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Abstract
Type A and B monoamine oxidases (MAO-A, -B) mediate and modulate intracellular signal pathways for survival or death 
of neuronal cells. MAO-A is associated with development of neuronal architecture, synaptic activity, and onset of psychiatric 
disorders, including depression, and antisocial aggressive impulsive behaviors. MAO-B produces hydrogen peroxide and 
plays a vital role in neuronal loss of neurodegenerative disorders, such as Parkinson’s and Alzheimer’s diseases. This review 
presents a novel role of MAO-A and B, their substrates and inhibitors, and hydrogen peroxide in brain function and neuronal 
survival and death. MAO-A activity is regulated not only by genetic factor, but also by environmental factors, including 
stress, hormonal deregulation, and food factors. MAO-A activity fluctuates by genetic–environmental factors, modulates the 
neuronal response to the stimuli, and affects behavior and emotional activities. MAO-B inhibitors selegiline and rasagiline 
protect neurons via increase expression of anti-apoptotic Bcl-2 and pro-survival neurotrophic factors in human neuroblastoma 
SH-SY5Y and glioblastoma U118MG cell lines. MAO-A knockdown suppressed the rasagiline-induced gene expression in 
SH-SY5Y cells, whereas MAO-B silencing enhanced the basal- and selegiline-induced gene expression in U118MG cells. 
MAO-A and B were shown to function as a mediator or repressor of gene expression, respectively. Further study on cellular 
mechanism underlying regulation of signal pathways by MAO-A and B may bring us a new insight on the role of MAOs in 
decision of neuronal fate and the development of novel therapeutic strategy may be expected for neuropsychiatric disorders.
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Abbreviations
ERK  Extracellular signal-regu-

lated protein kinase
ETC  Electron transfer chain
KLF  Krüppel-like factor
MAO-A and MAO-B  Type A and B monoamine 

oxidase

mao-A and mao-B KD, KO  MAO-A and MAO-B knock-
down, knockout

NHLH2  Nescient helix-loop-helix 2
NTF  Neurotrophic factor
PI3K  Phosphatidylinisitol-3 kinase
siMao-A, siMao-B, siNS  siRNA against mao-A and 

mao-B, and non-specific
Sp1  Specificity protein 1

Introduction

Monoamine oxidase [monoamine: oxygen oxidoreduc-
tase (deaminating), EC 1.4.3.4, MAO] catalyzes the oxida-
tive deamination of monoamine neurotransmitters, dietary 
amines, and xenobiotics, and regulates their levels and func-
tions in the brain. Oxidative deamination by MAO produces 
the corresponding aldehyde and hydrogen peroxide  (H2O2), 
a potent reactive oxygen species (ROS). Oxidative stress and 
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mitochondrial dysfunction are major risk factors common 
for neuronal loss in aging and age-related neurodegenera-
tive disorders, such as Parkinson’s and Alzheimer’s diseases 
(PD and AD). MAO is classified into two classes, types A 
and B (MAO-A and MAO-B), according to the sensitivity 
to inhibitors and the affinity to substrates (Shih et al. 1999; 
Youdim and Bakhle 2006). MAO-A is selectively inhibited 
by clorgyline [3-(2,4-dichlorophenoxy)-N-methyl-N-prop-2-
ylyl-propan-1-amine] and MAO-B by selegiline [(−)depre-
nyl, (2R)-N-methyl-1-phenyl-N-pro-2-ynyl-propan-2-amine] 
and rasagiline [(1R)-N-prop-2-ynyl-2,3-dihydro-1H-amine]. 
Serotonin (5-hydroxytryptamine, 5-HT) and norepinephrine 
(NE) are oxidized by MAO-A, whereas phenylethylamine, 
benzylamine, and octopamine are by MAO-B. Dopamine (DA) 
and tyramine are the substrates for both MAO-A and MAO-B.

MAO-A and B are expressed in distinct population of neu-
ronal cells. MAO-A occurs predominantly in catecholamin-
ergic neurons and MAO-B in serotonergic and histaminergic 
neurons and astrocytes (Riederer et al. 1989; Saura et al. 1996). 
MAO-A level in the brain is determined before the birth, and 
MAO-A regulates development of neuronal architecture coor-
dinately with its major substrate 5-HT (Buckholtz and Mayer-
Lindenberg 2008; Naoi et al. 2016, 2017a). MAO-B appears 
only in the postnatal stage and increases with age, suggesting 
its association with neuronal loss in aging and neurodegen-
erative disorders (Fowler et al. 1997). These isoenzymes are 
involved differentially in the brain function at the specified 
life stage, even though they share 70% common amino acid 
sequences and the same FAD coenzyme covalently bound to 
cysteine in the common pentapeptide sequence.

MAO-A has been proposed as a mediator or modifier of 
intracellular signal pathway directly and indirectly by regula-
tion of the substrate monoamine levels and  H2O2 production. 
This review will discuss mainly the recent research advances 
on the role of MAO-A and B in regulation of survival and 
death of neurons and in neuroprotection by MAO-B inhibi-
tors and other bioactive compounds (Naoi et al. 2012; Finberg 
and Rabey 2016). MAO-A and MAO-B were confirmed to 
regulate expression of neuroprotective Bcl-2, neurotrophic fac-
tors, and the opposite MAO isoenzyme either in a promoting 
or suppressive way in human neuroblastoma SH-SY5Y and 
glioblastoma U118MG cells, respectively (Inaba-Hasegawa 
et al. 2012, 2017a). MAO-A activity fluctuates in respond to 
genetic and environmental stimuli, and the association with 
psychiatric disorders, such as depression and antisocial behav-
ior, is discussed.

