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Abstract Parkinson’s disease (PD) is a progressive neu-

rodegenerative disorder clinically characterized by cardinal

motor deficits including bradykinesia, tremor, rigidity and

postural instability. Over the past decades, it has become

clear that PD symptoms extend far beyond motor signs to

include cognitive, autonomic and psychiatric impairments,

most likely resulting from cortical and subcortical lesions

of non-dopaminergic systems. In addition to nigrostriatal

dopaminergic degeneration, pathological examination of

PD brains, indeed, reveals widespread distribution of

intracytoplasmic inclusions (Lewy bodies) and death of

non-dopaminergic neurons in the brainstem and thalamus.

For that past three decades, the MPTP-treated monkey has

been recognized as the gold standard PD model because it

displays some of the key behavioral and pathophysiologi-

cal changes seen in PD patients. However, a common

criticism raised by some authors about this model, and

other neurotoxin-based models of PD, is the lack of neu-

ronal loss beyond the nigrostriatal dopaminergic system. In

this review, we argue that this assumption is largely

incorrect and solely based on data from monkeys intoxi-

cated with acute administration of MPTP. Work achieved

in our laboratory and others strongly suggest that long-term

chronic administration of MPTP leads to brain pathology

beyond the dopaminergic system that displays close

similarities to that seen in PD patients. This review criti-

cally examines these data and suggests that the chronically

MPTP-treated nonhuman primate model may be suitable to

study the pathophysiology and therapeutics of some non-

motor features of PD.

Keywords Parkinson’s disease � MPTP monkey �
Nigrostriatal dopamine � Extra-striatal dopamine �
Norepinephrine � Serotonin � Acetylcholine � a-Synuclein

Introduction

Parkinson’s disease (PD) is a progressive movement dis-

order clinically characterized by bradykinesia, tremor,

rigidity and postural instability. The pathological hallmarks

of PD are the loss of nigrostriatal dopaminergic (DA)

neurons and the widespread distribution of cytoplasmic

inclusions composed of pre-synaptic a-synuclein protein,

termed Lewy bodies. The motor signs appear when

*50–60% of DA cells in the substantia nigra par compacta

(SNC) and *60–80% of striatal DA terminals have been

lost (Bernheimer et al. 1973; Hornykiewicz 1975, 1998;

Hornykiewicz and Kish 1987). Apart from lesion of the

nigrostriatal dopamine system, the PD pathology involves

profound loss of brainstem noradrenergic, serotonergic and

cholinergic neurons (Braak et al. 2003b; Chan-Palay 1991;

Del Tredici et al. 2002; German et al. 1992b; Patt and

Gerhard 1993; Zarow et al. 2003b). Loss of these non-

dopaminergic neuronal groups likely contributes to some

of the cognitive, autonomic and psychiatric impairments

that are commonly seen in PD patients (Aarsland et al.

1999, 2004; Grimbergen et al. 2004; Langston 2006;

Zesiewicz et al. 2003). However, because of the lack of

animal models to study the pathophysiology of these non-
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motor signs, advances in the development of therapeutics

have been limited and remain a major challenge in PD

research for years to come.

Since the discovery that nigral dopamine loss is the key

pathological hallmark of PD, various neurotoxin- and

genetic-based models of PD that display profound nigros-

triatal dopaminergic degeneration have been developed in

rodents. Previous reviews have discussed in detail the

strengths and weaknesses of these models and their rele-

vance towards our understanding of the pathophysiology of

motor and non-motor signs of PD (Bove and Perier 2012;

Cenci et al. 2015; Duty and Jenner 2011; Jackson-Lewis

et al. 2012; Jagmag et al. 2015; Lindgren and Dunnett

2012; Morin et al. 2014; Solari et al. 2013; Tolwani et al.

1999; Yue 2012). Although these models have made sig-

nificant contribution to the field of PD research and ther-

apeutics, their acute nature and the limited pathology to the

nigrostriatal dopaminergic system limits their use for

studying non-motor signs in PD (Dunnett and Lelos 2010;

Fifel et al. 2016; Jenner 2002; Lindgren and Dunnett 2012;

Taylor et al. 2010). The recent attempt at developing mice

models that display chronic exposure to neurotoxin or

genetically induced reduced expression of vesicular

monoamine transporters have shown promising results in

regards to pathology of non-dopaminergic cell groups and

the development of some non-motor deficits commonly

seen in PD (Betarbet et al. 2000; Fornai et al. 2005;

Hoglinger et al. 2003b; Johnson and Bobrovskaya 2015;

McNaught et al. 2004; Taylor et al. 2009).

