-
tion, executive function, visuospatial function and language) 
and the diagnosis of PD-MCI required the abnormality of at 
least two tests (Litvan et al. 2012).

Memory was examined with the Rey’s auditory verbal 
learning immediate and recall tests (Carlesimo et al. 1996). 
Attention and working memory were assessed with the digit 
span forward (Mondini et al. 2011), attentional matrices 
parts I and II (Della Sala et al. 1992), and trail making test 
part A (Mondini et al. 2011).

Executive function was explored with the frontal assess-
ment battery (Appollonio et al. 2005), phonemic fluency test 
(Mondini et al. 2011) and the Stroop task (Brugnolo et al. 
2016). Visuospatial function was assessed with the Benton 
judgement of line orientation test (Benton et al. 1978), the 
intersecting pentagons derived from the MMSE (Federico 
et al. 2017) and the clock copying test (Goldman et al. 2015). 
Language was evaluated with the short form of the Boston 
naming test (Fastenau et al. 1998), object naming test and 
verb naming test (Capasso and Miceli 2001).

Depression was assessed with the Hamilton depression 
rating (HAM–D) scale. Apathy was evaluated with the apa-
thy evaluation self-report (AES–S) scale (Marin et al. 1991).

Chemosensory evaluation

All subjects were asked to rate their olfaction and taste as 
better- than-normal, normal, or less-than-normal. Olfaction 
and taste were evaluated in a well-ventilated room with vali-
dated tests based on a forced-choice paradigm (Burghart, 
Wedel, Germany). Smell was assessed by the Sniffin’ Sticks 
Extended test (SSET) (Hummel et al. 2007). The SSET is 
composed of three subtests, namely odor threshold (T; i.e., 
detecting the lowest concentration), odor discrimination (D; 
i.e., separating a specific odor from others) and odor identifi-
cation (I; i.e., naming a specific odor). The sum of the SSET 
scores (TDI score) defines the olfactory performance of sub-
ject as normosmia (TDI score ≥ 30.5), hyposmia (TDI < 30.5 
and > 16), and functional anosmia (i.e., total loss or minimal 
residual smell perception; TDI ≤ 16) (Weintraub et al. 2015).

Taste was examined by the Whole Mouth test (WMT) 
and the Taste Strips test (TST) (Mueller et al. 2003; Hum-
mel et al. 2007; Landis et al. 2009). The WMT is a rapid 
screening test for the four basic tastes and consists of four 

supra-threshold taste solutions (sweet, sour, salty, bitter) 
sprayed into the mouth. TST is a validated and detailed pro-
cedure for the evaluation of taste sensitivity using sixteen 
spoon-shaped filter strips impregnated with four concen-
trations of the four basic tastes. The TST strips are placed 
on the tongue and the subject is asked to identify the taste 
quality from a list of four descriptors (sweet, sour, salty, 
and bitter) in a forced choice paradigm. Before each strip 
administration, the mouth is rinsed with water. The sum of 
TST correct identifications defines the taste performance as 
normogeusia (TST score ≥ 9), hypogeusia (TST score < 9), 
and complete ageusia (i.e., no sensation to the highest con-
centrations of all the four solutions) (Landis et al. 2009).

Statistical analysis

The normality of distribution was analyzed with the skew-
ness-kurtosis test. Continuous variables were explored with 
t test in case of normal distribution, and non-parametrical 
Mann–Whitney U test when the distribution was not nor-
mal. Pearson’s χ2 test with Yates’ correction was applied to 
dichotomous variables. Spearman’s rho coefficient was used 
to explore the correlation between olfaction and taste scores. 
Linear regression multivariate analysis (backward model) 
was used to explore the influence of the demographic (age, 
sex, education), clinical (PD duration, H-Y, UPDRS-III, 
LEDD), cognitive (MMSE, MoCA, MCI, cognitive domain 
involved) and neuropsychiatric (HAD, AES-S) covariates on 
SSET and TST measures. P < 0.05 (two-tailed) was taken as 
the significance threshold for all the tests. Bonferroni’s cor-
rection was applied when analysing SSET and TST scores 
according to the involvement of single cognitive domains.