MAO‑A and B are involved in neuronal death 
by different mechanisms

MAO‑A in apoptosis

In the embryonic mouse brain, MAO-A is essentially 
required for apoptosis for development of neuronal archi-
tecture, as demonstrated by mao-A knockout (KO) (Wang 
et al. 2011). MAO-A is directly associated with death 
signaling in neuronal cells. A dopaminergic neurotoxin 
N-methyl(R)salsolinol was shown to bind to MAO-A at 
the substrate-binding site and induce apoptosis in SH-
SY5Y cells, which mao-A knockdown (KD) with short 
interfering (siRNA) inhibited (Yi et al. 2006a). In apop-
tosis induced by NGF withdrawn in PC12 cells, MAO-A 
expression increased by activation of p38 mitogen-acti-
vated protein kinase (MAPK) pathway (De Zutter and 
Davis 2001). Increased MAO-A oxidized DA, enhanced 
 H2O2 production and caused apoptosis, which was pre-
vented by clorgyline. Decrease of an MAO-A repressor 
transcription factor R1 (RAM2/CDCA7L/JPO2) was 
reported to account for increased MAO-A expression 
(Ou et al. 2006a). Posttranslational increase of MAO-A 
mRNA, protein, and activity was detected in apoptosis 
induced by staurosporine, serum withdrawal, and inhibi-
tors of complexes I, III, and IV in SH-SY5Y cells. MAO 
inhibitors, anti-oxidants, and mao-A KD with micro-RNA 
(miRNA) suppressed the cell death, suggesting that MAO-
A-dependent ROS production caused cell death (Fitzgerald 
et al. 2007, 2014).

MAO‑B in neurodegeneration

On the other hand, mainly, MAO-B oxidizes DA in the 
human brain (Glover et al. 1977) and it produces toxic 
1-methyl-4-phenylpyridinium ion  (MPP+) from 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (Heikkila 
et al. 1984). Therefore, MAO-B is proposed as a principal 
player in “oxidative stress hypothesis” for the pathogen-
esis of PD, AD, and other neurodegenerative disorders. 
MAO-B mRNA and enzymatic activity increased in the 
platelets from patients with PD, AD, and Huntington dis-
ease (HD) (Götz et al. 1998; Zhou et al. 2001). These 
results suggest the contribution of MAO-B to neurodegen-
eration via oxidative stress in the brain.
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The toxic molecule hydrogen peroxide 
functions as a signaling molecule

Cytotoxicity of  H2O2 in neurodegeneration

MAO localized at the outer mitochondrial membrane pro-
duces  H2O2 and increases ROS levels in the mitochon-
drial matrix and cytosol (Fig. 1). Enzymatic oxidation of 
tyramine by MAO increased intra-mitochondrial  H2O2 
level to 48-folds of the basal level of  H2O2 produced in 
complex II of the electron transfer chain (ETC) in the pres-
ence of antimycin A (Hauptman et al. 1996). Declined 
activity of complex I in the ETC in parkinsonian brain 
(Mizuno et al. 1989) and complexes I, III, and IV in Alz-
heimer’s disease (Valla et al. 2006) indicates that MAO 
mainly contributes to oxidative stress in mitochondria and 
subsequent neurodegeneration in these disorders.  H2O2 is 
cleaved by transition metals bond to mitochondrial DNA 
into hydroxyl radical  (OH.−), which causes single-strand 
breaks in mitochondrial DNA and impairs mitochondrial 
function (Giorgio et al. 2007).  H2O2 induced mitochon-
drial permeability transition, an initial step of apoptosis 
(Marcocci et al. 2002) by oxidation of vital thiol residues 
in adenine–nucleotide translocator (ANT), a component of 

the mitochondrial permeability transition pore (Costantini 
et al. 1996).  H2O2 activates ataxia–telangiectasia mutated 
(ATM) kinase and the tumor suppressor protein p53, and 
induces transcriptionally growth arrest and cell death.

H2O2 as a modulator in signal pathway

H2O2 functions as a signaling molecule for physiologi-
cal processes to control cellular growth and death.  H2O2 
is membrane-permeable and diffusible, longer-lived than 
superoxide (O2

.−) or  OH.−, and serves as a redox signal and 
regulator of transcription factors (Marinho et al. 2014). 
Beneficial and harmful functions of  H2O2 depend on the 
intracellular concentrations, the physiological range of 
which spans between 10 and 100 nM (Sies 2017). At lower 
concentrations about 10 nM, cells respond to  H2O2 towards 
proliferation and adaptation to stress by activating signal 
pathways, such as the nuclear factor erythroid 2-related 
factor 2 (Nrf2)-antioxidant response element (ARE) (Gan 
and Johnson Gan and Johnson 2014).  H2O2 activates tran-
scription factors, such as activator protein-1 (AP-1), cAMP-
response-element-binding protein (CREB), heat shock fac-
tor 1 (HSF1), hypoxia-inducible factor 1 (HIF-1), NF-κB, 
NOTCH, and specificity protein 1 (Sp1) (Sies 2014). The 
activation is mediated by multiple diverse mechanisms, 

Fig. 1  H2O2 is produced in 
mitochondria mainly by the 
ETC and MAO, and activates 
various signal pathways.  H2O2 
activates receptors and enzymes 
(shown in boxes), and transcrip-
tion factors (ovals) to increase 
gene expression and determine 
the fate of neurons. Figure 
presents protective signaling 
pathways detected in the brain, 
and abbreviations used here 
are as follows. ELK-1 Ets-like 
protein-1, ERK extracellular 
signal-regulated protein kinase, 
IAP inhibitor of apoptosis, 
JAK Janus protein kinase, 
JNK c-Jun N-terminal kinase, 
KLF Krüppel-like factor, MEK 
mitogen-activated protein/ERK 
kinase, Pi phosphate, PLCγ1 
phospholipase C-γ1, STAT  
signal transducers and activators 
of transcription

Induced expression of genes coding: 
MAO-A, Bcl-2, NTFs, anti-oxidant enzymes, pro-survival proteins (IAP, survivin)  
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leading to cell death or survival (Martindale and Holbrook 
2002). Figure 1 presents signal pathways activated by  H2O2 
to protect neuronal cells.

