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Abstract
Neurodegeneration of the nigrostriatal dopaminergic system and concurrent dopamine (DA) deficiency in the basal ganglia 
represent core features of Parkinson’s disease (PD). Despite the central role of DA in the pathogenesis of PD, dopaminergic 
systems outside of the midbrain have not been systematically investigated for Lewy body pathology or neurodegeneration. 
Dopaminergic neurons show a surprisingly rich neurobiological diversity, suggesting that there is not one general type of 
dopaminergic neuron, but rather a spectrum of different dopaminergic phenotypes. This heterogeneity on the cellular level 
could account for the observed differences in susceptibility of the dopaminergic systems to the PD disease process. In this 
review, we will summarize the long history from the first description of PD to the rationally derived DA replacement therapy, 
describe the basal neuroanatomical and neuropathological features of the different dopaminergic systems in health and PD, 
explore how neuroimaging techniques broadened our view of the dysfunctional dopaminergic systems in PD and discuss 
how dopaminergic replacement therapy ameliorates the classical motor symptoms but simultaneously induces a new set of 
hyperdopaminergic symptoms.
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Abbreviations
123I-IBZM  123I-iodobenzamide
18F-FDG  18F-fluorodeoxyglucose
AADC  Aromatic l-amino acid decarboxylase
DA  Dopamine
DAT  Dopamine transporter
ICD  Impulse control disorder
LB  Lewy body
LID  l-dopa-induced dyskinesia
LN  Lewy neurite
MCI  Mild cognitive impairment
MSA  Multiple system atrophy
PD  Parkinson’s disease
PDD  Parkinson’s disease dementia
PSP  Progressive supranuclear palsy
RBD  REM sleep behavior disorder
RRF  Retrorubral field

SN  Substantia nigra
STR  Striatum
TH  Tyrosine hydroxylase
UPDRS  Unified Parkinson’s Disease Rating Scale
VMAT2  Vesicular monoamine transporter 2
VTA  Ventral tegmental area

Introduction

The basic clinical symptomatology of Parkinson’s dis-
ease (PD) has been well known for 200 years and has been 
expanded ever since. But how can we identify the neuro-
pathological correlates of these symptoms? How can we 
link symptoms to certain brain circuit dysfunction, or vice 
versa, how can we predict the clinical manifestation of a dys-
functional system? The comprehension of the association of 
neuronal systems and physiological functions/dysfunctions 
is crucial for the rational development of therapy to alle-
viate disabling symptoms. To investigate the link between 
symptomatology and neuropathology in humans, we con-
sider the following: (1) post-mortem neuropathological 
studies to explore neurodegeneration, distribution of Lewy 
bodies/neurites (LB, LN) and biochemical alterations; (2) 
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neuroimaging studies in combination with radiotracers to 
examine dysfunctional neurotransmission; and (3) clinical 
studies investigating the potential of certain medications to 
alleviate, worsen or even provoke certain symptoms.

In this review, we will briefly summarize the long road 
to the discovery of a dysfunctional dopaminergic system in 
PD laying the ground for the still up-to-date gold standard 
of therapy and then focus on the emerging evidence of the 
dysfunctional dopaminergic systems of the brain in PD.

A long road to go

The first medical description of PD dates back to 1817 
when James Parkinson published his monograph entitled 
‘An Essay on the Shaking Palsy’ based on the depiction of 
the clinical picture of six patients (Fig. 1) (Parkinson 1817). 
Fifty-five years later, in 1872, Jean-Martin Charcot identi-
fied bradykinesia as a defining feature of PD and suggested 
that tremor is not an obligate symptom of the disease. He 
therefore proposed the term “Parkinson’s disease”, thereby 
arguing against the term ‘shaking palsy’. At this time, neu-
ropathological correlate(s) of the diverse symptoms had not 
been resolved and PD remained a highly debilitating disor-
der without effective treatment.

Almost 100 years after the first description, neuropatho-
logical studies brought a first breakthrough in PD linking 
degeneration of the substantia nigra (SN) to the characteristic 

parkinsonian motor symptoms. In 1893, Georges Marinesco 
and Paul Blocq were the first to suggest that a lesion of the 
midbrain could contribute to the motor symptoms seen in 
PD. Their hypothesis was based on an autopsy of a patient 
with unilateral parkinsonism, which revealed a tuberculous 
nodule confined to the right cerebral peduncle. Two years 
later, Edouard Brissaud hypothesized that the SN might 
be the major pathological site of PD. This hypothesis was 
validated by the pioneering work of Constantin Trétiakoff in 
1919, who demonstrated substantial loss of pigmented nigral 
cells in post-mortem PD brains and inclusion bodies in the 
remaining neurons which he called ‘corps de Lewy’ (Lewy 
body, LB), in honor of their first describer Friederich H. 
Lewy (Trétiakoff 1919). The neurochemical consequences 
of SN degeneration, that is, dopamine (DA) deficiency in the 
basal ganglia of PD patients, however, remained unknown 
until 1960.

Thus, almost 40 years later, in 1957, Arvid Carlsson 
demonstrated in a pioneering work that administration of 
reserpine led to depletion of brain DA levels and onset of 
motor deficits in animals mimicking the symptomatology of 
parkinsonism. He also proved that application of l-dopa, a 
blood–brain barrier-passing precursor of DA, and noradrena-
line could alleviate these symptoms by restoring the brain 
DA to normal levels (Carlsson 1959; Carlsson et al. 1957). 
This work built the basis for the DA era of PD and was later 
honored with the Nobel Prize for medicine. Soon after this, 
Oleh Hornykiewicz and Herbert Ehringer demonstrated that 

Fig. 1  Milestones of PD pathogenesis and therapy
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DA is depleted in the putamen, caudate nucleus and SN of 
post-mortem brains of Parkinson patients (Hornykiewicz 
1963; Ehringer and Hornykiewicz 1960). Subsequently, 
they intravenously administered l-dopa to volunteering 
patients. The effect of this therapy was the complete abolish-
ment of the akinesia (Birkmayer and Hornykiewicz 1961). 
Thus, they introduced l-dopa to the field of neurology as 
the first rationally developed therapy of PD. In 1970, based 
on the elaborate work of George C. Cotzias (Cotzias et al. 
1969), the US Food and Drug Administration (FDA) finally 
approved l-dopa as the first drug to treat PD.

Although we know for a long time that the dopaminer-
gic system of the brain is neither among the first regions 
affected in the course of the disease, nor is it solely account-
able for the wide spectrum of symptoms, the gold standard 
of therapy is still based on the restoration of dopaminergic 
neurotransmission by means of administration of l-dopa or 
DA receptor agonists (Oertel 2017).

Parkinsonism as the core feature of PD

PD is a clinical diagnosis based on the occurrence of the 
characteristic parkinsonian motor abnormalities plus at 
least two supportive criteria and the complete absence of 
absolute exclusion criteria and red flags (Table 1) (Postuma 
et al. 2015). The three cardinal motor features of PD are 
bradykinesia/hypokinesia, tremor and rigidity. Typically, PD 
patients initially present with unilateral motor signs, most 
commonly with akinesia in combination with resting tremor 
affecting one of the upper extremities (Pallone 2007). The 
motor symptoms then gradually spread to the contralateral 
and lower limbs, but the initial asymmetry remains (Wein-
traub et al. 2008; Rodriguez-Oroz et al. 2009).

