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Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by progressive degeneration of dopaminergic neurons 
located in the midbrain. The gold-standard therapy for PD is the restoration of dopamine (DA) levels through the chronic 
administration of the DA precursor levodopa (L-DOPA). Although levodopa therapy is the main therapeutic approach for PD, 
its use is limited by the development of very disabling dyskinetic movements, mainly due to the fluctuation of DA cerebral 
content. Experimental animal models of PD identified in DA D1/ERK-signaling pathway aberrant activation, occurring in 
striatal projection neurons, coupled with structural spines abnormalities, the molecular and neuronal basis of L-DOPA-
induced dyskinesia (LIDs) occurrence. Different electrophysiological approaches allowed the identification of  the alteration 
of homeostatic structural and synaptic changes, the neuronal bases of LIDs either in vivo in parkinsonian patients or in vitro 
in experimental animals. Here, we report the most recent studies showing electrophysiological and morphological evidence 
of aberrant synaptic plasticity in parkinsonian patients during LIDs in different basal ganglia nuclei and also in cortical 
transmission, accounting for the complexity of the synaptic changes during dyskinesias. All together, these studies suggest 
that LIDs are associated with a loss of homeostatic synaptic mechanisms.

Keywords Parkinson’s disease · LIDs · Depotentiation · Synaptic plasticity · Spine plasticity

Introduction

Synaptic plasticity refers to a wide range of synaptic changes 
occurring in neurons in response to specific physiological 
events, with the final goal of adaptation to new information. 
Plasticity represents the set of specific adaptations occur-
ring at synapses and junctions allowing the communication 
between neurons. The original idea that neurons might com-
municate each other, and change their synaptic activity in 

response to an event occurring in a different neuron was 
proposed in the 1949 by the Canadian psychologist Donald 
Hebb. Hebb in the “Organization of Behavior. Wiley: New 
York; 1949”, for the first time, theorized the basis for the 
concept of Synaptic Plasticity (Hebb 1949); “When an axon 
of Cell A is near enough to excite a Cell B and repeatedly 
or persistently takes part in firing it, some growth process 
or metabolic change takes place in one or both cells such 
that A’s efficiency, as one of the cells firing B, is increased”.

In 1973, this theory was confirmed by the first report 
demonstrating the possibility to induce Long-Term Poten-
tiation (LTP) of synaptic transmission in the dentate area of 
anaesthetized rabbits under perforant path stimulation (Bliss 
and Lomo 1973). Bliss and colleagues demonstrated both 
in anaesthetized (Bliss and Lomo 1973) and unanesthetized 
rabbits (Bliss and Gardner-Medwin 1973) that two differ-
ent synapses can communicate with different strength and 
this phenomenon is not static, but rather can change in both 
short- and long-term manners. The complex range of events 
that can be included into the definition of Synaptic Plas-
ticity comprises synaptic signal transmission (i.e., Short- 
and Long-Term Plasticity) as well as structural alterations 
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(i.e., morphological spine density change). These neuronal 
changes can be the consequence of the physiological matura-
tion during development, the acquisition of new information 
during learning, or can be induced by brain damage.

Synaptic plasticity changes in Parkinson’s 
disease

In neurodegenerative disorders, such as Parkinson’s disease 
(PD), altered synaptic plasticity is the consequence of aber-
rant cellular and molecular cascades leading to neuronal 
death, and it is at the same time the cause of behavioral and 
cognitive dysfunctions. In PD, as well as in other neuro-
degenerative disorders, synaptic dysfunctions precede the 
neuronal loss of decades; therefore, their early identification 
might help to identify the pathological cascade leading to 
neuronal death and the neuronal basis of early behavioral 
symptoms, such as non-motor symptoms (Ayala et al. 2017; 
De Leonibus et al. 2007).