H2O2 signaling is cellular-specific, and  H2O2 activated 
the pro-survival zinc finger transcription factor Sp1 in neu-
rons, but did not in glia (Ryu et al. 2003).  H2O2 increased 
Sp1 level and its binding to DNA in nuclei of cortical neu-
rons, and enhanced gene expression for neuroprotection. 
Dexamethasone activated  H2O2–Sp1 pathway and increased 
MAO-A expression transcriptionally and translationally, but 
did not affect MAO-B (Manoli et al. 2005).  H2O2 increased 
glial cell line derived neurotrophic factor (GDNF) mRNA 
and protein in the substantia nigra neuron-glia cell cul-
tures by activation of phosphatidylinisitol-3 kinase (PI3K) 
and MAPK pathway (Saavedra et al. 2006; Fonseca et al. 
2014).  H2O2 increased Bcl-2/Bax ratio and neuronal apop-
tosis inhibitory protein (NAIP) in PC12 cells by activation 
of extracellular signal-regulated protein kinase (ERK) 5—
Krüppel-like factor (KLF) 4 signaling (Su et al. 2014).  H2O2 

activated p38 MAPK, c-JUN amino-terminal kinase (JNK), 
and ERK, which further activated Ets-like protein-1 (ELK-
1), leading to transcriptional activation of c-FOS. On the 
other hand, a transitional increase in intracellular  H2O2 level 
activated receptor tyrosine kinases (RTKs) of epidermal 
growth factor (EGF) receptor and platelet-derived growth 
factor (PDGF) receptor and activated downstream MAPK 
and PI3K/Akt pathway to promote proliferation, differentia-
tion, and chemotaxis in cancer and atherosclerosis (Catarzi 
et al. 2005; Truong and Carroll 2012).

MAO‑B inhibitors, monoamines, and MAO‑B 
regulate MAO‑A expression

R1 a transcription repressor binds to Sp1/KLF-binding sites 
in mao-A core promoter, and inhibits MAO-A promoter and 
enzymatic activity (Fig. 2). Increased MAO-A in depres-
sion was mediated by R1–Sp1 pathway (Johnson et al. 2011; 
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Fig. 2  In SH-SY5Y cells, various factors affect MAO-A expression. a 
Rasagiline and  H2O2 increase MAO-A expression transcriptionally by 
reduction of R1 suppressor and activation of KLF11 transcription fac-
tor. MAO-A substrates, 5-HT, NE, and DA increase MAO-A by the 
receptors and activate signals, such as diacetyl glycol (DAG), cAMP, 
and PI3K. Stress, glucocorticoid, and estrogen increase MAO-A by 

mean of the receptors in nucleus. Modification and degradation of 
MAO protein by the ubiquitin–proteasome system (UPS) decrease 
MAO-A activity. b MAO-B inhibitors increased MAO-A protein. 
Rasagiline upregulated MAO-A mRNA, protein, and activity by 
R1-Sp1/KLF11 transcription pathway, but the increase by selegiline 
did not depend on this pathway (Inaba-Hasegawa et al. 2013)
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Harris et al. 2015). KLF11 [also called transforming growth 
factor β-inducible early gene 2 (TIEG2)] is an mao-A tran-
scriptional activator. Sp1/KLF pathway takes part in cell 
proliferation, apoptosis, differentiation, and neoplastic trans-
formation. KLF11 and related transcription factors interact 
with histone acetyl transferase (HAT) and upregulate mao-A 
expression in chronic social defeat stress (Grunewald et al. 
2012).

Rasagiline and selegiline increased MAO‑A distinctly 
depending on MAO‑A and B in neuronal and glial 
cells

In human neuroblastoma SH-SY5Y cells, rasagiline and 
selegiline  (10−6 to  10−12 M) increased MAO-A mRNA, 
protein, and activity (Fig. 2) (Inaba-Hasegawa et al. 2013). 
R1–Sp1/KLF11 pathway mediated rasagiline-induced 
MAO-A expression, but this pathway did not mediate sele-
giline-increased MAO-A expression.

In SH-SY5Y cells, siRNA against MAO-A (siMao-A) 
treatment downregulated MAO-A expression, but did not 
affect MAO-B (Inaba-Hasegawa et al. 2013). On the other 
hand, in human glioblastoma U118MG cells, treatment with 
siRNA against MAO-B (siMao-B) significantly upregulated 
mao-A expression, and selegiline  (10−6 to  10−10 M) syner-
gistically increased mao-A expression, whereas siMao-A did 
not affect mao-B (Inaba-Hasegawa et al. 2017a).

MAO‑A substrates increased MAO‑A activity

The substrate availability affects MAO-A expression. DA 
and NE dynamically enhanced MAO-A activity by  D2-like 
receptor in rat mesangial cells (Pizzinat et al. 2003). 5-HT 
reduction by tryptophan depletion decreased MAO-A bind-
ing in the prefrontal cortex, whereas DA increase by car-
bidopa–levodopa administration enhanced MAO-A in the 
striatum of healthy volunteers measured with  [11C]-harmine 
positron emission tomography (PET) (Sacher et al. 2012). In 
primary cultured astrocytes, MAO oxidized DA, produces 
 H2O2, activates  Ca2+ signaling, and increased MAO-A activ-
ity (Vaarmann et al. 2010). 5-HT, NE, and DA have been 
presented to activate signal pathways, increase MAO-A 
expression, and affect brain architecture in developmental 
period and adulthood neurogenesis in the hippocampus, and 
impact affective and aggressive behaviors (McCarthy et al. 
2007; Yu et al. 2014).

However, in mao-A and mao-B KO mice, no compensa-
tory increase in MAO-B or MAO-A was observed (Holsch-
neider et al. 2001). Induction of mao-A mRNA expression 
by rasagiline was transit (Inaba-Hasegawa et al. 2013), sug-
gesting that MAO-A expression and activity may fluctuate 
transitionally and reversely in response to changes in mono-
amine and  H2O2 levels in the brain.