Bradykinesia means slowness of movement, whereas 
hypo-/akinesia is defined as reduced or diminished ampli-
tude and frequency of spontaneous movements (Rodriguez-
Oroz et al. 2009). Patients often describe this as ‘weaken-
ing of the limb’, but upon examination, the muscle strength 
is not altered. Bradykinesia usually presents as a slowness 
in everyday routine activities and reduced unilaterally arm 
swing during walking (Lewek et al. 2010; Jankovic 2008). 
Other signs of this symptom can be a decreased blinking rate 
(Biousse et al. 2004; Karson 1983), reduced facial expres-
sions (hypomimia) and gesturing, micrographia and a mono-
tone soft speech (hypophonia) (Ho et al. 1999).

Resting tremor (4–6 Hz), representing the most obvious 
and therefore stigmatizing symptom of PD, is defined as 
an involuntary rhythmic movement of a body part, which 
affects usually one of the upper extremities in the early phase 
of the disease (Jankovic 2008). Tremor is commonly one 
of the first motor signs to appear and starts generally in the 
fingers or the thumb, resulting in the typical “pill-rolling 
tremor” (Kalia and Lang 2015). It becomes apparent dur-
ing resting state, weakens or even disappears during volun-
tary movement of the limb and worsens when the patient is 
stressed or anxious.

Rigidity refers to an increased muscle tone in both the 
agonist and antagonist muscles resulting in stiffness of the 
limb. Upon clinical examination, a resistance to passive 
movement in the extremity can be observed. The resistance 
may be either smooth (lead-pipe phenomenon) or fluctuating 
(cogwheel rigidity) (Weintraub et al. 2008), the latter rather 
representing a mixture of tremor and rigidity.

As the disease advances, postural instability becomes 
progressively apparent, representing the most common 
cause of falls and significantly decreasing the quality of life 
(Williams et al. 2006; Koller et al. 1989; Michalowska et al. 
2005). Although postural instability usually develops during 
the course of the disease, it is mostly not present in early 
PD and an early occurrence therefore suggests an alterna-
tive diagnosis (Jankovic 2008; Postuma et al. 2015). The 
combination of cardinal motor symptoms, impairment of 
balance and an anterior shift of the mean center of gravity 
position finally results in the fully evolved late-stage par-
kinsonian posture and gait: the patient bends forward into 
a flexed truncal position and the stride length and walking 
pace substantially decrease. The patient begins to shuffle and 
may scrape the foot on the floor with reduced or absent arm 
swing (Morris et al. 1994; Jankovic 2008; Ebersbach et al. 
2013; Błaszczyk et al. 2007).

Apart from these motor symptoms, several non-motor 
features occur in PD, with a substantial impact on the qual-
ity of life of patients (Schrag 2000). The most prevalent 
non-motor features are the following: reduced gastric and 
bowel motility resulting in constipation, olfactory dysfunc-
tion, sleep disturbances [e.g., REM sleep behavior disorder 

Table 1  Diagnostic criteria for PD (modified from Postuma et  al. 
2015)

Diagnostic criteria for PD

Step 1. Diagnosis of parkinsonism
Bradykinesia/hypokinesia + one of the following
 Resting tremor
 Rigidity

Step 2. Supportive criteria
At least 2 out of 4
 Clear and dramatic response (> 30% in UPDRS III score) to dopa-

minergic therapy
 l-dopa-induced dyskinesia
 Resting tremor of a limb
 Positive test of either olfactory dysfunction or cardiac sympathetic 

denervation (scintigraphy)
Step 3. Absence of absolute exclusion criteria
Step 4. Absence of red flags
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(RBD)], forgetfulness (cognitive decline), depression, apa-
thy and symptoms of autonomic dysfunction (e.g., urinary 
urgency, dysfunctional thermoregulation, sweating, ortho-
static hypotension, erectile dysfunction) (Martinez-Martin 
et al. 2007). Importantly, non-motor features often precede 
the motor symptoms and therefore the diagnosis of PD by 
decades (Siderowf and Lang 2012).

In contrast to the well-known symptomatology of PD, it 
has been increasingly difficult to identify the neurobiological 
correlates underlying the parkinsonian symptoms and inte-
grate them in a pathophysiological model that explains the 
origin of brady-/akinesia, tremor and rigidity. While striatal 
DA deficiency could be clearly linked to the onset of motor 
dysfunction, the wide spectrum of symptoms and compen-
satory mechanisms in PD cannot be attributed solely to the 
loss of DA.

The dopaminergic systems of the brain

To understand the link between symptoms and a dysfunc-
tional neuronal brain circuit, it is essential to explore the 
neurotransmitter system and its physiological functions. 
Therefore, we will briefly summarize the dopaminergic 
systems of the brain and their implications in distinct physi-
ological functions.

The dopaminergic neurons of the mammalian central 
nervous system are distributed along ten distinct neuronal 
populations located in the ventral mesencephalon (A8–A10), 
diencephalon (A11–A15), olfactory bulb (A16) and retina 
(A17) (Fig. 2) (Björklund and Hökfelt 1984; Björklund and 
Dunnett 2007; Dahlstroem and Fuxe 1964). All of these dif-
ferent subsystems are engaged in several biological func-
tions such as motor, sensory and autonomic control, reward 
mechanisms and cognition (Smeets and González 2000; 
Montague et al. 2004).

The neurons of the ventral mesencephalic dopaminer-
gic complex (A8–A10) are morphologically indistinguish-
able and rather form a continuum without clear anatomical 
boundaries. The A8 cell group is primarily located in the 
retrorubral field (RRF), whereas A9 neurons are found in the 
SN pars compacta, and A10 refers to dopaminergic neurons 
within the ventral tegmental area (VTA) (Vogt Weisenhorn 
et al. 2016; Yetnikoff et al. 2014). All of them form one 
extensive mesotelencephalic dopaminergic projection sys-
tem comprising three major pathways: (1) a ventral mesos-
triatal or mesolimbic system which is involved in motivated 
behaviors predominantly originating in the VTA (A10); (2) 
a mesolimbocortical or mesocortical system responsible for 
memory and learning, mainly originating in the VTA (A10); 
and (3) a dorsal mesostriatal or nigrostriatal pathway, which 
is engaged in voluntary motor control mainly originating in 

the SN pars compacta (A9) (Figs. 3, 4) (Björklund and Dun-
nett 2007; Zeiss 2005; Flückiger et al. 1985).

The diencephalic dopaminergic system (A11–A15) 
contains five distinct cell groups. The neurons of A11 are 
located in the periventricular gray of the caudal hypothala-
mus and thalamus and project mainly to the dorsal horn of 
the spinal cord giving rise to the diencephalospinal pathway 
(Flückiger et al. 1985; Watson et al. 2012). It was suggested 
that these neurons contribute to anti-nociception and motor 
and autonomic reflexes (Clemens and Hochman 2004; Lind-
vall et al. 1983; Fleetwood-Walker et al. 1988). The tubero-
infundibular dopaminergic neurons of the arcuate nucleus 
(A12) and the dopaminergic neurons of the preoptic area 
(A14) are engaged in neuroendocrine functions by secreting 
DA to the hypophyseal portal blood system, thereby regu-
lating prolactin (PRL) and growth hormone (GH) secretion 
(Ben-Jonathan and Hnasko 2001; Turiault et al. 2007). The 
A13 dopaminergic cell group is located within the medial 
part of the zona incerta and projects locally into the hypo-
thalamus forming the incertohypothalamic pathway (Flück-
iger et al. 1985). This subsystem is engaged in the regula-
tion of gonadotropin-releasing hormone (GnRH) secretion 
(Turiault et al. 2007). The neurons of the A15 cell group 

Fig. 2  Localization and PD pathology of the dopaminergic systems 
in mice (a) and humans (b). The color of the different nuclei refers 
to the presence or absence of pathology seen in PD. Green—not 
affected, red—affected, blue—not sufficient data available. a Modi-
fied from Björklund and Dunnett (2007)
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are located in the rostral hypothalamic periventricular area. 
Their function is not yet fully understood, but they seem to 
be involved in the regulation of GnRH as well (Brown et al. 
2015; Clarkson and Herbison 2011).