Results

Neuropsychological findings

PD-MCI was present in 26 patients (PD-MCI + group, 52%; 
single-domain MCI: n = 13, multiple-domain MCI: n = 13), 
and absent in 24 of them (PD-MCI—group, 48%) (Fed-
erico et al. 2017). Among demographic and clinical char-
acteristics, UPDRS-III, MMSE and MoCA were signifi-
cantly worse in PD-MCI + than PD-MCI–, while the other 
variables did not differ between the two groups (Table 1). 
Among cognitive domains, memory and executive func-
tions were significantly more involved in PD-MCI + than 
PD-MCI—(Table 1).

Olfaction

SSET scores were significantly worse in patients (D: 
7.8 ± 2.1; I: 7.0 ± 3.3; TDI: 20.0 ± 6.4) than controls 
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(D: 10.6 ± 2.6, p < 0.001; I: 12.2 ± 2.6, p < 0.001; TDI: 
27.4 ± 5.8, p < 0.001) except for T (PD, 5.1 ± 3.4; con-
trols: 4.5 ± 2.5; n.s.; Fig. 2a).

Among the SSET subtest scores, I was significantly 
worse in PD-MCI + (6.2 ± 3.0) than PD-MCI − (8.0 ± 3.4; 
p = 0.046), while the other scores did not significantly 
differ between PD-MCI + (T: 5.0 ± 3.4; D: 7.5 ± 2.1; TDI: 
18.8 ± 6.7) and PD-MCI − (T: 5.2 ± 3.4; D: 8.1 ± 2.1; TDI: 
21.3 ± 6.1; n.s. for all comparisons; Fig. 2b). When ana-
lyzing SSET scores according to the involved cognitive 
domains, TDI was significantly worse in PD patients with 
abnormal (13.5 ± 5.2) than those with preserved visuos-
patial function (21.1 ± 5.6; p = 0.003; Fig. 2c), while the 
other SSET scores were not influenced by the involve-
ment of the other cognitive domains.

Taste

Nearly all PD patients and controls correctly identified the 
four WMT spray solutions (PD: 98% controls: 96%; n.s.).

Among TST scores, sweet was significantly worse in 
patients (3.2 ± 0.8) than controls (3.6 ± 0.6; p = 0.007), 
while the other taste qualities and the TST global score did 
not differ between PD (sour: 2.0 ± 1.1; salty: 3.1 ± 0.9; bit-
ter: 3.2 ± 0.9; TST: 11.6 ± 2.4) and controls (sour: 2.2 ± 1.0; 
salty: 3.3 ± 1.0; bitter: 3.1 ± 1.0; TST: 12.0 ± 2.2; n.s. for all 
comparisons; Fig. 3a).

Sour and TST global score were significantly worse 
in PD-MCI + (sour: 1.6 ± 1.1; TST: 10.9 ± 2.3) than PD-
MCI − (sour: 2.4 ± 0.9, p = 0.003; TST: 12.4 ± 2.3, p = 0.01), 
while the other taste qualities did not significantly differ 

Table 1  Demographic and 
clinical characteristics of 
PD patients according to the 
presence of PD-MCI

Data are presented as mean ± SD, interquartile range except for dichotomous variables
AES-S apathy evaluation self-report scale, DA dopamine agonist, HAD Hamilton depression rating scale, 
H-Y modified Hoehn and Yahr staging scale, LD levodopa, LEDD levodopa equivalent daily dose, MAO-
I monoamine oxidase inhibitor, MCI mild cognitive impairment, MDS UPDRS-III Movement Disorders 
Society unified Parkinson’s disease rating scale part III, MMSE mini mental state examination, MoCA 
Montreal cognitive assessment, PD Parkinson’s disease, PD-MCI + PD patients with MCI, PD-MCI – PD 
patients without MCI, WM working memory
a The cognitive domain was considered as involved when at least one neuropsychological test of that 
domain was abnormal

Variable PD-MCI + (n = 26) PD-MCI − (n = 24) p

Demographic
 Age 69.0 ± 10.6, 65.0–77.5 67.1 ± 10.5, 59.3–74.5 n.s
 Sex (male/female) 18/8 11/13 n.s
 Education (years) 8.5 ± 3.9, 5.0–13.0 9.8 ± 3.7, 8.0–13.0 n.s

Clinical
 PD duration (years) 5.8 ± 5.0, 3.0–5.0 5.2 ± 4.5, 2.3–8.0 n.s
 H-Y (1–5) 1.9 ± 0.9, 1.0–2.0 1.5 ± 0.6, 1.0–2.0 n.s
 MDS UPDRS-III (0–132) 28.4 ± 16.0, 19.0–33.0 20.0 ± 13.4, 11.5–26.5 0.02