Genetic, biological, and environmental 
factors regulate MAO‑A activity

MAO‑A activity is regulated by gene–environment 
interaction

Altered expression of MAO-A is recognized in psychiat-
ric disorders (Shih et al. 2011; Mousseau and Baker 2012; 
Godar et al. 2016), and even modest increase in MAO-A 
activity was associated with depression (Meyer et al. 2006). 
Association between functional polymorphism of MAO 
and environmental factors has been confirmed. A VNTR 
polymorphism of mao-A promoter with low transcription 
activity was detected in impulsive, aggressive behavior, and 
alcoholism (Ducci et al. 2008; Sjöberg et al. 2008). Environ-
mental factors, such as abuse exposure in childhood, sexual 
abuse, and maternal stress, have been reported to decrease 
MAO-A activity and cause aggressive, impulsive, and anti-
social behaviors (Huang et al. 2004; Fergusson et al. 2011; 
Byrd and Manuck 2014). Fluctuation of MAO-A activity at 
the distinct period of life may affect behavioral and emo-
tional function during later life stages.

Stress and hormone affect MAO‑A activity

MAO-A expression is regulated by hormonal system. Acute 
stress significantly decreases MAO-A activity in the human 
brain, and acute dexamethasone exposure decreased MAO-A 
protein and activity by 30–39% in SH-SY5Y and 1242-
MG cells (Soliman et al. 2012). Chronic stress deregulates 
the hypothalamic–pituitary–adrenal (PHA) axis, activates 
Sp1/KLF11 signal pathway, and upregulates MAO-A and 
MAO-B mRNA and enzymatic activity (Chen et al. 2011; 
Harris et  al. 2015). Glucocorticoid (GC) and androgen 
increased MAO-A activity by direct interaction of gluco-
corticoid/androgen receptors with the third glucocorticoid/
androgen response element (GRE) in the promoter (Ou et al. 
2006b). MAO-A expression increased in depression of post-
partum or perimenopausal period by age-dependent reduc-
tion of estrogen and progesterone (Sacher et al. 2010, 2015; 
Rekkas et al. 2014).

Genes related to AD and PD are involved in MAO‑A 
expression

Genes related to the familiar forms of PD and AD affect 
MAO-A expression. Parkin suppressed MAO-A and 
MAO-B activities in SH-SY5Y cells (Jiang et al. 2006). 
Parkin-induced degradation of estrogen-related receptors 
(ERRs) and inhibited MAO expression, whereas the PD-
linked mutants did not affect MAO activity (Ren et al. 2011). 
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Wild and AD-related presenilin-1 (PS-1) variants physically 
interacted with MAO-A and affected the activity in mouse 
hippocampal HT-22 cells and PS-1 knock-in mice, and the 
ΔEx9, A431E, and A235V variants increased MAO-A activ-
ity (Pennington et al. 2011; Wei et al. 2012a). Increased 
MAO-A activity was proposed to cause depressive state in 
AD.

Modification of MAO protein

Modification of MAO protein also affects the enzymatic 
activity.  Ca2+ increased MAO-A activity in monkey brain, 
mouse, and rat (Egashira et al. 2003; Samantaray et al. 
2003), which might increase ROS and promote aging pro-
cess (Cao et al. 2007).  Ca2+ bound to serine 209 residue 
and increased MAO-A, which was inhibited by the phos-
phorylation with activated p38(MAPK) (Cao et al. 2009). 
Rines/RNF180, the RING finger-type E3 ubiquitin ligase, 
interacted with MAO-A, and promoted its ubiquitination and 
degradation, whereas Rines KO increased MAO-A activity 
in the locus coeruleus of mice (Kabayama et al. 2013).

MAO‑B expression is elevated in PD, AD, 
alcoholism, and other psychiatric disorders

MAO‑B in PD and AD

As discussed above, MAO-B has been proposed as a patho-
genic factor of PD, but the increased activity is mainly due 
to massive gliosis in the substantia nigra, especially in the 
recessive forms of PD caused by mutation in PINK-1, parkin, 
and DJ-1 (Haneka et al. 2010). MAO-B activity increased in 
reactive astrocytes of senile plaques (Nakamura et al. 1990) 
and oxidative stress and loss of nigra-striatal were induced in 
dopaminergic neurons of PD mouse model (Liu et al. 2013). 
Occurrence of the intron 13 single-nucleotide polymorphism 
(SNPs) (rs1799836) of mao-B was reported in the female 
parkinsonian patients (Kang et al. 2006). Allele G of intron 
13 has significantly higher transcriptional activity than allele 
A (Costa-Mallen et al. 2005), and A/G dimorphism in intron 
13 sequence increased MAO-B mRNA and protein in PD 
and AD (Balciuniene et al. 2002; Jakubauskiene et al. 2012).

MAO-B expression increased in the brain and platelet of 
patients with AD (Gulyas et al. 2011; Zellner et al. 2012). 
MAO-B was associated with γ-secretase in the human brain, 
and increased with Aβ42 level in pyramidal neurons of the 
AD brain. Silencing MAO-B with siRNA reduced intra-
neuronal Aβ42 in mouse primary cultured cortical neurons, 
and MAO-B overexpression increased it in HerpG2 cells 
(Schedin-Weiss et al. 2017).