The discovery of 1-methyl-4-phenyl-1,2,3,6-tetrahy-

dropyridine (MPTP) as a contaminant of street drugs in the

mid-1980s had a major impact in the field of PD because of

its use as potent dopaminergic neurotoxin and its impact on

the epidemiology of environmental toxins in the develop-

ment of PD (Langston et al. 1983). Since then, the MPTP-

treated nonhuman primate model is recognized as the

‘‘gold standard’’ model of PD (Bezard and Przedborski

2011; Dauer and Przedborski 2003; Emborg 2007; Fox and

Brotchie 2010; Johnston and Fox 2015; Morissette and Di

Paolo 2017; Porras et al. 2012). However, like most neu-

rotoxin-based models of PD, a common criticism put for-

ward by some authors in recent years was the lack of

pathological neuronal loss beyond the nigrostriatal

dopaminergic system in this model (Blandini and Armen-

tero 2012; Dauer and Przedborski 2003; Forno et al. 1993).

Although this may be the case for monkeys that undergo

acute exposure to the toxin, evidence from the literature

suggests that chronic systemic administration of MPTP

leads to pathological neuronal loss that extends far beyond

the ventral midbrain dopaminergic cell groups (Forno et al.

1993; Fox and Brotchie 2010; Karachi et al. 2010; Masil-

amoni et al. 2011b, 2016; Villalba et al. 2014). Further-

more, various groups have shown that MPTP-treated

monkeys display early cognitive impairments and other

non-motor features of PD that likely result from non-

dopaminergic lesions (Pessiglione et al. 2004; Roeltgen

and Schneider 1991; Schneider and Kovelowski 1990;

Slovin et al. 1999; Taylor et al. 1990; Vezoli et al. 2011).

In this review, we will critically examine the current

state of knowledge of the brain pathology and related

motor and non-motor deficits reported from nonhuman

primate studies using various regimens of MPTP as neu-

rotoxin-based models of PD. We will argue that monkeys

treated chronically with low doses of MPTP should be

considered as reliable animal models to study the patho-

physiology and therapeutics of some non-motor features of

PD.

MPTP: discovery and relevance for PD

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine was first

identified as a PD-related drug in the 1980s after Califor-

nian heroin addicts displayed severe parkinson-like motor

syndrome following self-administration of a potent pethi-

dine derivative contaminated with MPTP (Langston et al.

1983; Langston and Ballard 1983). These victims displayed

symptoms of bradykinesia and rigidity almost identical to

those seen in idiopathic PD patients (Langston et al. 1983;

Langston and Ballard 1983). Furthermore, their positive

response to Levodopa therapy and the subsequent devel-

opment of motor and non-motor side effects commonly

associated with long-term exposure to such treatment

provided compelling evidence that these individuals had

been rendered parkinsonian through MPTP exposure.

Postmortem pathological studies of brains from some of

these individuals confirmed the profound dopaminergic

neuronal loss in the ventral midbrain and striatal dopamine

denervation (Langston et al. 1999).

Since its discovery, the mechanisms of action of MPTP

towards dopaminergic cell loss have been characterized

and discussed in detail in previous reviews (Dauer and

Przedborski 2003; Forno et al. 1995; Fox and Brotchie

2010; Jenner and Marsden 1986; Johannessen 1991;

Langston et al. 1999; Meissner et al. 2003; Porras et al.

2012; Rappold and Tieu 2010). In brief, once it has crossed

the blood–brain barrier and got to the brain, MPTP is

rapidly converted into the toxic MPP? metabolite by glial

monoamine oxidase-B (MAO-B). Because of its high

affinity for MPP?, dopamine transporters (DAT), heavily

expressed on nigrostriatal dopamine terminals, become the

main gateway for MPP? to preferentially access and kill

nigral dopamine neurons (Dauer and Przedborski 2003;

Jenner and Marsden 1986). Albeit a lower affinity for

norepinephrine and serotonin transporters (NET, SERT),

MPP? is also picked up by these transporters, providing a
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substrate for MPTP-induced noradrenaline and serotonin

cell loss in some PD models (Boulet et al. 2008; D’Amato

et al. 1986; Fornai et al. 2005; Herkenham et al. 1991;

Masilamoni et al. 2011b; Perez-Otano et al. 1991; Pifl et al.