This privileged position makes aberrant synaptic plastic-
ity the target of both disease modifiers and symptomatic res-
cue strategies, and of their possible side effects. There is no 
cure for PD, but only symptomatic treatments that help the 
patients to manage the motor symptomatology. Among the 
different therapeutic strategies, dopamine (DA) replacement 
therapy with levodopa (l-DOPA) is still the only pharmaco-
logical treatment that has been proved to improve the motor 
symptoms (Olanow and Schapira 2013). However, chronic 
treatment with l-DOPA has also major side effects, among 
which dyskinesia, the occurrence of involuntary movements, 
is the most invalidating. Therefore, understanding the syn-
aptic mechanisms through which the therapeutic effects of 
l-DOPA are converted into side effects is crucial to prevent 
them and to design novel drugs void of dyskinesia effects.

l-DOPA has also other important non-motor side effects, 
such as impaired cognition and increased risk of psychotic-
like episodes (Bastide et al. 2015; Voon et al. 2009, 2017). A 
range of impulse control disorders including gambling, com-
pulsive shopping, compulsive sexual behaviors, and binge 
eating, occurs in about 17% of PD patients on dopaminergic 
medications. In addition, the compulsive use of medication 
L-DOPA and DA agonists is also associated with an exacer-
bation of L-DOPA-induced dyskinesias (LIDs) (Voon et al. 
2017). Some of these pathological side effects of chronic 
treatment with l-DOPA might be due to aberrant expression 
of alpha-synuclein in PD patients. Alpha-synuclein protein 
accumulation and misfolding in Lewy Body (Spillantini 
et al. 1997), is the main histological hallmark of a series 
of late-onset neurodegenerative disorders, including PD, 
other parkinsonisms such as dementia with Lewy bodies, 
and multiple system atrophy and other rare diseases (Barker 
and Williams-Gray 2016). These pathologies are generally 

referred as synucleinopathies. The strict association between 
aberrant neuronal alpha-synuclein accumulation and PD is 
demonstrated by the fact that patients receiving a first diag-
nosis of dementia with Lewy Body (DLB) have 70% pos-
sibility to develop motor PD; viceversa patients with first 
diagnosis of PD have higher risk of developing dementia 
if they also have altered beta-amyloid peptides levels in the 
cerebro spinal fluid (CSF) (Parnetti et al. 2014). The use 
of l-DOPA to control motor symptoms in DLB patients 
with PD or in PD patients with dementia is extremely lim-
ited as it worsens cognitive symptoms and hallucinations, 
likely due to its action on cortical regions (Poewe 2005); 
understanding the aberrant synaptic mechanisms induced 
by alpha-synuclein and the effects of l-DOPA not only in 
the striatum, but also in the other major components of the 
corticolimbic system is fundamental to design personalized 
therapeutic approaches that takes into account the complex 
symptomatology associated to PD.

Here, we show the recent scientific contributions in the 
field of synaptic plasticity alteration in PD and LIDs with 
particular attention to the structural events underlying these 
disorders and the related synaptic basal ganglia (BG) net-
work alterations in pre-clinical and clinical studies. Most of 
the reviewed experimental literature is based on pharmaco-
logical animal models of PD, in particular with the use of 
6-hydroxydopamine (6-OHDA) and of 1-Methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP).

Altered synaptic plasticity in experimental 
LIDs and dyskinetic PD patients

The two main forms of synaptic plasticity expressed in the 
brain are LTP and Long-Term Depression (LTD) (Malenka 
and Bear 2004; Calabresi et al. 1992b, c; Lovinger et al. 
1993).