MAO‑B expression in alcoholism and other 
psychiatric disorders

Increased platelet MAO-B activity was detected in subjects 
with alcohol dependence, with cognitive deficiency and loss 
of neurons and glia (Erjavec et al. 2014). MAO-B protein and 
KLF11 were upregulated in the prefrontal cortex of human 
alcohol dependence, leading to neuronal loss (Udemgba 
et al. 2014). Human mao-B core promoter fragment contains 
two clusters of overlapping Sp/KLF-binding sites separated 
by a CSCCC element and a TATA box, whereas mao-A core 
promoter consists of three Sp1 binding sites in reversed ori-
entation without a TATA box. Sp1 sites contribute positively 
to the transcriptional activity, whereas the CACCC element 
negatively. Sp1 and Sp4 activate MAO-B promoter activity, 
and Sp3 represses (Wong et al. 2001). Decrease in methyla-
tion of the CpG sites and Sp3 upregulated MAO-B expres-
sion (Wong et al. 2003). Selegiline and rasagiline prevented 
the increase in KLF11–MAO-B activity by ethanol and pro-
tected SH-SY5Y cells and brain injury of rats exposed to 
binge ethanol (Lu et al. 2008; Duncan et al. 2016).

A sex-specific association between mao-B rs1799836 
with increased frequency of G allele was detected in Span-
ish female patients with schizophrenia (Gasso et al. 2008). 
Platelet MAO-B activity increased in patients with post-
traumatic stress disorder (PTSD) (Strac et al. 2016). Two 
mao-B SNPs, rs10521432 and rs6651806, out of 12 SNPs, 
were reported in negative emotionality (Dlugos et al. 2009). 
Platelet MAO-B activity was higher in subjects with severe 
agitation than non-agitated subjects, but no association was 
found between severe agitation and mao-b rs1799836 poly-
morphism in Caucasian male subjects (Perkovic et al. 2016).

Phorbol-12-myristale-13-acetate (PMA) is an extracel-
lular stress inducer and increased MAO-B expression via 
activation of protein kinase C (PKC) and MAPK involv-
ing Sp1, Sp3, c-Jun, and early growth response 1 (Egr-1) 
(Wong et al. 2002). The fourth estrogen response element 
in mao-B promoter overlaps with a consensus retinoic acid 
receptor element (RARE), and retinoic acid activated mao-
B promoter through activation of retinoic acid receptor α 
(RARα) and retinoid X receptor α (RXRα) in BE(2)C cells 
(Wu et al. 2009a).

Are MAO‑A and B the principal player 
or bystander in neuroprotection by MAO‑B 
inhibitors?

Neuroprotective activity of selegiline and rasagiline has 
been proved in animal and cellular models of neurodegener-
ative disorders. Clinical trials of selegiline and rasagiline in 
parkinsonian patients have been reported to prevent disease 
progression and ameliorate symptoms (Riederer and Laux 
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2011). The neuroprotective activity is mainly attributed to 
the direct suppression of apoptosis signaling triggered by 
pore formation at the mitochondrial membrane (Wu et al. 
2015) and the activation of endogenous biosynthesis of anti-
apoptotic Bcl-2 protein family and NTFs (Naoi et al. 2013; 
Bar-Am et al. 2016).

MAO‑B inhibitors bind to MAO‑B and also to MAO‑A

However, it remains to be elusive whether MAO-B itself 
is involved in neuroprotection of MAO-B inhibitors. In 
mao-B KO mice, selegiline could not prevent brain dam-
age by ischemia and age-related deficient spatial learning, 
suggesting the essential role of MAO-B in neuroprotection 
(Holschneider et al. 1999a, b). In mao-B KO mice, binding 
of  [3H]-l-deprenyl in the cortex, striatum and corpus cal-
lossum decreased markedly to 3.5, 4.0, and 2.7% of control, 
which was further downregulated by clorgyline (Ekblom 
et al. 1998). After daily administration of selegiline and 
rasagiline, MAO-A activity reduced by 70% in the plasma 
of patients treated with MAO-B inhibitors (Bartl et  al. 
2014). Systematic administration of Zydas and transdermal 
selegiline downregulated MAO-A to one-third of control 
in healthy men (Fowler et al. 2015). These results present 
that rasagiline and selegiline bind also to MAO-A, not only 
MAO-B, which may be relevant with the neuroprotection of 
MAO-B inhibitors in MAO-A-expressed cells.

Enzymatically “dead” MAOs may be involved 
in neuroprotection by MAO‑B inhibitors

Inhibition of MAO-B enzymatic activity is not essentially 
required for the neuroprotective function of MAO-B inhibi-
tors (Klegeris and McGeer 2000). Selegiline and rasagiline 
 (10−4–10−6 M) irreversibly inhibit the enzymatic activity 
and protected cells at these concentrations, suggesting that 
catalytically inactive MAO protein may be associated with 
neuroprotection. Substitution of aspartic acid 328 residue 
of MAO-A completely inhibited the enzymatic activity, but 
catalytic “dead” MAO-A still affected cell viability and pro-
liferation (Wei et al. 2012b), suggesting the different effects 
of genetic mao KO and MAO inactivation with the inhibitors 
on regulation of neuronal viability and function.

MAO‑B inhibiters bind to MAO apart from the active 
site and also to other protein

MAO inhibitors bind to MAO at site different from the 
active site and trigger downstream pro-survival signaling. 
TVP1022, the S-enantiomer of rasagiline, a very week 
MAO-B inhibitor, bound to imidazolines 1 and 2  (I1 and 
 I2) binding sites in MAO-A and protected PC12 cells and 
neonatal rat ventricular myocytes, through activation of 

p42/44 MAPK (Barac et al. 2012). Other MAO inhibitors, 
clorgyline, moclobemide, transcypromine, and phenelzine, 
also show affinity for  I2 site (Alemany et al. 1995; MacInnes 
and Handley 2002). MAO inhibitors bind to other amine 
oxidases [semicarbazide-sensitive amine oxidase (SSAO), 
diamine oxidase (DAO), plasma amine oxidase (PAO)], 
alcohol, and aldehyde dehydrogenases (Holt et al. 2004). 
Clorgyline, Ro41-1049 (a reversible MAO-A inhibitor), and 
phenelzine have very high affinity to  D2 receptors (Levant 
et al. 2010). However, there is no direct evidence to support 
that binding to other protein can contribute neuroprotection 
by MAO-B inhibitors.