1996; Unguez and Schneider 1988). Because of differential

ratios of intracerebral vs. systemic MAO-B expression

between rodents and primates, the MPTP dosages used to

induce cell death in the monkey brain are many orders of

magnitude lower than those used in mice (Duty and Jenner

2011; Giovanni et al. 1994b; Jenner 2002; Johannessen

et al. 1985). In rats, MPTP is largely ineffective at per-

manently killing brain cells (Giovanni et al. 1994a; Jenner

2002).

Non-human primates (NHP) treated with MPTP develop

motor abnormalities that closely resemble those seen in PD

patients, including bradykinesia, rigidity and postural

abnormalities. These animals display a strong positive

response to L-DOPA (Burns et al. 1983) which, after

chronic exposure, lead to human-like treatment-related

motor complications; in particular, the L-DOPA-associated

dyskinesias (LID) (Boyce et al. 1990; Pearce et al. 1995;

Potts et al. 2014). Recent evidence also suggests MPTP-

treated monkeys display early cognitive impairments and

other non-motor deficits reminiscent of those described in

PD patients. In the following account, the brain pathology

and behavioral changes reported in MPTP-treated monkeys

will be critically examined and their relevance towards PD

will be discussed.

Do MPTP-treated monkeys display a pattern
of nigrostriatal dopaminergic denervation similar
to PD?

The major sources of DA in the central nervous system are

in the ventral midbrain comprising areas A8 (retrorubral

field; RRF), A9 (SNc), and A10 (ventral tegmental area;

VTA). The SNc neurons are further segregated into a

dorsal (SNCd) and ventral (SNCv) tiers based on the

expression or not of the calcium binding protein, calbindin

D28k (CB) (Masilamoni et al. 2010, 2011b) (Fig. 1a, b).

Although all dopaminergic cell groups undergo degenera-

tion in PD, the SNCv is recognized as the most sensitive

region, while the VTA is the least affected ventral midbrain

area (Damier et al. 1999a, c; German et al. 1992a; Lu et al.

2006) (see Table 1). The presence of CB, low level

expression of DAT, VMAT2 and more profuse nore-

pinephrine innervation may contribute to the differential

sensitivity of VTA/SNCd vs. SNCv neurons to PD

pathology (Dopeso-Reyes et al. 2014; Iacopino et al.

1992a; Kilbourn et al. 1998; Liang et al. 1996b; Masila-

moni et al. 2010, 2016; Mejias-Aponte et al. 2009; Miller

et al. 1999a; Rommelfanger et al. 2004; Sanghera et al.

1997; Yuan et al. 2013). However, the importance of these

features on the overall pattern of MPTP-induced neuronal

degeneration can be assessed only if monkeys are treated

with slow progressive MPTP regimen (Airaksinen et al.

1997; Porras et al. 2012). Using CB as specific marker of

SNCd and VTA neurons, monkeys administered chroni-

cally with weekly low doses of MPTP (0.2–0.5 mg/kg

MPTP, once a week for 21 weeks) display the same pattern

of midbrain DA degeneration as shown in PD patients

(Damier et al. 1999b, d; Fearnley and Lees 1991), i.e., a

profound loss of CB-negative SNCv neurons over CB-

positive SNCd, VTA and RRF neurons (Lavoie and Parent

1991; Masilamoni et al. 2010, 2011b) (Table 1). In con-

trast, when monkeys are made parkinsonian through a more

acute and aggressive regimen of MPTP, the extent of DA

degeneration is the same in both SNCv and SNCd (Collier

et al. 2007). Thus, although CB may be neuroprotective

against the toxic effects of low doses of MPTP in chroni-

cally treated animals (Dopeso-Reyes et al. 2014; Iacopino

et al. 1992b; Liang et al. 1996a; Yuan et al. 2013), these

properties are overcome by high doses of MPTP. Other

features that have been put forward to explain the relative

sparing of SNCd/VTA neurons vs. SNCv cells in response

to MPTP (or other neurotoxins) include the relatively low

levels of DAT expression on VTA/SNCd striatal dopamine

terminals compared with SNCv neurons (less uptake sites

for the dopaminergic neurotoxin MPP?) and /or the neu-

roprotective effects of a much more profuse norepinephrine

innervation of VTA/SNCd neurons than SNCv neurons

(Kilbourn et al. 1998; Masilamoni et al. 2016; Mejias-

Aponte et al. 2009; Rommelfanger et al. 2004; Sanghera

et al. 1997). Thus, the biochemical differences between the

various groups of midbrain DA neurons and their respec-

tive extent in NE innervation may contribute to the dif-

ferential sensitivity of SNCd/VTA vs. SNCv neurons to PD

pathology and MPTP toxicity.