Synaptic plasticity alterations, either in experimental ani-
mal models or in PD patients, have been widely investigated. 
It has been consistently reported that the lack of dopaminer-
gic tone in experimental rats lesioned with 6-OHDA causes 
the loss of synaptic plasticity, i.e., LTD and LTP, in striatal 
projection neurons (SPNs) (Calabresi et al. 1992a; Centonze 
et al. 1999; Belujon et al. 2010; Cerovic et al. 2015; Shen 
et al. 2015). Different stimulation protocols can be used to 
induce different forms of synaptic plasticity within the stria-
tum in physiological and pathological conditions. In par-
ticular, high-frequency stimulation (HFS) protocol consists 
in three trains at 100 Hz for 3 s, 20 s interval, while spike-
timing-dependent plasticity (STDP) is a pairing stimulation 
in which a synapse is activated by stimulating a pre-synaptic 
neuron shortly before or after making the post-synaptic neu-
ron fire by injection of a short current pulse. These two dif-
ferent approaches represent the most useful tools to unravel 
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alterations of synaptic and molecular pathways, underlying 
parkinsonian and dyskinesia conditions (Calabresi et al. 
1992a; Centonze et al. 1999; Belujon et al. 2010; Cerovic 
et al. 2015; Shen et al. 2015; Augustin et al. 2014; Fino et al. 
2010; Shen et al. 2008; Surmeier et al. 2007).

The lack of synaptic plasticity in DA denervated animals 
has been confirmed also in PD patients. The Paired Asso-
ciative Stimulation (PAS) approach is a useful method to 
study physiological and aberrant plasticity in the human 
M1 motor cortex (Stefan et al. 2000, 2004; Wolters et al. 
2003). In human studies, the measurement of Motor Evoked 
Potential (MEP) amplitude is considered a reliable analog 
of LTP (Stefan et al. 2000). This approach has been used 
to demonstrate the loss of LTP in the motor cortex of PD 
patients in OFF medication, compared with the potentia-
tion of PAS parameters measured in control subjects (Mor-
gante et al. 2006; Ueki et al. 2006). The synaptic plasticity 
in the cortex of PD patients is modulated by dopaminergic 
tone (Morgante et al. 2006; Ueki et al. 2006; Molina-Luna 
et al. 2009). In PD patients in ON medication state, chronic 
l-DOPA treatment restores, in the first phase of the disease, 
the dopaminergic levels and normalizes cortical M1 LTP 
(Morgante et al. 2006; Kawashima et al. 2013).

Although, the previous experimental and human stud-
ies (Morgante et al. 2006; Ueki et al. 2006; Molina-Luna 
et al. 2009; Kawashima et al. 2013) have identified a role 
of DA in synaptic plasticity in the BG input structures and 
motor cortex, their role in Substantia Nigra pars reticolata 
(SNr) has been little investigated. Prescott and colleagues 
extended these observations in a different BG structure of 
PD patients by the use of Deep Brain Stimulation (DBS) 
approach (Prescott et al. 2009). In this context, Prescott and 
Hutchison point out the attention to the possibility to record 
synaptic plasticity in SNr using extracellular field potentials 
(fEPs) in PD patients in OFF and ON medication. The appli-
cation of HFS protocol in the SNr of parkinsonian patients in 
OFF medication state fails to induce LTP of fEPs amplitude, 
while in the ON state, this potentiation is present (Prescott 
et al. 2009).

The dysregulated control of BG circuitry and the lack of 
physiological synaptic plasticity within the corticostriatal 
terminals ultimately cause a wide range of molecular and 
synaptic alterations underlying the movement features of 
PD and l-DOPA-induced (Albin et al. 1989; Calabresi et al. 
2016; Wang and Zhang 2016).

The treatment with l-DOPA represents the gold-stand-
ard symptomatic PD therapy (Mercuri and Bernardi 2005; 
Olanow and Schapira 2013). l-DOPA succeeds to counter-
act the effect of dopaminergic decrease allowing amelio-
ration of motor symptoms during the initial phases of the 
disease, when not all the dopaminergic terminals are lost 
(Calabresi et al. 2015). Unfortunately, the so-called “honey 
moon period” of l-DOPA therapy deteriorates rapidly, after 

a variable period of time for each patient, and progressively 
develops in motor fluctuations (Olanow et al. 2004; Cala-
bresi et al. 2015).