MAO‑A mediates Bcl‑2 and NTF induction 
by MAO‑B inhibitors in SH‑SY5Y cells

Neuroprotective activity of NTFs, especially brain-derived 
neurotrophic factor (BDNF) and GDNF, has been demon-
strated in clinical studies and also in cellular and animal 
models of neurodegenerative disorders. BDNF, a member 
of the neurotrophin family (BDNF, NGF, and 3-NT), acti-
vates tropomycin-related kinase (Trk) receptor B (TrkB), 
and promotes neurogenesis, synaptic plasticity, and cell sur-
vival. Reduced BDNF levels and BDNF functional polymor-
phism in major depressive disorder are proposed to account 
for impaired neurogenesis in the hippocampus (Michel 
et al. 2008). GDNF family (GDNF, neurturin, artemin, and 
persephin) functions in cellular growth, differentiation, and 
survival, and the activity is mediated by a multicomponent 
receptor complex composed of GDNF family receptor α1 
(GFRα1), RET (rearranged during transfection) receptor 
tyrosine kinase (TK), and phosphatidyl inositol-linked pro-
tein. GDNF is expressed in the striatum (caudate putamen) 
and thalamus and protects selectively dopaminergic neurons.

Rasagiline, selegiline, and related compounds 
increased Bcl‑2 and NTFs

Selegiline, rasagiline, N-propargylamine, aminoindan 
(a rasagiline metabolite), and befloxantine (a reversible 
MAO-A inhibitor) increased Bcl-2 expression and sup-
pressed apoptosis (Akao et al. 2002; Yi et al. 2006b; Weinreb 
et al. 2004, 2010). In cultured cells, selegiline and rasagiline 
enhanced the levels of GDNF, BDNF, and other NTFs (Tat-
ton et al. 2002; Maruyama et al. 2004; Nakaso et al. 2006). 
Rasagiline and selegiline  (10−7 to  10−10 M) increased GDNF 
mRNA and protein more markedly than BDNF in SH-SY5Y 
cells (Maruyama et al. 2004; Maruyama and Naoi 2013). 
Oral administration of selegiline (5 mg/day for 7–8 weeks) 
to parkinsonian patients and subcutaneous injection of rasa-
giline (0.25 mg/day for 4 weeks) in non-human primates 
increased BDNF and GDNF in the cerebrospinal fluid (CSF) 
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(Maruyama and Naoi 2013). Rasagiline increased BDNF 
and GDNF also in the rodent brain (Gyarfas et al. 2010; 
Ledreux et al. 2016). MAO inhibitors permeable though the 
blood–brain barrier (BBB) may be applicable for the NTF 
supplement therapy in neurodegenerative disorders.

Rasagiline, aminoindan, and MT-031 (an MAO-A and 
acetylcholine esterase inhibitor) induced TrkB receptor, acti-
vated downstream cell signal mediators, and increased PI3K 
protein in animal models of PD, inflammation, and aging 
(Mandel et al. 2007; Badinter et al. 2015; Liu et al. 2017). 
However, binding of rasagiline or selegiline to Trk receptors 
and GFRα has been not reported.

MAO‑A mediates gene induction by rasagiline 
and selegiline

MAO-A mediates Bcl-2 and NTF induction by rasagiline 
in SH-SY5Y cells. MAO-A KD with siRNA inhibited rasa-
giline-dependent Bcl-2 protein and BDNF and NGF mRNA 
expression, whereas selegiline  (10−6–10−10 M) increases 
BDNF expression more markedly in mao-A KD cells than 
cells treated with non-specific (NS) siRNA (Fig. 4). In mao-
B-overexpressed SH-SY5Y cells, MAO-B was found to 
mediate Bcl-2 induction by selegiline, but not by rasagil-
ine (Inaba-Hasegawa et al. 2012). Rasagiline and selegiline 
increased Bcl-2 protein and NTF mRNA expression either 
in MAO-A dependent or independent way (Inaba-Hasegawa 
et al. 2017a, b). 

MAO‑B represses the constitutional 
and selegiline‑enhanced expression 
of genes in U119MG cells

Glial cells induce cell death in neurons by production of pro-
inflammatory cytokines and chemokines, and phagocytosis. 
However, protoplasmic astrocytes contain also protective 
NTFs and glutathione and inhibit disease progression (Halli-
day and Stevens 2011). Various neuroprotective compounds, 
such as selegiline (Mizuta et al. 2000), dopamine agonists 
(Ohta et al. 2010), memantine (Wu et al. 2009b), valproate 
(Chen et al. 2006), amantadine (Ossola et al. 2011), and 
antidepressant (Hisaoka et al. 2008), induced NTF expres-
sion in astrocytes.

In U118MG cells, MAO-B was involved in constitutional 
expression and induction by selegiline and rasagiline of 
Bcl-2 and NTFs (Inaba-Hasegawa et al. 2017a, b). Figures 3, 
4 show that mao-B KD with siMao-B increased the basal 
expression of Bcl-2 mRNA and protein, BDNF, NGF, and 
GDNF mRNA, whereas mao-A KD decreased them. In con-
trol U118MG cells, selegiline  (10−6–10−10 M) and rasagiline 
 (10−7–10−10 M) enhanced BDNF and GDNF. In siMao-B 
treated cells, selegiline  (10−6 to  10−10 M) further increased 

Bcl-2, BDNF, and GDNF expressions, but rasagiline did not, 
suggesting that selegiline and rasagiline-activated distinct 
signal pathways to increase gene expression. 

As summarized in Fig. 4, rasagiline induced pro-survival 
genes by activation of signal pathways mediated by MAO-A 
in neuronal cells. In glial cells, MAO-B functioned as a 
repressor of mao-A, bcl-2, and NTFs and the gene induction 
by selegiline, whereas mao-A KO suppresses it.