Treatment
 LD (yes/no) 23/3 20/4 n.s
 DA (yes/no) 16/10 9/15 n.s
 MAO-I (yes/no) 8/18 9/15 n.s
 Total LEDD (mg) 665 ± 513, 310–710 484 ± 313, 410–731 n.s
 MMSE (0–30) 26.5 ± 2.1, 25.0–28.5 29.0 ± 1.5, 28.8–30.0 < 0.001
 MoCA (0–30) 23.1 ± 1.8, 22.0–25.5 25.3 ± 1.3, 25.0–26.1 < 0.001

Involved cognitive  domaina

 Memory (yes/no) 6/20 0/24 0.038
 Attention and WM (yes/no) 10/16 5/19 n.s
 Executive function (yes/no) 24/2 3/21 < 0.001
 Visuospatial function (yes/no) 6/20 1/23 n.s
 Language (yes/no) 0/26 0/24 n.s
 HAD (0–52) 6.5 ± 6.0, 3.0–8.0 6.8 ± 5.0, 3.0–10.0 n.s
 AES-S (18–72) 31.3 ± 11.4, 22.0–39.0 28.2 ± 11.0, 18.3–39.0 n.s
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between the two groups (PD-MCI +: sweet, 3.2 ± 0.8; salty, 
2.9 ± 0.8; bitter, 3.2 ± 0.7; PD-MCI −: sweet, 3.3 ± 0.9; salty, 
3.3 ± 0.9; bitter, 3.4 ± 0.9; n.s. for all comparisons; Fig. 3b).

Sour, salty and TST global scores were significantly 
worse in PD patients with abnormal (sour: 1.6 ± 1.1; salty: 

2.8 ± 0.8; TST: 10.8 ± 2.7) than those with preserved execu-
tive function (sour: 2.4 ± 0.8, p = 0.008; salty: 3.4 ± 0.8, 
p = 0.008; TST: 12.6 ± 1.6, p = 0.005; Fig. 3c), while the 
other scores were not influenced by the involvement of the 
other cognitive domains.

Correlation between olfaction and taste total scores

Spearman’s rho correlation coefficient (Bonferroni’s cor-
rected to account for the three comparisons) showed no sig-
nificant correlation either in the whole PD group (rho = 0.03, 
n.s.) or according to the presence of MCI (PD-MCI −: 
rho = 0.34, n.s.; PD-MCI+: rho = 0.02, n.s.; Fig. 4).

Concordance between self‑rating assessment 
and measures of chemosensory function

Olfaction was reported as less-than-normal in 27 PD patients 
(54%; PD-MCI +: n = 14, PD-MCI −: n = 13; n.s.). Func-
tional anosmia was found in 17 (34%; PD-MCI +: n = 10, 
PD-MCI −: n = 7; n.s.) and hyposmia in 29 PD patients 
(58% PD-MCI +: n = 14, PD-MCI −: n = 15; n.s.). PD-
MCI − patients who reported olfaction as less-than-normal 
had worse TDI (20.0 ± 5.7) than those who reported normal/
better-than-normal olfaction (24.0 ± 5.5; p = 0.042). In con-
trast, TDI did not significantly differ in PD-MCI + patients 
according to subjective complaints (less-than-normal 
olfaction: 18.5 ± 5.9; normal/better-than-normal olfaction: 
19.3 ± 8.0; n.s.).

Taste was reported as less-than-normal in five PD 
patients (PD-MCI +: n = 3, PD-MCI −: n = 2; n.s.). Hypo-
geusia was found in two PD patients (PD-MCI +: n = 1, 
PD-MCI − group: n = 1; n.s.) and ageusia in one PD-
MCI + patient. The small number of patients reporting 
abnormal taste hampered further analyses to compare sub-
jective complaints to taste measures.

Multivariate analysis

Multivariate linear regression was applied to explore the 
influence of demographic and clinical covariates on olfaction 
and taste in patients. TDI score was positively influenced by 
education and negatively influenced by age, MMSE, AES-S, 
and visuospatial dysfunction (Table 2). TST score was posi-
tively influenced by education and negatively influenced by 
age, and executive dysfunction (Table 2).