The A16 dopaminergic cells of the olfactory bulb are 
interneurons found in the periglomerular layer (Halász et al. 

1981) and play a pivotal role in odor discrimination and 
odor processing (Wilson and Sullivan 1995; Tillerson et al. 
2006; Taylor et al. 2009). The retinal dopaminergic cells 
(A17) are neurons of the amacrine subtype found in the inner 
nuclear and inner plexiform layers of the retina (Archibald 
et al. 2009). Retinal dopaminergic neurotransmission plays a 
central role for contrast sensitivity, visual acuity and retinal 
light adaption by induction of the transition from the rod 
circuit (dark-adapted state) to the cone circuit (light-adapted 
state) (Archibald et al. 2009; Jackson et al. 2012; Korshunov 
et al. 2017; Ribelayga et al. 2008).

What are the prerequisite features a neuron has to possess 
to be considered dopaminergic? The classical dopaminergic 
neuron is defined by the presence of: (1) DA, (2) DA-synthe-
tizing enzymes [i.e., tyrosine hydroxylase (TH) and aromatic 
l-amino acid decarboxylase (AADC)], (3) DA-degrading 
enzymes (i.e., monoamino oxidases), (4) DA transporters 
[i.e., vesicular monoamine transporter 2 (VMAT2), DA 
transporter (DAT)] and (5) autoreceptors (i.e.,  D2 receptor) 
(Vernier et al. 2004). Simultaneously, dopaminergic neu-
rons lack dopamine-β-hydoxylase and phenylethyl-N-methyl 
transferase, the two enzymes required for the conversion of 
DA into noradrenaline and subsequently adrenaline (Vernier 
et al. 2004). Importantly, not all of the above-mentioned 
neuronal populations (A8–A17) contain the complete set of 
proteins involved in dopaminergic neurotransmission, that 
is, some cell groups only partially fulfill all of the criteria 
of a traditional dopaminergic phenotype. For example, in 
the non-human primate, the A11 neurons contain TH, but 
at the same time lack detectable levels of AADC or DAT, 
suggesting that these neurons are l-dopaergic, rather than 
dopaminergic (Barraud et al. 2010). Among all dopaminer-
gic cell groups, the A8 (RRF), A9 (SN pars compacta) and 
A10 (VTA) neurons exhibit the most complete dopaminergic 
phenotype (Vernier et al. 2004). The above introduced tradi-
tional map of the brain’s dopaminergic system was generated 
based on detecting DA complemented with visualizing the 
distribution of TH immunoreactivity (Björklund and Dun-
nett 2007, Björklund and Hökfelt 1984; Dahlstroem and 
Fuxe 1964). As a consequence, the map does not reflect the 
diversity of the different dopaminergic subsystems. The het-
erogeneity furthermore suggests that there is not one general 
type of dopaminergic neurons, but rather a spectrum of dif-
ferent dopaminergic phenotypes.

Neuropathological alterations 
of the dopaminergic systems in PD

Neuropathological studies, given their cross-sectional 
nature, allow the investigation of the spatial pattern of 
pathology, i.e., the aspects of the localization of LB pathol-
ogy, neurodegeneration and consequent biochemical 

Fig. 3  Mesotelencephalic pathways. The A8–A10 dopaminergic cell 
groups are found in the ventral midbrain. They form one extensive 
mesotelencephalic pathway comprising three major pathways: (1) 
mesolimbic pathway projecting mainly from the VTA to the ventral 
STR; (2) mesocortical pathway mainly originating in the VTA and 
projecting to the prefrontal cortex (PFC); and (3) nigrostriatal path-
way originating in the substantia nigra and projecting to the dorsal 
STR. ACB nucleus accumbens, CP caudoputamen, VTA ventral teg-
mental area, SNr substantia nigra pars reticulata; SNc substantia nigra 
pars compacta

Fig. 4  A traditional dopaminergic neuron. TH tyrosine hydroxylase, 
AADC aromatic acid decarboxylase, VMAT2 vesicular monoam-
ine transporter 2, DAT dopamine transporter. Modified from (Oertel 
2017)
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alterations. The advantages of neuropathological studies are: 
(1) high resolution in space which enables the detection of 
pathology at single-cell level and (2) the detection of LB/
LN pathology distribution, which is currently not possible 
with in vivo neuroimaging studies, due to the lack of an 
α-synuclein radiotracer.

Although it is commonly accepted that a dysfunctional 
dopaminergic neurotransmission is one of the core features 
of PD, and that the dopaminergic systems of the brain are 
heterogeneous and therefore may have different suscepti-
bility to neurodegenerative processes, the dopaminergic 
neuronal populations outside the midbrain have not been 
systematically investigated in PD.

Since the discovery of DA depletion in the SN and stria-
tum (STR) of Parkinson patients (Hornykiewicz 1963), sev-
eral neuropathological studies were conducted to estimate 
dopaminergic neurodegeneration of the SN pars compacta. 
The average loss of pigmented nigral neurons compared to 
age-matched healthy controls ranges between 41 and 79% 
across studies, on average 67% (Javoy-Agid et al. 1984; 
Bogerts et al. 1983; Waters et al. 1988; Hirsch et al. 1988; 
German et al. 1989; Alberico et al. 2015; Zarow et al. 2003; 
Damier et al. 1999; Gibb and Lees 1991; Kempster et al. 
1989; Halliday et al. 1996). Interestingly, the neuropatholog-
ical process does not homogeneously affect the full extent of 
the dopaminergic SN. A characteristic topology of neurode-
generation can be observed: neurons of the ventrolateral and 
caudal subregion, called ventral tier, are primarily affected 
(around 70–90% cell loss), whereas neurons in the dorsal tier 
are relatively resistant to the degenerative process (25–70% 

cell loss) (Damier et al. 1999; Fearnley and Lees 1991; Hal-
liday et al. 1996; Hirsch et al. 1997). In consensus with these 
findings is the uneven pattern of DA depletion in the STR. 
The putamen, mostly receiving input from the ventral tier of 
the SN, shows almost complete DA depletion (< 1% of DA 
remaining), whereas the caudate nucleus has still substan-
tial levels of DA (~ 40% of DA remaining) (Fig. 6b) (Kish 
et al. 1988; Waters et al. 1988; Fahn et al. 1971). One study 
showed that the cell loss of pigmented, neuromelanin-con-
taining SN neurons is less than the loss of TH-positive cells 
at all studied time points, indicating that prior to cell death, 
dopaminergic neurons become dysfunctional and decrease 
their dopaminergic phenotypic expression (ghost cells) (Kor-
dower et al. 2013). This suggests that at the time of the mani-
festation of the cardinal motor symptoms, symptoms most 
likely occur due to nigrostriatal dysfunction rather than frank 
neurodegeneration (Kordower et al. 2013). Besides neuro-
degeneration, the SN pars compacta also exhibits severe LB 
and LN pathology (Braak et al. 2003; Gibb and Lees 1989; 
Seidel et al. 2015). In fact, a combination of nigral Lewy 
pathology and neurodegeneration of the dopaminergic SN 
is highly specific for PD and even a prerequisite for the defi-
nite neuropathological diagnosis (Gelb et al. 1999; Dickson 
et al. 2009).