MAO‑A substrates, 5‑HT, NE, and DA, induce 
BDNF and GDNF expressions

MAO-A substrates, 5-HT and NE, stimulate BDNF synthe-
sis and affect neuronal plasticity in aging and neurodegener-
ative disorders (Mattson et al. 2004). β-Adrenergic receptors 
mediated NE-dependent BDNF induction by exercise and 
antidepressants, and 5-HT1A and 5-HT2A/C were associated 
with antidepressant-induced BDNF expression (Ivy et al. 
2003). NE and nitric oxide (NO) promoted BDNF level and 
survival of cultured hippocampal neurons through activation 
of cAMP-response element binding (CREB) and Akt-MAP 
signal pathways (Patel et al. 2010). NE induced BDNF in 
embryonic rat hippocampal neurons by PI3K and MAPK 
cascades (Chen et al. 2007).

In astrocytes, monoamine receptors are also expressed 
(Pav et al. 2008), and DA and NE stimulated biosynthesis of 
endogenous BDNF (Juric et al. 2006). In cultured rat corti-
cal astrocytes, DA upregulated BDNF protein level (Miklic 
et al. 2004). NE increased BDNF through binding to α1- 
and β1/β2-adrenergic receptors, and activation of ligand-
G-protein-coupled receptor-PI3K–ERK–CREB cascades 
or  Ca2+-dependent protein kinase (Juric et al. 2008). NE, 
epinephrine, and DA increased 3-NT expression in primary 
cultured cerebellar astrocytes by cAMP/PKA and PKC path-
ways and  Ca2+ mobilization (Mele et al. 2010). However, 
little is known about the expression of BDNF transcripts by 
5-HT in astrocytes.

DA increased also GDNF via activation of  D1 receptors 
in human fetal astrocytes (Kinor et al. 2001). 5-HT increased 
GDNF in C6 glioblastoma cells by binding to 5-HT2A and 
activation of MEK–MAPK pathway (Hisaoka et al. 2004, 
2008), and also via fibroblast growth factor (FGF) receptor 
2 (FGFR2) (Tsuchioka et al. 2008). In contrast to BDNF, 
GDNF induction by NE has been not reported in astrocytes.

Epigenetic regulation of MAO‑A expression 
in gene–environmental interaction

Recently, genotype-dependent environmental influence has 
been proposed as the pathogenic factor for effective dis-
orders (Ludwig and Dwivedi 2016). Epigenetic regulation 
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of MAO activity influences the vulnerability to environ-
mental stress, and affects social cognition, learning and 
memory, and stress-related behaviors (Roth and Sweatt 
2011). In depression, high levels of MAO-A expression 
are proposed to impair neurogenesis in the hippocampus 
and cause molecular changes. However, MAO-A geno-
type did not fully correspond to MAO-A activity in the 
brain (Fowler et al. 2007), suggesting involvement of epi-
genetic modification of MAO-A activity. By epigenetic 
modification, specific gene is manipulated in the interac-
tion through DNA methylation, hypomethylation, histone 
modifications, and non-coding RNAs.

DNA methylation in epigenetic regulation of MAO‑A

The CpG site-specific methylation state of mao-A promoter 
predicts MAO-A activity in the brain of healthy men (Shu-
may et al. 2012). Alteration of DNA methylation in mao-A 
promoter was reported in female patients with depression 
and panic disorder (Domschke et al. 2012; Melas and For-
sell 2015; Ziegler et al. 2016) and antisocial personality 
disorder (Checknita et al. 2015), and with nicotine and 
alcohol dependence (Philibert et al. 2008). Increased level 
of methylation at the CpG residues in mao-A promoter 
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Fig. 3  In U118MG cells, MAO-B functions as a repressor of gene 
expression coding Bcl-2, BDNF, and other NTFs. a MAO-B sup-
pressed the basal expression of Bcl-2, BDNF, NGF, and GDNF, and 
MAO-B silencing with siMao-B enhanced it. Selegiline increased 
these genes synergistically. Selegiline triggers MAO-B-mediated 
signal pathways, and monoamines activate the receptors and down-
stream transcription factors, including NF-κB, CREB, CREB-bind-
ing protein (CBP), FoxO, forkhead in rhabdomyosarcoma (FKHR), 
and NGF-inducible factor A (NGFI-A). Finally, increased Bcl-2 

and NTFs increase cell survival, neurogenesis, and synaptic plastic-
ity. Ethanol activates KLF11 and upregulates mao-B expression. 
MAO-B expression is regulated also by glucocorticoid, estrogen, and 
retinoic acid via their receptor element, GRE/estrogen response ele-
ment (ERE), and retinoic acid receptor element (RARE). b siMao-B 
treatment enhanced the constitutional expression of BDNF, NGF, and 
GDNF in U118MG cells, whereas siMao-A suppressed it (Inaba-
Hasegawa et al. 2017a, b)
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was reported in male patients with paranoid schizophrenia 
(Chen et al. 2012).

Chromatin modification in MAO‑A expression

Posttranslational reversible modification of histone, such as 
acetylation, phosphorylation, ubiquitination, and sumoyla-
tion, rearranges chromatin and affects the transcription. 
SIRT1 an  NAD+-dependent deacetylase regulates gene 
expression through histone acetylation, and enhances mem-
ory and learning, cognitive function, and synaptic plastic-
ity (Michan et al. 2010). It showed neuroprotective activity 
in animal models of AD and amyotrophic lateral sclerosis 
(ALS) (Chen et al. 2005; Kim et al. 2007). SIRT1 activated 
MAO-A in the brain and induced anxiety and exploratory 
drive, whereas SIRT1 KO mice showed less susceptibil-
ity to depression (Libert et al. 2011). SIRT1 deacetylated 
nescient helix–loop–helix 2 (NHLH2), a brain-specific 
transcription factor, and increased the transcriptional activ-
ity on mao-A promoter. Micro-RNA-142 (miR-142) was 
shown to suppress SIRT1–NHLH2 pathways and decrease 
MAO-A mRNA, protein, and the activity in BE(2)M17 cells, 

and might be associated with the pathogenesis of several 
neurodegenerative disorders and HIV-associated cognitive 
deficient (Chaudhuri et al. 2013). SIRT1 regulates MAO-A 
activity, but not MAO-B, and serves as a stress sensor sign-
aling for MAO-A to respond to environmental stimuli.