Discussion

Our findings were that: (a) olfactory function and sweet 
identification were worse in PD than controls, (b) odor 
identification was worse in PD-MCI + than PD-MCI −, TDI 

Fig. 2  Box plot showing the Sniffin’ Sticks Extended test (SSET) 
scores. a Scores from healthy controls (CTRL, white boxes) and Par-
kinson’s disease patients (PD, light grey boxes) for odor threshold 
(T), odor discrimination (D), odor identification (I), and the sum of 
the SSET scores (TDI). b Scores from PD patients without mild cog-
nitive impairment (MCI −, white boxes) and those with mild cogni-
tive impairment (MCI +, light grey boxes) for T, D, I, and TDI. Panel 
C: scores from PD patients with no involvement of visuospatial func-
tion to neuropsychological testing (VS–, white boxes) and those with 
abnormal visuospatial function (VS +, light grey boxes) for T, D, I, 
and TDI. *Marks significant comparison (a, b p < 0.05; c p < 0.01 
because Bonferroni’s correction was applied). Open circles show 
min/max outliers
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score was worse in PD with visuospatial dysfunction, and 
age, MMSE and AES-S negatively influenced TDI score; (c) 
sour identification was worse in PD with MCI and execu-
tive dysfunction, salty identification was worse in PD with 
executive dysfunction, and age significantly worsened TST 
score; (d) olfaction and taste measures were not cross-cor-
related; (e) awareness of olfactory dysfunction was impaired 
in PD with MCI; (f) education positively influenced TDI 
and TST scores.

We confirmed olfaction to be largely abnormal in PD 
(Rahayel et al. 2012). We found all SSET measures, except 
odor threshold, to be worse in PD than controls. This find-
ing is in accordance with previous reports of PD to be more 
impaired in odor identification and recognition than thresh-
old, the former ones being considered more cognitively 
demanding than the latter (Hedner et al. 2010; Rahayel et al. 

2012; Cecchini et al. 2016). However, this point is still a 
matter of debate, because threshold tests require temporal 
decisions among weak stimuli implying considerable cogni-
tive involvement, and are generally less sensitive to chem-
osensory deficits. Moreover, threshold measures were found 
to be impacted in AD, PD, and multiple sclerosis (Mesholam 
et al. 1998; Doty et al. 2017; Good et al. 2017).

Among taste scores, only sweet identification was worse 
in PD than controls. This finding confirms taste to be slightly 
impaired in PD (Sienkiewicz-Jarosz et al. 2005, 2013; Lang 
et al. 2006; Shah et al. 2009; Deeb et al. 2010; Kim et al. 
2011; Cecchini et al. 2014, 2015). Differences in PD popu-
lations, cognitive impairment and methods to assess taste 
across studies might have hampered the definition of a robust 
psychophysical marker of taste damage in PD. Genetic fac-
tors influencing taste should be considered (Risso et al. 

Fig. 3  Box plot showing the 
Taste Strip test (TST) scores. 
a Scores from healthy controls 
(CTRL, white boxes) and 
Parkinson’s disease patients 
(PD, light grey boxes) for sweet, 
sour, salty, bitter and the sum 
TST scores (TST). b Scores 
from PD patients without mild 
cognitive impairment (MCI −, 
white boxes) and those with 
mild cognitive impairment 
(MCI +, light grey boxes) for 
sweet, sour, salty, bitter and 
TST. c Scores from PD patients 
with no involvement of execu-
tive function to neuropsycho-
logical testing (EX −, white 
boxes) and those with abnormal 
executive function (EX +, light 
grey boxes) for sweet, sour, 
salty, bitter and TST. *Marks 
significant comparison (a, b 
p < 0.05; c p < 0.01 because 
Bonferroni’s correction was 
applied). Open circles show 
min/max outliers
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2016). Indeed, previous studies showed an increase in phe-
nylthiocarbamide (Moberg et al. 2007) and the bitter com-
pound 6-n-propylthiouracil non-taster status (Cossu et al. 
2018) in PD. In addition, our inclusion criteria ruled out 
other causes of chemosensory dysfunction and might have 
resulted in a very selected population.