The A8 dopaminergic neurons of the RRF show minor 
or no degenerative changes in PD (McRitchie et al. 1997), 
whereas the dopaminergic neurons of the VTA (A10) show 
abundant LB/LN pathology (Seidel et al. 2015) and substan-
tial neurodegeneration in PD. The reported cell loss of neu-
romelanin-pigmented VTA neurons in PD ranges between 

Fig. 5  Available radiotracers for 
in vivo imaging of the dopamin-
ergic systems. Radiotracers can 
be used to image the presyn-
aptic dopaminergic activity 
(DA storage, VMAT2 and DAT 
availability) or the postsynaptic 
dopaminergic function (D2/D3 
receptors) with PET and SPECT 
approaches
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40 and 77%, on average 53% (Hirsch et al. 1988; German 
et al. 1989; Alberico et al. 2015; Javoy-Agid et al. 1984; 
Bogerts et al. 1983; Uhl et al. 1985; Waters et al. 1988; 
Damier et al. 1999; McRitchie et al. 1997; Javoy-Agid and 
Agid 1980). A direct comparison of the VTA and SN cell 
counts is—due to the different samples and statistical meth-
ods—difficult. Only a few studies have directly compared 
nigral and ventral tegmental neuromelanized cell counts by 
investigating the same midbrain tissue samples. According 
to their results, the degree of neurodegeneration in the SN 
usually exceeds that of the VTA by 20% on average (Damier 
et al. 1999; German et al. 1989; Hirsch et al. 1988). This 
suggests that, although these two cell populations have a 
lot of common traits, certain factors partially decrease the 
susceptibility of VTA (A10) neurons to neurodegeneration 
and/or increase the vulnerability of SN (A9) neurons.

The diencephalic dopaminergic neuronal populations 
(A11–A15) have not attracted much attention in PD yet, 
although their possible involvement in the disease process 
might contribute to certain autonomic and neuroendo-
crine dysfunctions seen in PD patients (Politis et al. 2008; 
Chaudhuri and Schapira 2009). It is reported that virtu-
ally all nuclei of the hypothalamus exhibit LB pathology 
to some extent after a certain disease duration (Langston 
and Forno 1978). The most severely affected hypothalamic 
regions are the tuberomammillary nucleus and the lateral 
and posterior hypothalamic nuclei, regions that do not con-
tain dopaminergic cell groups (Langston and Forno 1978; 
Braak et al. 2003, 2004). Interestingly, the tuberoinfundibu-
lar region which exhibits the highest density of hypotha-
lamic dopaminergic neurons (A12) is relatively spared of 
LB pathology (Langston and Forno 1978). Nevertheless, to 
date no study which investigated LB formation specifically 
in hypothalamic dopaminergic cells exists. In addition, stud-
ies on hypothalamic dopaminergic neurodegeneration are 
also sparse. Only one study aimed to quantify pigmented 
neuronal cell counts in hypothalamic nuclei of PD patients. 
Interestingly, no significant cell loss was detected (Matzuk 
and Saper 1985). Taken together, studies of the hypotha-
lamic dopaminergic system in PD are sparse and their results 
are controversial.

The olfactory bulb is one of the first brain regions affected 
during PD (Braak et al. 2003) and hyposmia is present in 
up to 90% of PD patients (Doty et al. 1988; Haehner et al. 
2011), often preceding the classical motor symptoms by 
more than a decade (Kalia and Lang 2015). Several stud-
ies detected dense accumulation of LBs in granule, mitral 
and tufted cells and the anterior olfactory nucleus (Ubeda-
Bañon et al. 2010; Sengoku et al. 2008; Braak et al. 2004). 
Interestingly, the periglomerular layer, in which the dopa-
minergic A16 neurons are localized, is relatively spared of 
the α-synucleinopathy and LBs only occasionally co-local-
ize with TH immunoreactivity (Ubeda-Bañon et al. 2010; 

Sengoku et al. 2008; Cave et al. 2016). Studies estimating 
the number of bulbar dopaminergic neurons are conten-
tious. Two independent studies reported that TH-positive 
neuronal count was doubled in the olfactory bulbs of PD 
patients compared to healthy controls (Huisman et al. 2004; 
Mundiñano et al. 2011), while other studies revealed no sig-
nificant difference between PD and healthy controls (Cave 
et al. 2016; Ubeda-Bañon et al. 2010; Huisman et al. 2008). 
Taken together, dopaminergic cells of the olfactory bulb are 
spared of the α-synucleinopathy. However, whether their 
neuronal numbers increase during the disease duration and 
whether this change arises as a consequence of the disease 
process or DA replacement therapy needs to be further 
investigated.

Data on the retinal dopaminergic system (A17) in PD are 
sparse. A very recently published study was the first one to 
examine and describe phosphorylated α-synuclein-positive, 
LB- and LN-like inclusions in the retina of PD patients 
(Ortuño-Lizarán et al. 2018). Morphological changes were 
exclusively found in the ganglion cell layer and exclusively 
co-localized with ganglionic cell markers, thereby excluding 
the possibility of LB formation in dopaminergic amacrine 
cells. However, despite the lack of α-synucleinopathy in 
retinal dopaminergic cells, neurochemical evidence of a 
dysfunctional retinal DA neurotransmission exists. Reti-
nal dopaminergic cells of PD patients show decreased TH 
immunoreactivity (Nguyen-Legros 1988), and simultane-
ously significantly lower levels of retinal DA were measured 
(Harnois and Di Paolo 1990).

It has been hypothesized for a long time that a dysfunc-
tional DA homeostasis might contribute to the selective vul-
nerability of catecholaminergic neurons in PD (Lotharius 
2002; Lohr et al. 2014; Pifl et al. 2014; Uhl 1998; Caudle 
et al. 2007; Post et al. 2018; Segura-Aguilar et al. 2014; 
Gandhi et al. 2012; Bayersdorfer et al. 2010; Surmeier 2018; 
Surmeier et al. 2017). Moreover, DA seems to promote the 
formation and secretion of SDS-resistant α-synuclein oli-
gomers, thereby eventually contributing to the initiation 
and progression of the disease (Lee et al. 2011). Despite 
this central role of DA, extramesencephalic dopaminer-
gic systems have not been systematically investigated for 
α-synucleinopathy and/or neurodegeneration. Substantial 
literature exists on the ventral mesencephalic dopaminer-
gic (A8–A10) nuclei considering their involvement in the 
disease process. These comparative data allow to clearly 
recognize a spectrum of susceptibility, in which the nigral 
dopaminergic cells of the ventral tier (A9) are the most vul-
nerable, followed by the VTA (A10), the dorsal tier of the 
SN (A9) and the RRF (A8). Identifying the factors which 
render certain neurons particularly vulnerable or resistant 
to the disease process remains a key challenge. It has been 
suggested that the different protein expression patterns 
and thus the interaction of various proteins influence the 