The development of LIDs has been associated to impaired 
bidirectional synaptic plasticity at corticostriatal synapses 
of SPNs in 6-OHDA parkinsonian rodents (Picconi et al. 
2003; Picconi et al. 2008; Cerovic et al. 2015; Belujon et al. 
2010). The term “bidirectional plasticity” refers to the pos-
sibility to express flexible synaptic plasticity; i.e., the pos-
sibility to induce, with the same HFS protocol, a depression 
or a potentiation of synaptic transmission, depending on the 
different receptor state or to bring back (“down-scale”) to 
control levels the potentiated synapse after a HFS protocol. 
In particular, these pre-clinical studies paved the way to the 
investigation of the physiological phenomenon of depoten-
tiation of LTP in the striatum, which is lost in hyperkinetic 
conditions such as LIDs (Picconi et al. 2003; Calabresi et al. 
2016; Prescott et al. 2014; Martella et al. 2009; Centonze 
et al. 2006). Depotentiation is thought be a physiological 
mechanism to erase unessential information in a previously 
potentiated synapse and bring it back to basal level to be 
ready to respond to a next input (Picconi et al. 2003; Cala-
bresi et al. 2016). The induction of dyskinetic movements 
and the loss of depotentiation are actually two sides of the 
same coin; parkinsonian condition erases the capability to 
induce LTP (Centonze et al. 1999; Ueki et al. 2006), while 
the treatment with l-DOPA either in parkinsonian animals or 
in PD patients restores LTP induction both in non-dyskinetic 
and in dyskinetic subjects (Picconi et al. 2003; Picconi et al. 
2008; Prescott et al. 2009). However, the LTP in dyskinetic 
subjects, differently from that of non-dyskinetic, does not 
depotentiate under the application of a low frequency stim-
ulation (LFS) protocol. In other words, l-DOPA restores 
synaptic plasticity in denervated animals, but in dyskinetic 
animals, this form of synaptic plasticity is not “plastic”, 
as it is not sensitive to homeostatic synaptic inputs. Both 
pre-clinical and clinical studies demonstrate that the physi-
ological phenomenon of bidirectional or homeostatic plas-
ticity indirectly correlated to LIDs development (Picconi 
et al. 2003; Picconi et al. 2008; Prescott et al. 2014; Huang 
et al. 2011). In addition, it has been shown that parkinso-
nian patients in OFF medication state, independently of their 
LIDs state, do not express potentiation of MEP amplitude 
measured with PAS method. Interestingly, l-DOPA treat-
ment restores normal LTP in non-dyskinetic patients, but 
fails to restore physiological plasticity in dyskinetic subjects 
(Morgante et al. 2006).

The absence of downscaling mechanism in the stri-
atal SPNs synapse, in pathological conditions such as 
PD and LIDs, has been associated to dopaminergic D1 
receptor downstream pathway hyperactivation. In par-
ticular, dyskinetic condition is associated to an abnormal 
regulation of D1/protein kinase A (PKA)/dopamine- and 
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cAMP-regulated neuronal phosphoprotein 32  kDa 
(DARPP-32) and Ras–extracellular-signal-regulated kinase 
(Ras–ERK) signaling pathways (Bido et al. 2015; Cerovic 
et al. 2015; Fasano et al. 2010; Picconi et al. 2003). An 
additional confirmation of the relationship between the loss 
of depotentiation and abnormal DA-related D1 downstream 
activation has been demonstrated in animals chronically 
treated with cocaine (Centonze et al. 2006).

Recently, the use of STDP protocol allows to analyze, 
from a different point of view, the specific role of direct 
and indirect striatal pathways in experimental parkinsonian 
and dyskinetic mice, carrying on eGFP targeting D1- and 
D2-expressing SPNs (Thiele et al. 2014). This study con-
firmed that bidirectional plasticity (LTD, LTP, and depo-
tentiation) is present in both direct and indirect striatal neu-
rons. The parkinsonian mice lose this form of homeostatic 
plasticity; i.e. SPNs exhibit only unidirectional plasticity, 
regardless of the stimulation paradigm (LTD or LTP). After 
chronic l-DOPA treatment, the mice that do not develop dys-
kinesia show normal LTP and depotentiation both in D1- and 
D2-expressing SPNs. Conversely, dyskinetic mice present a 
restoration of LTD in the D2-expressing neurons (indirect 
pathway) and of LTP in the D1-expressing neurons (direct 
pathway) (Thiele et al. 2014).