This pattern of DA neuronal degeneration holds true for

susceptibility to MPTP-induced degeneration. This differ-

ential degeneration at the cell body level is represented in

the striatum by a more severe loss of dopaminergic

innervation in the dorsal (targeted mainly by SNCv neu-

rons) than the ventral striatum (targeted by VTA neurons).

In the dorsal striatum, the dopamine loss is not homoge-

neous, but rather displays a progressive caudo-rostral gra-

dient, i.e., it affects preferentially the post-commissural

putamen (known as the sensorimotor striatal territory) over

the anterior putamen and the caudate nucleus (known as

associative striatal regions) (Davis et al. 2003; Kish et al.

1988). Although there is no clear explanation as to why

SNc neurons that project to the sensorimotor putamen are

more sensitive to PD degeneration than those that innervate

the cognitive striatal regions, some hypotheses have been

put forward ranging from a different ratio of DAT/VMAT2

Chronic MPTP administration regimen in monkeys: a model of… 339

123



on dopamine terminals in the caudate nucleus vs. putamen

(Miller et al. 1999a, b) to a differential synaptic innervation

of dopamine neurons that project to the caudal striatum

compared with other dopamine-projecting neurons in the

mouse SNc (Menegas et al. 2015).

There has been various reports indicating that the pref-

erential dopamine denervation of the post-commissural

putamen over other dorsal striatal regions was not found in

monkeys treated with acute or a high-dose regimen of

MPTP (Alexander et al. 1992; Bezard et al. 2001; Di

Monte et al. 2000; Elsworth et al. 1989; Fernagut et al.

2010; Hantraye et al. 1992; McCallum et al. 2006; Pifl

et al. 1988a). However, data from our laboratory and others

using chronic low-dose MPTP exposure revealed that the

progressive loss of striatal dopamine terminals reported in

PD patients, i.e., a greater DA depletion in the post-com-

missural putamen than ventral striatum and caudate

(Fig. 2a–f), can also be seen in parkinsonian monkeys

(Hantraye et al. 1993; Iravani et al. 2005; Masilamoni et al.

2010, 2011b; Moratalla et al. 1992; Mounayar et al. 2007).

Thus, dopamine terminals in the post-commissural puta-

men are more sensitive to degeneration than any other

nigrostriatal afferents in PD and in monkeys chronically

intoxicated with low doses of MPTP.

Early dopaminergic denervation of striosomes
over matrix in chronically MPTP-treated monkeys

During brain development and early postnatal period,

striatal DA innervation is compartmentally organized,

giving rise to the so-called ‘‘dopamine islands’’ which, in

adults, corresponds to the striosomal striatal compartment

(Graybiel et al. 1981; Prensa et al. 2000). Striosomes and

matrix can also be differentiated from each other neu-

rochemically or anatomically based on the heterogeneous

Fig. 1 Photomicrographs of

adjacent calbindin (CB) and

tyrosine hydroxylase (TH)-

immunostained coronal sections

at the level of ventral midbrain

of control (a, c) and MPTP-

treated parkinsonian monkey (b,

d). CB immunostaining was

used to delineate TH/CB-

positive neurons in the dorsal

tier of the SNC (SNCd) and the

ventral tegmental area (VTA)

from TH-positive/CB-negative

neurons in ventral tier of the

SNC (SNCv). e Percentage loss

of TH-positive neurons in

SNCv, SNCd and VTA regions

of three MPTP-treated monkeys

(M1, M2 and M3) based on

unbiased stereological estimates

of total TH-positive cell counts

(see Masilamoni et al. 2011b for

additional details)
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distribution of various neuronal markers and afferents

from specific cortical and sub-cortical regions (Gerfen

1984; Gimenez-Amaya and Graybiel 1991; Graybiel and

Ragsdale 1978; Herkenham and Pert 1981). Because of

its abundance and homogeneous distribution in both

compartments, markers of nigrostriatal dopaminergic

axons and terminals (TH or DAT immunostaining;

Fig. 3a, b) do not display any heterogeneity in the nor-

mal adult striatum (Graybiel et al. 1981; Prensa et al.