384 F. F. Geibl et al.

1 3

susceptibility of these neuronal populations (Double et al. 
2010). Specific proteins and protein expression patterns 
(proteomes) which could account for the observed spectrum 
of vulnerability within the mesencephalic dopaminergic cell 
populations have been found. These are of interest for cel-
lular metabolism and also for the electrophysiological firing 
patterns of these cell groups. Whereas the pacemaking of the 
less vulnerable VTA neurons relies on voltage-dependent 
 Na+ channels (Puopolo et al. 2007), adult nigral neurons use 
L-type voltage-gated  Ca2+ channels of the  Cav1.3 subtype 
to maintain autonomous pacemaking, leading to sustained 
 Ca2+ influx to the cytosol (Chan et al. 2007; Nedergaard 
et al. 1993). In the most vulnerable ventral tier of the SN, 
the latter is combined with a substantially lower intracellu-
lar  Ca2+ buffering capacity, due to the absence of calbindin 
and significantly lower expression levels of parvalbumin and 
calretinin compared to the dorsal tier of the SN or the VTA, 
respectively (Chung et al. 2005; Yamada et al. 1990; Parent 
et al. 1996; McRitchie et al. 1996). As a consequence, these 
neurons have a high intracellular  Ca2+ burden leading to 
high energy demands due to ATP-dependent  Ca2+ extru-
sion mechanisms (Surmeier et al. 2011; Chan et al. 2010). 
Furthermore, metabolic studies have shown that nigral neu-
rons have an almost threefold higher basal oxidative phos-
phorylation rate than VTA neurons and thus a substantially 
elevated basal oxidative stress level and a significantly lower 
reserve respiratory capacity (Pacelli et al. 2015). This means 
that nigral neurons are less capable of increasing their ATP 
production when higher energy demands occur. For thour-
ough reviews on additional potential vulnerability factors, 
see Double et al. (2010) and Brichta and Greengard (2014).

What we can learn from neuroimaging 
studies

Neuroimaging studies have become increasingly valuable 
tools to link pathological alterations with motor and non-
motor symptoms, investigate etiology and pathomechanisms, 
monitor disease progression, support differential diagno-
sis of parkinsonism and assess the outcome of therapeu-
tic approaches (Politis 2014). In this review, we will focus 
on three major applications which are relevant regarding 
dopaminergic dysfunction in PD: (1) the variety of imag-
ing agents allows us to investigate the changes in the dopa-
minergic systems and metabolic activity caused by PD and 
thereby broadens our understanding of the molecular and 
cellular disease pathogenesis and progression (Weingarten 
et al. 2015; Politis 2014); (2) PET-, SPECT- and MRI-based 
imaging can be used in the clinical setting to assist in the 
differential diagnosis of idiopathic PD vs. atypical parkinso-
nian syndromes or other causes of parkinsonism (Kägi et al. 
2010; Scherfler et al. 2007); (3) neuroimaging studies can be 

used to detect subclinical levels of dopaminergic dysfunction 
and thus facilitate the identification and risk stratification 
of prodromal PD patients (Meles et al. 2017; Heller et al. 
2017). Apart from these indications, functional neuroimag-
ing has various other applicabilities, such as assessing the 
therapeutic effect of deep brain stimulation or embryonic 
cell transplantation (Weingarten et al. 2015; Natale et al. 
2018).

A general advantage of functional neuroimaging studies 
is their potential to assess in vivo dysfunction of neuronal 
circuits, i.e., how the affected neurons behave in their neu-
ronal network once they have reached a dysfunctional state. 
Additionally, they enable the analysis of the spatiotemporal 
pattern of neuropathology, that is, the progression of cellular 
and regional dysfunction in space and time. Dopaminergic 
dysfunction has been one of the major interests over the 
past 30 years of imaging in PD. The development of differ-
ent imaging agents and tracers enabled the assessment of 
presynaptic dopaminergic dysfunction and postsynaptic DA 
receptor changes (Fig. 5). As expected, the ventral midbrain 
(A8–A10) of PD patients exhibits a reduction of presynaptic 
dopaminergic tracer uptake indicating dopaminergic degen-
eration (Joutsa et al. 2015; Goldstein et al. 2008; Ito et al. 
2002; Hsiao et al. 2014). As a consequence, brain regions 
receiving dopaminergic input from A8–A10, namely the 
putamen, caudate nucleus and ventral STR (nucleus accum-
bens and olfactory tubercle), show reduced tracer binding 
reflecting dopaminergic denervation (Pavese et al. 2011; 
Joutsa et al. 2015; Lewis et al. 2012; Hsiao et al. 2014). 
It could be shown that the loss of tracer binding is uneven 
between the subregions of the STR: the dorsal putamen dis-
plays the most severe reduction, followed by the caudate 
nucleus and the ventral STR (Bohnen et al. 2011; Lewis 
et al. 2012; Hsiao et al. 2014). This is in accordance with 
the neuropathological studies describing a stereotypical pat-
tern of ventral mesencephalic dopaminergic neurodegenera-
tion resulting in uneven dopaminergic denervation of the 
STR (Fig. 6b) (Damier et al. 1999; Fearnley and Lees 1991; 
Waters et al. 1988; Halliday et al. 1996). The decrease in 
striatal tracer binding significantly correlates with the degree 
of locomotor disability, particularly with bradykinesia and 
rigidity (Vingerhoets et al. 1997; Holthoff-Detto et al. 1997; 
Rinne et al. 2000; Otsuka et al. 1996). Interestingly, it does 
not correlate with the degree of rest tremor, suggesting that 
the neural substrate of this motor symptom might be distinct 
from the nigrostriatal pathway (Otsuka et al. 1996; Vinger-
hoets et al. 1997). Longitudinal follow-up PET tracer stud-
ies have estimated the progression of mesencephalic dopa-
minergic dysfunction over time and found that presynaptic 
dopaminergic function declines exponentially, indicating 
that the progression of the disease tends to be faster at the 
early phases (Nandhagopal et al. 2009; Hilker et al. 2005). 
This finding is of potential importance in therapeutic trials 
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testing compounds with disease-modifying potential, if DAT 
SPECT is chosen as a surrogate marker for progression of 
PD. It would mean that such clinical trials should be prefer-
entially performed in de novo PD patients or even in prodro-
mal stages of PD with phenoconversion to manifest motor 
PD as a clinical end point (see also RBD below).

Distinct behavioral and pharmacological triggers can 
be used to detect dysfunctional patterns of brain activity 
and neurotransmitter release. Several studies have been 
conducted to measure changes of striatal DA release trig-
gered by l-dopa challenge and correlated this with different 
symptoms of PD. They have consistently found that l-dopa 
induces striatal DA release and that the degree of l-dopa-
induced DA outflow strongly correlated with disease dura-
tion (La Fuente-Fernández et al. 2004), Hoehn–Yahr stage 
(Pavese et al. 2006) and motor disability measured by the 
Unified Parkinson’s Disease Rating Scale (UPDRS) (Tedroff 
et al. 1996). This means that patients who had a longer dis-
ease duration, higher Hoehn–Yahr stages or higher UPDRS 
scores have larger putaminal DA release upon l-dopa admin-
istration. Furthermore, the amplitude of striatal DA release 
positively correlated with dyskinesia scores, indicating that 
a failure in the regulation of DA release contributes to the 
development of l-dopa-induced dyskinesias (Pavese et al. 

2006, La; Fuente-Fernández et al. 2004), an adverse effect of 
l-dopa affecting up to 90% of patients after 10 years of DA 
replacement therapy (Lopez et al. 2010; Hauser et al. 2007).