Diet and food‑derived phytochemicals 
regulate MAO activity and affect behavior 
and emotion

Dietary habits and food factors regulate lifespan, age-
dependent decline of cognition and incidence of neuropsy-
chiatric disorders (Mattson et al. 2002). Food-derived poly-
phenolic compounds, such as (−)-epigallocatechin-3-gallate 
(EGCG), and genistein (4′,5,7-rihydroxyisoflavone), inhib-
ited DNA methyltransferase and reactivated genes (Yang 
et al. 2008). Bioactive phytochemicals inhibit MAO activ-
ity and show NTF-mimic activity (Vina et al. 2012; Naoi 
et al. 2017b). Flavonoids with catechol structure, such as 
quercetin (3′,4′,5,7-tetrahydroflavonol), ginkgolide B, and 
EGCG, inhibit MAO-A and induces BDNF expression, 

Fig. 4  Contrasting effects of 
mao-A and mao-B KD on the 
gene induction by rasagiline 
and selegiline in SH-SY5Y 
and U118MG cells. a, b In 
SH-SY5Y cells, MAO-A medi-
ates the induction of Bcl-2, 
BDNF, and GDNF. Rasagiline 
and selegiline increased BDNF 
mRNA, and siMao-A decreased 
BDNF expression by rasagiline, 
but enhanced that by selegiline. 
c, d In U118MG cells, MAO-B 
represses signal pathways to 
gene expression. Rasagiline 
and selegiline increased BDNF 
mRNA and siMao-B treat-
ment synergistically enhanced 
selegiline-dependent induction, 
whereas siMao-A reduced sele-
giline and rasagiline-induced 
BDNF level (Inaba-Hasegawa 
et al. 2017a, b)
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whereas non-flavonoid phytochemicals, resveratrol (trans-
3,4′,5-trihydroxstilbene) and curcumin [(1E, 6E)-1,7-bis(4-
hydroxy-3-methoxypheny-hepta-1,6-diene-3,5-dione), 
inhibit MAO-B and increase GDNF. Phytochemicals affect 
MAO expression and vice versa MAO-A and MAO-B 
regulate pro-survival gene induction by phytochemicals. 
Ginkgolide B and curcumin increase mao-A expression, 
and tetrahydrocurcumin and sesamin mao-B expression in 
U118MG cells (Inaba-Hasegawa et al. 2017b). Ginkgolide 
B, EGCG, and curcumin increase the expression of neuro-
protective Bcl-2, GDNF, NGF, and NT-3 mRNA (Naoi et al. 
2017b), which was synergistically enhanced by mao-B KD, 
but inhibited by mao-A KD, as in the case with selegiline. 
Phytochemicals capable of inhibition of MAO and selective 
induction of GDNF or BDNF may be expected as neuro-
protective and antidepressant compounds for the therapy in 
neurodegenerative disorders, cognitive decline, and depres-
sive disorders.

Discussion

This review presents the fluctuation of MAO-A activity by 
genetic and environmental factors and the association with 
neurodevelopment and brain functions, including mood, 
motor, cognition, substance abuse, and aggressive and aso-
cial behaviors. Transient and reversible changes in MAO-A 
activity in combination with the substrates and  H2O2 modu-
late intracellular signaling systems and expression of genes 
related to neuronal survival and death. For this study, the 
in vivo assay for MAO-A enzyme activity is essentially 
required. PET imaging can demonstrate in situ MAO activ-
ity using a  [11C]-labeled irreversible propargylamine MAO 
inhibitors, clorgyline, and reversible MAO-A inhibitors, 
harmine and befloxatone, and  [18F]fluoroethyl-harmol, and 
MAO-B activity with  [11C]-selegiline, and  [18F]fluororasa-
giline (Dolle et al. 2003; Fowler et al. 2005; Nag et al. 2012; 
Kersemans et al. 2013; Maschauer et al. 2015). Human PET 
studies demonstrated in vivo the effects of MAO-A sub-
strates on MAO-A activity (Sacher et al. 2012), inhibition of 
MAO-A and -B by smoking (Leroy et al. 2009), MAO-B ele-
vation in aging, and AD (Gulyas et al. 2011), the distribution 
in the brain, and binding of rasagiline to MAO-B (Freedman 
et al. 2005). PET imaging of MAO activity and genotype 
analysis in peripheral samples are expected to present the 
fluctuation of MAO activity and clarify its role in gene–envi-
ronment interaction and neuropsychiatric disorders.

Genes coding mao-A and mao-B exhibit the identical 
exon–intron organization and are derived from duplication 
of a common ancestral gene (Grimsby et al. 1991). The two 
isoenzymes share the common protein structure and function 
in many aspects, even though they are expressed in different 
types of cells. Mainly MAO-A and B protein and activity are 

expressed in SH-SY5Y and U118MG cells, respectively, but 
mRNA of both MAO isoenzymes is detected in either cells. 
Crosstalk between the MAO isoenzymes has been shown by 
the substrates, inhibitors, and  H2O2 between neuronal and 
glial cells. In glial cells, MAO-A expression was found to 
be suppressed by MAO-B and this issue should be further 
clarified to find role of MAO-A and B in the brain.

MAO-A gene and environmental factors determine the 
MAO expression and enzymatic activity, which may be asso-
ciated with development of neural architecture and brain 
function throughout the life stages. MAO-B was found to 
repress the constitutional expression and selegiline- and 
phytochemical-sensitive increase of Bcl-2 and NTFs, and 
mao-A itself in glial cells. Further studies on these novel 
functions of MAOs should bring us new strategy for elucida-
tion of the pathogenesis and development of new therapy for 
neuropsychiatric disorders.
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