Other mechanisms might be responsible of LIDs, as dem-
onstrated by recent studies supporting a role of muscarinic 
M4 receptors in preventing LIDs; in this study the activation 
of M4R signaling, by a positive allosteric modulator, in par-
kinsonian mice chronically treated with l-DOPA interferes 
with the development of dyskinetic movements and blocks 
bidirectional plasticity in the direct-pathway neurons (Shen 
et al. 2015).

Although these seminal studies provided the first neu-
ronal and molecular basis underlying LIDs, more recent 
experimental evidence is adding complexity to the neuro-
anatomical and neurophysiological micro-circuitry in the 
BG involved in PD and LIDs (Cerovic et al. 2015; Belujon 
et al. 2010; Calabresi et al. 2016; Morgante et al. 2006).

Belujon and colleagues (Belujon et al. 2010) suggested 
a different pattern of plastic changes in parkinsonian rats 
chronically treated with l-DOPA. In particular, this study 
measured corticostriatal LTD in vivo through extracellular 
recordings of striatonigral “direct” pathway versus striato-
pallidal “indirect” pathway neurons; HFS protocol induces 
normal LTD in both striatal neuronal pathways of control 
animals (Belujon et al. 2010). Interestingly, the application 
of a depotentiation protocol induces a reverse of LTD only in 
striatonigral neurons, while neuronal activity of striatopalli-
dal cells appears to be less prone to come back to control lev-
els (Belujon et al. 2010). The striatonigral neurons recorded 
in parkinsonian rats express a normal LTD but the possibility 
to reverse its expression is lost. Most importantly, long-last-
ing depression of striatopallidal neurons is fully abolished in 

parkinsonian condition, accounting for their possible higher 
vulnerability. Notably, chronic treatment with l-DOPA, in 
rats not presenting LIDs, restores depotentiation after LFS 
in striatonigral neurons and induces a shift from LTD to LTP 
in striatopallidal neurons; the latter is not sensitive to the 
LFS downscaling protocol. This pattern of activity differs 
from that of dyskinetic animals exclusively for the effects of 
LFS downscaling protocol; in animals with LIDs the LFS 
protocol does not reverse the LTD in striatonigral neurons, 
but it reverse the LTP in striatopallidal neurons (Belujon 
et al. 2010).

All together, these in vivo and in vitro data suggest that 
l-DOPA favors hyperexcitability of the indirect pathway, 
which if contrasted by flexible downscaled processes in the 
direct pathway might act with therapeutic result; in contrast, 
if it is associated to the lack of bidirectional plasticity in 
the direct pathway, it gives rise to LIDs. Thus, LIDs might 
be the results of the lack homeostatic mechanisms in the 
D1 pathway, favored by a hyperactivation of the indirect 
pathway.

Structural synaptic plasticity in PD and LIDs

Dendritic spines represent the hardware structure on which 
synaptic plasticity processes run; therefore, they set the limit 
and the potentiality of the network. The different aspects of 
spine morphology differently affect synaptic transmission 
and plasticity, depending on the specific organization of the 
network.

In the striatum, most if not all, cortical glutamatergic 
inputs terminate on the head of dendritic spines of SPNs 
(Deutch et al. 2007; Raju et al. 2006, 2008). Thalamostri-
atal inputs also reach the same part of SPNs, but they target 
different types of striatal spines; for instance, the volume as 
well as the post-synaptic density (PSD) zone of the striatal 
spines, receiving cortical inputs, are larger as compared to 
those innervated by thalamic inputs, and they predominantly 
express the Vesicular Glutamate Transporter 1 (VGluT1), 
rather than VGluT2. Dopaminergic inputs, as well as cho-
linergic interneurons contacts, predominantly reach the neck 
of the spine consistent with a modulator role on the effects 
of glutamatergic inputs.