Reduction of the hypothalamic 18F-dopa uptake indicat-
ing monoaminergic dysfunction and reduced AADC activ-
ity has been reported in PD patients (Pavese et al. 2010, 
2011; Moore et al. 2008). However, since the hypothalamus, 
apart from its intrinsic dopaminergic neurons (A11–A15), 
receives dense monoaminergic innervation originating from 
the serotonergic median and dorsal raphe nuclei and noradr-
energic A1 and A6 (locus coeruleus) cell groups (Palko-
vits et al. 1980; van de Kar and Lorens 1979), changes in 
18F-dopa PET reflect the net alterations of all these systems 
(Pavese et al. 2011). Consequently, direct conclusions on the 
hypothalamic dopaminergic system (A11–A15) cannot be 
drawn from 18F-dopa results. Nevertheless, significant reduc-
tion of postsynaptic  D2 and  D3 receptors has been observed 
in a 11C-raclopride study, indicating dopaminergic dysfunc-
tion in the hypothalamus of PD patients (Politis et al. 2008).

Currently, the diagnosis of clinical PD is exclusively 
based on the presenting symptomatology (Table 1), and 
neuroimaging techniques such as SPECT, PET or con-
ventional MRI are not recommended as a first-line diag-
nostic approach. However, under certain conditions (e.g., 

Fig. 6  The relationship between DA levels and physiological func-
tions/dysfunctions. a As a consequence of diverse compensatory 
mechanisms, mild to moderate changes of DA levels remain asymp-
tomatic (plateau). When the severity of hypo- or hyperdopaminer-
gism increases, compensatory mechanisms fail to retain physiological 
functions leading to dysfunctional neural circuits manifesting as clini-
cal symptoms. Hypodopaminergic states develop as a consequence 
of disease progression, whereas hyperdopaminergic states emerge 
as side effects of DA replacement therapy. b Ventral mesencephalic 

dopaminergic (A8–A10) neurodegeneration shows a stereotypical 
pattern resulting in severe hypodopaminergism in the caudoputamen 
(CP, nigrostriatal pathway) and mild to moderate hypodopaminergism 
in the ventral STR (ACB—nucleus accumbens, mesolimbic path-
way) and prefrontal cortex (PFC, mesocortical pathway). As a con-
sequence, doses of DA replacement therapy which are necessary to 
remedy the nigrostriatal pathway simultaneously overdose the meso-
cortical and mesolimbic pathways
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atypical symptomatology or unclear response to dopa-
minergic treatment), imaging techniques can be of use to 
better differentiate idiopathic PD from atypical parkinso-
nian syndromes such as multiple system atrophy (MSA) or 
progressive supranuclear palsy (PSP) and from secondary 
causes of parkinsonism (e.g., vascular parkinsonism, neo-
plasms or drug-induced parkinsonism). DAT SPECT using 
the 123I-Ioflupane ligand (DATScan) can be used to measure 
the strength of dopaminergic innervation of the STR (striatal 
DAT levels) and is thereby able to differentiate neurodegen-
erative forms of parkinsonism (e.g., PD, MSA, PSP) which 
normally show reduced striatal DAT levels, from essential 
tremor and healthy controls (normal striatal DAT levels) 
(Kägi et al. 2010; Scherfler et al. 2007). However, this tech-
nique does not allow further distinguishing idiopathic PD 
from the atypical parkinsonian syndromes (MSA, PSP). In 
this case, one could perform a  D2/D3 receptor SPECT with 
the ligand 123I-iodobenzamide (123I-IBZM). PD patients gen-
erally show normal postsynaptic  D2/D3 signal intensities, 
while MSA and PSP patients are commonly characterized by 
decreased postsynaptic  D2/D3 receptor availability. However, 
a normal  D2/D3 signal does not exclude MSA or PSP (Vlaar 
et al. 2007). Other techniques to differentiate idiopathic PD 
from atypical parkinsonian syndromes are metabolic PET 
imaging with 18F-FDG (Hellwig et al. 2012; Juh et al. 2004), 
which relies on disease-specific alterations of brain glucose 
metabolism, or MRI-based approaches such as T2-weighted 
structural MRI, voxel-based morphometry and diffusion ten-
sor imaging (Price et al. 2004; Paviour et al. 2005; Ota et al. 
2013).

At the onset of motor symptoms and, consequently, at 
the time of diagnosis 30% of nigral cells have already been 
lost and only 50–60% of normal TH immunoreactivity is 
present in the STR (Fearnley and Lees 1991; Greffard et al. 
2006; Cheng et al. 2010; Kordower et al. 2013). The time 
period, in which the pathological process of PD has already 
started but the motor symptoms are not yet present, is the 
so-called premotor or prodromal phase of PD (Kalia and 
Lang 2015). During this period, functional neuroimaging of 
the nigrostriatal system is able to detect subclinical levels of 
dopaminergic dysfunction and thus facilitate the identifica-
tion and risk stratification of patients with prodromal PD 
(Bauckneht et al. 2018; Heller et al. 2017; Meles et al. 2017; 
Iranzo et al. 2010; Stiasny-Kolster et al. 2005; Piccini et al. 
1999). Patients suffering from idiopathic RBD, a parasomnia 
characterized by the absence of atonia during REM sleep in 
combination with abnormal nocturnal behavior, represent a 
specific prodromal risk population for developing PD (Iranzo 
et al. 2013). Several studies found that RBD manifestation 
precedes the onset of PD, dementia with Lewy bodies and 
MSA, thereby representing an early and specific symptom of 
these neurodegenerative α-synucleinopathies (Postuma et al. 
2012; Schenck et al. 2013). Applying DAT SPECT imaging 

with 123I-Ioflupane on RBD patients revealed a progres-
sive decrease of presynaptic striatal DAT availability from 
“mild” or “subclinical” RBD to manifest RBD to PD (Hel-
ler et al. 2017). Moreover, 18F-FDG-PET imaging showed 
that a subgroup of RBD patients already possessed the same 
altered brain glucose metabolism pattern which is related 
to PD patients (Meles et al. 2017). Taken together, neuro-
imaging techniques can help to differentiate RBD patients 
from healthy controls, to monitor RBD disease progression, 
to stratify the risk of phenoconversion to PD and thereby 
identify and characterize eligible patients for neuroprotective 
trials (Heller et al. 2017; Bauckneht et al. 2018).

Symptomatology ‘off’/‘on’ dopaminergic 
medication: conclusions of clinical studies

Clinical drug studies investigating the potential of dopa-
minergic medication to improve, but also to worsen or even 
induce some of the PD symptoms, are valuable tools to iden-
tify distinct symptoms which are linked to dysfunctional 
dopaminergic neurotransmission.