We found PD-MCI + to be associated with worse odor 
identification. This finding is partially in keeping with a pre-
vious report, whereby all measures of a Korean SSET ver-
sion were worse in PD with MCI than cognitively-intact PD 
(Weintraub et al. 2015). The different odor types in the two 
SSET versions might explain the discrepancies between the 
two studies. However, in the Korean study (Park et al. 2018), 
odor identification was the most severely affected measure, 
probably because this subtest is cognitively demanding, and 

thus is involved early in cognitively-affected PD (Djordje-
vic et al. 2008). Odor identification test was found to pre-
dict PD patients at risk of cognitive impairment (Damholdt 
et al. 2011), long-term cognitive decline in PD (Fullard et al. 
2016; Domellöf et al. 2017), and the most impaired olfac-
tory measure in AD-related MCI (Roalf et al. 2017), and in 
older-adult Down syndrome, which is associated with AD 
neuropathology (Cecchini et al. 2016). In keeping with a 
previous report of more rapid cognitive decline in early PD 
patients with hyposmia at diagnosis (Gjerde et al. 2018), our 
finding suggests odor identification could represent a quick 
screening test for PD-MCI, if confirmed in larger studies.

Patients with visuospatial dysfunction showed worse 
TDI score than those with preserved visuospatial domain, 
and MMSE and visuospatial dysfunction predicted worse 
TDI score in the multivariate analysis. These findings are 
in keeping with previous reports of olfactory dysfunction as 
predictor of early cognitive decline and post-operative delir-
ium (Baba et al. 2012; Fullard et al. 2016; Kim et al. 2016; 
Domellöf et al. 2017), severe hyposmia and visuospatial 
impairment as risk factors for dementia in PD (Baba et al. 
2012), and olfaction abnormalities as biomarker of cholin-
ergic denervation (Bohnen et al. 2010; Bohnen and Müller 
2013). Visuospatial dysfunction and hyposmia share parieto-
temporal and limbic metabolic and electroencephalographic 
changes in PD (Baba et al. 2012; Iannilli et al. 2017; Wu 
et al. 2018). AD pathology, which preferentially involves 
limbic and posterior cortices, may coexist with Lewy bodies 
in PD and is associated with worse cognition (Irwin et al. 
2013). AD cerebrospinal fluid (CSF) biomarkers may predict 
long-term cognitive decline in PD (Baba et al. 2012). Our 
data indicate a possible correlation between MCI, in particu-
lar visuospatial dysfunction, olfaction impairment and AD 
pathology, which may predict conversion to dementia, in PD. 
They suggest later cortical contribution to olfaction impair-
ment that summates to early olfactory bulb degeneration 

Fig. 4  Scatterplot showing the correlation between Sniffin’ Sticks 
Extended test (SSET) sum of the odor threshold, discrimination, and 
identification (TDI) score, and the Taste Strip test (TST) sum score 
in PD patients without mild cognitive impairment (MCI −, open cir-
cles; continuous trend line) and those with mild cognitive impairment 
(MCI +, closed circles; dashed trend line). No correlation was statisti-
cally significant (Spearman’s rho coefficient)

Table 2  Linear regression 
model analysis for olfaction and 
taste in PD patients

Here are reported only covariates that turned out to be significant in multivariate linear regression analysis
AES-S apathy evaluation self-report, MMSE mini mental state evaluation, TDI sum of the odor threshold, 
odor discrimination and odor identification scores in the Sniffin’ Sticks Extended test, TST Taste Strip test

Olfaction and taste scores and significant covariates β 95% CI p value

TDI score
 Age (years) − 0.19 − 0.35; − 0.007 0.007
 Education (years) 0.44 0.004; 0.087 0.045
 MMSE score − 0.71 − 0.78; − 0.63 < 0.001
 AES-S score − 0.15 − 0.30; − 0.002 0.043
 Visuospatial function involvement (yes/no) − 6.32 − 11.05; − 1.58 0.01

TST score
 Age (years) − 0.07 − 0.12; − 0.02 0.005
 Education (years) 0.19 0.02; 0.036 0.028
 Executive function involvement (yes/no) − 1.66 − 2.87; − 0.46 0.008
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(Park et al. 2018). However, only six PD patients had visu-
ospatial dysfunction and future studies on larger populations 
should confirm these findings.

In keeping with three previous studies (Cramer et al. 
2010; Hong et al. 2015; Masala et al. 2018), but in contrast 
with another one (Morley et al. 2011), we found apathy to 
worsen olfaction. Differences among patient populations 
and methods to assess olfaction may explain the discrep-
ancy between studies. Smell is associated with emotional 
memory, and apathy may blunt responses to pleasant and 
unpleasant olfactory stimuli (Masala et al. 2018). Lower 
grey matter volume was found in the insula, limbic and 
temporal areas in PD with apathy (Alzaharani et al. 2016); 
these cortical areas show reduced metabolism in PD with 
hyposmia (Baba et al. 2012).