Almost complete dopaminergic denervation (>  90% 
loss) produces long-lasting changes in the morphology of 
SPNs neurons; this finding has been consistently reported 
across different species (monkeys, rats, and mice) and by 
the use of different kinds of toxins (reserpine, 6-OHDA and 
MPTP). Experimental parkinsonisms lead to reduced spine 
density, which ranges around 20–50% (Day et al. 2006; 
Gagnon et al. 2017; Ingham et al. 1993; Shen et al. 2007; 
Suarez et al. 2014; Toy et al. 2014; Villalba et al. 2009), 
according to the findings shown in the human putamen of 
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PD patients (McNeill et al. 1988). Partial DA depletion has 
been shown to lead to reduced spine density in a progressive 
model of PD in monkeys and mice treated with MPTP (Vil-
lalba et al. 2009), but not in partially spared striatal area in 
an acute model of PD (6-OHDA lesion) (Day et al. 2006). 
These changes in partial DA denervated model might under-
lay early behavioral dysfunctions in PD, and need further 
investigation.

Reduced spine density has been identified in both types of 
SPNs expressing D1 or D2 DA receptors in the vast majority 
of studies (Day et al. 2006; Gagnon et al. 2017; Suarez et al. 
2014; Toy et al. 2014; Villalba et al. 2009). Interestingly, DA 
denervation also reduces spine density in SPNs expressing 
D1–D2 heterodimers, which represent the 2% of SPNs in the 
dorsal striatum (Gagnon et al. 2017).

These findings suggest that DA inputs to dendritic spines 
of SPNs exert a necessary neurotrophic action for their 
maintenance. Interestingly, a parallelism in the proportion 
between the number of spines receiving DA inputs and those 
that are lost after DA denervation supports a possible neuro-
trophic action of DA on spines growth (Ingham et al. 1998). 
However, as previously suggested, the neurotrophic action of 
DA input on dendritic spines might be due to DA containing 
cells, which also contain other neurotrophic factors such as 
brain derived neurotrophic factor (BDNF), which is crucial 
for spine growth and maintenance (Seroogy et al. 1994). 
Other mechanisms have also been suggested to participate in 
this process, mainly related to glutamate-dependent excito-
toxicity. Although most of the lost spines also contain asym-
metric excitatory contacts, ultrastructural changes indicative 
of increased strength of glutamatergic transmission have 
been identified. For instance increased spine volume and 
PSD perforation have been reported after DA denervation 
in the remaining SPNs spines, which positively correlate 
with increased neuronal excitability (Villalba et al. 2009).

Interestingly, experimental evidence in pups (17–25 days) 
suggested a selective pruning of dendritic spines in the 
indirect pathway, which is mediated by aberrant activity of 
Cav1.3 Ca2 + channels (Day et al. 2006). Whether this same 
mechanism applies also to adult animals and DA denervated 
models showing spine pruning in D1-expressing SPNs, 
remains to be clarified.

Regardless of the lack of clear evidence on the molecu-
lar mechanism leading to synaptic pruning induced by DA 
denervation, some experimental findings suggest that DA 
replacement therapy with chronic l-DOPA treatment, as well 
as other DA agonists, can increase spine density not only in 
the striatum but also in the primary motor cortex and in the 
ventral striatum (Funamizu et al. 2017; Suarez et al. 2016; 
Ueno et al. 2017). These findings are quite surprising con-
sidering that they have been obtained also in animals show-
ing dyskinetic movements with almost complete depletion 

of striatal DA content (Suarez et al. 2014); whether these 
new spines are fully functional has never been addressed.