Physiological dopaminergic functions, such as voluntary 
motor control, require optimal DA levels in dopaminergic 
output regions. Both a hypodopaminergic and hyperdo-
paminergic state result in neural network dysfunction and 
eventually in clinical symptoms. At the time of PD motor 
symptom onset, around 30% of dopaminergic nigral neu-
rons are lost and 50–60% of their axon terminals show a 
marked decrease of TH immunoreactivity (Fearnley and 
Lees 1991; Greffard et al. 2006; Cheng et al. 2010; Kor-
dower et al. 2013). This indicates that even when the disease 
process had started and moderate DA shortage is present 
in the STR, intrinsic mechanisms compensate the DA defi-
cit retaining normal physiological functions and thereby an 
asymptomatic state (Fig. 6a) (Perez et al. 2008; Zigmond 
et al. 1990; Garris et al. 1997; Bergstrom and Garris 2003; 
Obeso et al. 2004). Interestingly, patients with incidental LB 
disease, i.e., healthy individuals without apparent parkinson-
ism or dementia with LB/LN pathology upon autopsy, show 
a 27% cell loss of pigmented nigral neurons (Fearnley and 
Lees 1991) and a 33–50% decrease of striatal TH immunore-
activity (DelleDonne et al. 2008; Dickson et al. 2008; Beach 
et al. 2008). As PD progresses and the severity of hypo-
dopaminergism increases, the compensatory mechanisms 
fail and symptoms of a hypoactive dopaminergic system 
manifest. Replenishment of DA neurotransmission in these 
hypodopaminergic regions via DA replacement therapy 
(e.g., l-dopa, DA agonists) will ameliorate the manifesta-
tion of DA shortage (Fig. 6a, b) (Birkmayer and Hornykie-
wicz 1961; Cotzias et al. 1969). Concurrently, given the 
uneven nature of neurodegeneration across the dopaminer-
gic systems of the brain in PD, doses of l-dopa which are 
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necessary to restore dopaminergic neurotransmission in the 
most severely depleted nigrostriatal system simultaneously 
‘overdose’ the better preserved mesolimbic and mesocor-
tical brain networks. Thus, dopaminergic treatment with 
the focus on the primary clinical aim of ameliorating the 
motor symptoms leads to overactivation of the mesolimbic 
and mesocortical systems, thereby resulting in symptoms of 
hyperdopaminergism (Fig. 6b) (Gotham et al. 1988; Swain-
son et al. 2000; Voon et al. 2017; Vriend et al. 2014; Joutsa 
et al. 2015; Vaillancourt et al. 2013). Therefore, symptoms 
of a dysfunctional dopaminergic neurotransmission repre-
sent a continuum in which hypodopaminergic states develop 
as a consequence of disease progression, whereas hyperdo-
paminergic states emerge as side effects of DA replacement 
therapy. In the following section, we will briefly give an 
insight into the dopaminergic symptoms of PD.

The pioneering work of A. Carlsson showed that DA defi-
ciency in the brain of rabbits resulted in parkinsonian symp-
toms which could be alleviated by administration of l-dopa, 
a blood–brain barrier crossing precursor of DA (Carlsson 
1959; Carlsson et al. 1957). Since then, both neuropathologi-
cal and neuroimaging studies of PD patients have shown that 
the degree of DA deficiency in the dorsal STR significantly 
correlated with the Hoehn–Yahr stage and UPDRS motor 
disability, especially with bradykinesia and rigidity scores 
(Hornykiewicz 1963; Morrish et al. 1995; Broussolle et al. 
1999; Seibyl et al. 1995; Hsiao et al. 2014; Pavese et al. 
2011; Nandhagopal et al. 2009; Price et al. 1978). Conse-
quently, administration of l-dopa significantly improves the 
two latter motor symptoms of PD (Birkmayer and Hornykie-
wicz 1961; Cotzias et al. 1969). Although dopaminergic 
replacement therapy is the most effective symptomatic 
treatment of PD, long-term l-dopa administration leads to 
motor side effects, the so-called l-dopa-induced dyskinesias 
(LIDs). LIDs are among the most common adverse effects 
of l-dopa therapy and affect up to 80% of patients after 
5 years and up to 90% after 10 years of treatment (Hauser 
et al. 2007; Ahlskog and Muenter 2001; Rajput et al. 1984; 
Jong et al. 1987). The term LIDs refers to a variety of motor 
side effects which can be classified based on the clinical 
movement pattern and the temporal correlation between 
the occurrence of the dyskinesia and the administration of 
dopaminergic medication (Luquin et al. 1992; Pandey and 
Srivanitchapoom 2017; Bastide et al. 2015). Interestingly, 
severe nigrostriatal damage seems to be a prerequisite of 
LIDs when l-dopa is administered in pharmacologically 
relevant doses. Neither healthy controls nor non-human 
primates with only moderate DA deficiency developed 
LIDs as a result of long-term l-dopa treatment (Boyce et al. 
1990; Schneider 1989; Hagenah et al. 1999; Di Monte et al. 
2000; Jenner 2008). This indicates that nigrostriatal hyper-
dopaminergism per se is not sufficient to induce dyskine-
sias, but other factors have to be involved additionally. It is 

hypothesized that a ‘dysregulated DA release’ is responsible 
for the development of LIDs (see above), which originates in 
the compensatory mechanisms and changes due to dopamin-
ergic denervation of the STR. It was shown that sprouting 
of serotonergic axon terminals takes place in the STR of 
PD patients (Rylander et al. 2010). Serotonergic neurons, 
due to their partially overlapping protein expression with 
dopaminergic cells (e.g., AADC, VMAT2), are able to take 
up l-dopa, convert it to DA and store it in synaptic vesicles 
(Tison et al. 1991; Arai et al. 1994, 1995; Butcher et al. 
1970). As a consequence, these neurons, although do not 
normally rely on DA as a neurotransmitter, synthesize and 
release DA upon administration of l-dopa (Carta et al. 2007). 
However, since they neither express  D2 autoreceptors medi-
ating the natural feedback of DA release, nor DAT to clear 
DA from the synaptic cleft, the dopaminergic neurotransmis-
sion becomes dysregulated resulting in swings of synaptic 
DA levels manifesting as LIDs (Mosharov et al. 2015; Carta 
and Bezard 2011).