We found cognition to have a strong effect on taste 
performance, in that sour identification was worse in PD-
MCI + than PD-MCI −; PD with executive dysfunction 
showed worse sour and salty identification, while MCI and 
executive dysfunction negatively influenced TST score in the 
multivariate analysis. Taste abnormalities have been ascribed 
to cortical involvement, because first and second-order gus-
tatory neurons are spared in PD (Braak and Del 2009; Cec-
chini et al. 2014). Brain regions that were reported to differ 
between PD-MCI and cognitively-intact PD include insula 
and the prefrontal cortex (Mihaescu et al. 2018), which are 
also involved in taste perception (Cecchini et al. 2015). PD-
MCI is characterized by prevalent executive dysfunction 
(Federico et al. 2017; Park et al. 2018) that is associated 
with prefrontal cortex abnormalities (de Bondt et al. 2016). 
These findings point to shared cortical substrates for MCI 
and taste abnormalities and are in keeping with a functional 
genomics report of olfactory and taste receptor alteration in 
the prefrontal cortex in PD (Garcia-Esparcia et al. 2013). 
Sour identification could be tested as a screening tool for 
PD-MCI in future studies.

Sweet identification, which was worse in PD vs. controls, 
was not influenced by cognition, probably because it plays 
a key role in energy intake and the reward systems (Ricatti 
et al. 2017).

In accordance with previous studies (Doty et al. 2017), 
age negatively influenced olfaction and taste. Age did not 
significantly differ across our groups (PD vs. controls, PD-
MCI + vs. PD-MCI −) and thus did not represent a potential 
confounder.

In keeping with their separate anatomical pathways (Shah 
et al. 2009; Cecchini et al. 2015), olfaction and taste scores 
did not correlate to each other in our sample, suggesting 
the two chemosensory modalities should be examined 
separately.

Many PD patients were unaware of their olfactory defi-
cits. These findings confirm previous reports (Deeb et al. 
2010; White et al. 2016). The lower awareness in PD-MCI 

is in keeping with a previous study (Kawasaki et al. 2016). 
Olfaction should be always objectively explored with vali-
dated tests in PD, especially in PD-MCI.

In line with previous reports on normal subjects (Orhan 
et al. 2012), education positively influenced olfaction and 
taste performance. Chemosensory evaluation is a cognitively 
demanding task that can be influenced by education, context 
and experience (Kobayashi and Kennedy 2002). However, 
education did not differ across groups and did not represent 
a bias in this study.

The severity of motor symptoms was significantly differ-
ent in the two PD groups, as the Movement Disorder Society 
UPDRS-III score was worse in PD-MCI + than PD-MCI −. 
However, this variable was not significant in the multivari-
ate analysis, suggesting it did not influence chemosensory 
function.

Our control sample was composed of normal controls 
without cognitive impairment, thus a comparison between 
PD-MCI + and controls with MCI was not possible. In any 
case, such comparison would have been disputable, because 
PD-MCI is known to be clinically and pathologically distinct 
from AD-related MCI (Besser et al. 2016).

Limitations of our report include the small sample size, 
the absence of follow-up cognitive testing, neuroimaging 
data and CSF biomarkers. Moreover, for the sake of easi-
ness, we used whole mouth taste testing, which is not sen-
sitive to regional differences that have been documented 
in PD, whereby anterior tongue regions appear to be more 
sensitive than posterior ones (Sienkiewicz-Jarosz et al. 2005, 
2013; Doty et al. 2015). Future multicentre studies should 
overcome these limitations. Another limitation is that TDI 
and TST are composite measures not independent from the 
sum of single olfaction and taste scores. However, TDI and 
TST are widely used in the clinical setting to define the 
severity of chemosensory dysfunction. Moreover, a previous 
study exploring factors contributing to olfactory dysfunc-
tion concluded that combined testing of several components 
of olfaction, especially including assessment of thresholds, 
provides the most significant approach to the diagnosis of 
smell loss (Lötsch et al. 2008).

In conclusion, we found MCI and the dysfunction of 
executive and visuospatial domains to be associated with 
worse olfaction and taste, suggesting shared pathology 
between cognitive and chemosensory dysfunction in PD. 
SSET odor identification and TST sour identification could 
be tested as quick screening tools for PD-MCI in larger mul-
ticentre studies.
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