In those studies where changes in synaptic density have 
not been associated to LIDs, consistent alterations in spines 
morphology have been identified, in particular spine head 
enlargement, related to increased debrin immunoreactivity 
(Funamizu et al. 2017; Nishijima et al. 2017; Ueno et al. 
2017; Nishijima et al. 2013). Debrin is a F-actin binding 
protein, almost exclusively expressed in neurons, commonly 
used as a marker of excitatory input (Nishijima et al. 2013). 
A still controversial issue is whether these changes in glu-
tamatergic synapses are cellular subtype or afferent subtype 
specific. Dyskinetic abnormalities seem to be associated to 
selective abnormal increase in corticostriatal contacts, but 
not in the thalamostriatal inputs (Zhang et al. 2013), on the 
indirect pathway (Suarez et al. 2016; Schuster et al. 2009).

Synaptic and structural plasticity 
in experimental LIDs and dyskinetic PD 
patients

Few studies combined morphological changes with electro-
physiological alteration in synaptic activity, which do not 
allow to establish a direct causal link between the two types 
of plastic events. Increased head spine and spine density 
positively correlate with increased amplitude and frequency 
of miniature excitatory post-synaptic currents (mEPSCs), 
respectively (Segal 2010). Furthermore, LTP and LTD 
protocols lead to increased and decreased spine head size, 
respectively (Matsuzaki et al. 2004; Yasumatsu et al. 2008). 
Therefore, based on the morphological data, it might be 
inferred that 6-OHDA lesion should lead to reduced fre-
quency and increased amplitude to excitatory transmission 
in SPNs neurons. Notably, the lack of a correct dopaminer-
gic tone reflects, in 6-OHDA animals, an increase of striatal 
glutamatergic transmission (Centonze et al. 2005; Cepeda 
et al. 2001; Gubellini et al. 2002; Tozzi et al. 2011; Tang 
et al. 2001; Maccarrone et al. 2003) (Fig. 1).

l-DOPA treatment leads to initial restoration of synap-
tic plasticity and behavior likely through some degree of 
spared mechanism governing synaptic phasic DA release, 
such as impulse-dependent DA release and proper re-uptake 
through the dopamine active transported (DAT). However, it 
could be hypothesized that chronic treatment leads to a shift 
toward tonic DA release; tonic DA release, under chronic 
l-DOPA treatment, might induce a shift of DA action on 
the hyperactive D2 pathway as evidenced in in vivo studies 
in dyskinetic rats (Belujon et al. 2010) and as evidenced by 
the shift from LTD to LTP and by increased spine density 
(Suarez et al. 2016). At the same time, it might lead to a lack 
of phasic control of DA D1 receptors activation, which is 
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necessary for homeostatic bidirectional synaptic plasticity 
(Fig. 1).

The results of one recently published study addressing 
this issue, in some way support this hypothesis. Suarez 
and colleagues (Suarez et al. 2016) showed that although 
LIDs lead to increased spines density selectively in the 
D2-expressing SPNs, the associated hyperexcitability is 
dependent on D1 receptors activation.

Conclusion

DA innervation in the striatum supports many important 
behavioral and cognitive functions such as movement con-
trol, procedural learning and working memory (De Leonibus 
et al. 2007; Yin et al. 2009; Cools et al. 2008). These behav-
ioral functions require not only synaptic and structural plas-
ticity but also metaplasticity (Giordano et al. 2018), which is 

a set of homeostatic mechanisms that confer to the synaptic 
matrix the necessary degree of flexibility to adjust to the 
dynamic changes in incoming inputs.

The findings we reviewed here show that DA denervation 
leads to a loss of synaptic and structural plasticity in corti-
costriatal pathway. DA restoration with l-DOPA has benefi-
cial effects on behavior as long as its action can be modu-
lated by spared pre-synaptic mechanisms of DA re-uptake 
and impulse-dependent release and by flexible dynamic 
regulation of direct and indirect pathways.
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