Cognitive deficits ranging from mild cognitive impair-
ment (MCI) not yet qualifying as dementia to manifest 
dementia are common non-motor symptoms in PD with sig-
nificant impact on the quality of life (Chaudhuri and Scha-
pira 2009). MCI can be observed in prodromal and manifest 
PD affecting around 20% of patients at the time of diagnosis 
(Muslimovic et al. 2005; Aarsland et al. 2009a) and dis-
plays a major risk factor for the progression to PD demen-
tia (PDD) (Hoogland et al. 2017; Hobson and Meara 2015; 
Pedersen et al. 2017). Cognitive impairment most commonly 
affects executive functions, resulting in a ‘dysexecutive syn-
drome’ resembling that seen in patients with frontal lobe 
damage (Owen et al. 1993, 1995; Taylor et al. 1986; Musli-
movic et al. 2005; Rowe et al. 2002). The pathophysiology 
of MCI and dementia in PD is heterogeneous and involves a 
combination and synergism of distinct pathological changes. 
These include cortical LB pathology (Mattila et al. 2000; 
Apaydin et al. 2002; Hurtig et al. 2000; Irwin et al. 2012; 
Compta et al. 2011), cortical cholinergic deficiency due to 
the degeneration of the nucleus basalis of Meynert (Mattila 
et al. 2001; Perry et al. 1991), noradrenergic loss as a conse-
quence of locus coeruleus degeneration, cortical and limbic 
reduction of DA due to the degeneration of the mesolimbic 
and mesocortical dopaminergic systems (Rinne et al. 1989; 
Paulus and Jellinger 1991; Zweig et al. 1993; Ito et al. 2002; 
Scatton et al. 1983), potential occurrence of Alzheimer’s 
disease co-pathology (Boller et al. 1980; Paulus and Jell-
inger 1991; Irwin et al. 2012; Compta et al. 2011) and oth-
ers—for a thorough review see Halliday et al. (2014). This 
means that a DA deficit in certain brain regions contributes 
to the cognitive deficit seen in nondemented PD patients 
with MCI and in PDD patients (Rinne et al. 1989; Paulus 
and Jellinger 1991; Zweig et al. 1993; Ito et al. 2002; Scatton 
et al. 1983). However, DA deficiency per se is not considered 
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to be sufficient for the development of the full range of cog-
nitive deficits (Bosboom et al. 2004; Caballol et al. 2007). 
Interestingly, studies examining the effects of l-dopa on PD 
patients with dysexecutive syndrome report beneficial, neu-
tral and detrimental effects (Gotham et al. 1988; Swainson 
et al. 2000; Kulisevsky 2000; Downes et al. 1989; Bowen 
et al. 1975; Kulisevsky et al. 1996; Lange et al. 1992; Pillon 
et al. 1989). This is because executive functions can be split 
into different components, such as working memory, inhibi-
tion, attentional set shifting and planning, whose neurobio-
logical correlates are distinct (Smith 1999; Rabinovici et al. 
2015). During an executive task, depending on the subdo-
main required, different neural networks are active including 
the prefrontal and parietal cortices, the basal ganglia, the 
thalamus and the cerebellum (Collette et al. 2005; Monchi 
et al. 2001, 2006; Wager et al. 2004; Wager and Smith 2003; 
Cools et al. 2004). As a consequence, cognitive tasks which 
rely on DA-depleted brain regions (dorsal STR) will be 
ameliorated by DA replacement therapy, whereas cognitive 
functions associated with relatively intact or less affected, 
DA-dependent brain regions (ventral STR and prefrontal 
cortex) will be impaired due to a relative ‘overactivation’ of 
these systems (Gotham et al. 1988; Cools et al. 2001). This 
explains why studies investigating the effect of DA replace-
ment therapy on cognitive function report both detrimental 
and beneficial effects: depending on the cognitive task, dis-
tinct subdomains of executive function are examined, all 
having a different grade of hypodopaminergism.

Neuropsychiatric syndromes ranging from major depres-
sion to psychosis and impulse control disorders (ICDs) are 
highly prevalent in PD affecting the vast majority of PD 
patients during the course of the disease (Aarsland et al. 
2009b). Major depression occurs in approximately 17% of 
PD patients (Reijnders et al. 2008) and apathy is present in 
up to 60% (Yamanishi et al. 2013; Pedersen et al. 2009), 
whereas the prevalence of anxiety in cross-sectional stud-
ies ranges between 20 and 49% (Chen et al. 2010; Dissan-
ayaka et al. 2010; Kulisevsky et al. 2008; Nègre-Pagès et al. 
2010; Nuti et al. 2004). All three disorders are suggested to 
be—even if partly—associated with a deficient mesolimbic 
dopaminergic neurotransmission, i.e., with a mesolimbic 
hypodopaminergic state (Remy et al. 2005; Voon et al. 2011; 
Weintraub et al. 2005). This notion is further supported by 
clinical trials investigating the efficacy of DA agonists in 
depressive syndromes showing significant improvement 
of these symptoms (Reichmann et al. 2002, 2003; Barone 
et al. 2010; Lemke et al. 2005; Pahwa et al. 2007; Bodkin 
and Amsterdam 2002; Thobois et al. 2013). A wide range 
of ICDs, such as pathological gambling, compulsive sex-
ual behavior and binge eating, are associated with dopa-
minergic treatment affecting around 13.6% of PD patients 
on DA replacement therapy compared to 1.7% of patients 
receiving neither DA agonists nor l-dopa (Weintraub et al. 

2010). ICDs are suggested to develop as a consequence of 
a dopaminergic hyperactivity in ventral striatal reward cir-
cuitry (mesolimbic system), resulting in an increased drive 
to perform a certain behavior and to be maintained by an 
impaired learning from negative consequences due to pre-
frontal cortical hyperdopaminergism (mesocortical system) 
(Fig. 6b) (Weintraub 2008; Evans et al. 2006; O’Sullivan 
et al. 2011; Steeves et al. 2009; Cilia et al. 2008). Interest-
ingly, the largest multicenter study (dominion) investigat-
ing the occurrence of ICDs in 3090 PD patients found that 
the frequency of developing an ICD was twofold higher in 
patients receiving DA agonists compared to patients taking 
l-dopa (14.0% vs. 7.2%) (Weintraub et al. 2010). This can 
be explained by a significantly higher affinity of DA agonists 
to  D3 receptors compared to  D1 and  D2 receptors (Gerlach 
et al. 2003). While  D1 and  D2 receptors are more abundant in 
the dorsal STR (nigrostriatal pathway) mediating voluntary 
motor control,  D3 receptors are predominantly found in the 
ventral STR (mesolimbic pathway) playing an important role 
in reward mechanisms (Sokoloff et al. 1990; Gurevich 1999). 
As a consequence, doses of DA agonists required to improve 
motor symptoms may overactivate the mesolimbic system 
resulting in ICDs (Weintraub 2008; Voon et al. 2017). The 
association between developing an ICD and a hyperdopa-
minergic state in the mesocortical and mesolimbic systems 
is further supported by longitudinal studies showing that DA 
agonist dose reduction or discontinuation, even in combina-
tion with an increased l-dopa dose, significantly improves 
ICD symptoms (Mamikonyan et al. 2008).

Concluding remarks

Neuropathological analysis, neuroimaging studies and 
clinical trials have enabled us to better understand dopa-
minergic dysfunction in PD. It has become evident that, 
although being one of the core features of PD, nigrostri-
atal degeneration cannot be solely accountable for the wide 
range of PD symptoms. Despite the central role of DA in 
PD, extramesencephalic, i.e., diencephalic, olfactory bulbar 
and retinal dopaminergic systems have not been systemati-
cally investigated yet—not to speak of the dopaminergic 
system related to the gastrointestinal tract. The distinct 
dopaminergic systems have a surprisingly high neurobio-
logical diversity, suggesting that there is not one general 
type of dopaminergic neuron but rather a spectrum of dif-
ferent dopaminergic phenotypes. This heterogeneity on the 
cellular level could account for the observed differences in 
susceptibility of the dopaminergic systems to the disease 
process. To finally understand which factors render neurons 
particularly vulnerable, we first ought to investigate which 
neuronal populations are affected in the course of PD, with 
emphasis on neuronal cell groups sharing common traits, 



389Mesencephalic and extramesencephalic dopaminergic systems in Parkinson’s disease  

1 3

such as the synthetic machinery, the metabolism and the 
overall reliance on DA as a neurotransmitter.

Arvid Carlsson and his fundamental discovery of DA 
deficiency in PD paved the way for the still ongoing era of 
dopaminergic replacement therapy and fueled 50 years of 
research on the dopaminergic systems in PD. Within the last 
2 decades, the research focus slowly shifted toward other 
important areas such as neuropathological research on other 
neurotransmitter systems involved in PD, identification of 
genetic mutations or environmental risk factors. A major 
focus of the basic research field has been set on unravelling 
the pathogenesis and progression of PD including research 
on α-synuclein aggregation and interneuronal trafficking on 
one side and the identification of cell-autonomous factors 
rendering certain cell groups more vulnerable to the disease 
process, such as mitochondrial dysfunction or electrophysi-
ological cell properties on the other side.
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