2000). However, in monkeys chronically treated with low

doses of MPTP, dopamine denervation of striosomes in

the caudate nucleus and anterior putamen precedes that

of the matrix (Iravani et al. 2005; Lin et al. 2015;

Masilamoni et al. 2011b) (see Fig. 3c–f). In this model,

early striosomal dopamine loss occurs in parallel with the

denervation of the post-commissural putamen (Iravani

et al. 2005; Lin et al. 2015; Vingerhoets et al. 1994),

suggesting that SNCv nigrostriatal neurons that project to

the caudal putamen and the striosomes are most sensitive

to MPTP-induced neurodegeneration. Based on recent

findings that striatonigral GABAergic projections from

striosomes form tight connections with clusters of SNCv

Fig. 2 Photomicrographs of

TH-immunostained coronal

sections at the level of the pre-

commissural (a, b),

commissural (c, d), post-

commissural (e, f) striatum of a

control (left column) and a

MPTP-treated (right column)

monkey. CA caudate nucleus,

PU putamen, GPe globus

pallidus, external segment, GPi

globus pallidus, internal

segment, Th thalamus
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dopaminergic cells (Crittenden et al. 2016), one could

speculate that the striosomal striato-nigro-striatal loop is

a functional network that displays increased sensitivity to

degeneration in PD. Tract-tracing studies showing that

anterograde tracer injections into the SNCv produce

labeling that predominantly target the striosomes,

whereas dorsal injections label preferentially the striatal

matrix are consistent with this hypothesis (Fujiyama

et al. 2011; Gerfen et al. 1987; Jimenez-Castellanos and

Graybiel 1987; Joel and Weiner 2000; Langer and

Graybiel 1989). Because striosomes are in a position to

modulate and transmit signals to the SNc from limbic-

related cortical regions (Crittenden et al. 2016; Eblen and

Graybiel 1995; Friedman et al. 2015), early striosomal

dopamine loss may affect the control of mood, attention

and motivation, non-motor signs that are commonly seen

in PD patients. It is noteworthy that imbalanced activity

between striosomes and matrix has been proposed as the

underlying substrate of a wide variety of motor and non-

motor signs in a wide array of basal ganglia disorders

(Crittenden and Graybiel 2011).

Extra-striatal DA denervation in PD vs. MPTP-
treated monkeys

Although the dorsal striatum is the most severely dopa-

mine-denervated brain region in PD and MPTP-treated

monkeys, non-striatal brain nuclei also undergo dopamine

depletion (Benazzouz et al. 2014; Lee et al. 2014; Parent

and Cossette 2001; Rommelfanger and Wichmann 2010;

Smith and Villalba 2008). In contrast to the nigrostriatal

dopamine degeneration, which contributes to the patho-

physiology of the key parkinsonian motor signs, very little

is known about the functional significance of extra-striatal

dopamine loss in PD (Smith and Kieval 2000; Rom-

melfanger and Wichmann 2010). However, because the

cortical and subcortical regions affected are involved in

broad range motor and non-motor functions, a comparative

analysis of the overall pattern of extra-striatal DA degen-

eration between PD patients and MPTP-treated monkeys is

critical for the assessment of the reliability of this animal

model towards studies of extra-striatal DA pathology in PD

non-motor signs.

Fig. 3 Photomicrographs of

TH-immunostained sections of

the striatum in a control (a) and

MPTP-treated asymptomatic

monkey (b). c, d Pseudo-

colored images (NIH ImageJ

program) of TH-immunostained

sections are shown in a and

b. MPTP treatment

preferentially reduced TH

immunoreactivity in presumed

striatal patches (white asterisks).

CA caudate nucleus, PU

putamen
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Dopamine denervation of the globus pallidus

Immunohistochemical and tract-tracing studies reported

that the two pallidal segments (GPe—external and GPi—

internal) receive DA innervation from the ventral midbrain

dopamine cell groups in both humans and NHPs (Cossette

et al. 1999; Hedreen 1999; Nobin and Bjorklund 1973). In

normal humans, DA levels in the GPe are nearly six times

greater than in the GPi. In PD, the mean loss of DA is

severe (82%) in GPe and moderate (51%) in GPi (Rajput

et al. 2008). Electrophysiological and pharmacological

studies supporting these observations showed that dopa-

mine receptor-related drugs induce significant changes in

GPe and GPi neurons through pre- and post-synaptic

mechanisms in control and parkinsonian monkeys (Boraud

et al. 1998; Filion et al. 1991; Hadipour-Niktarash et al.

2012; Kliem et al. 2010; Rommelfanger and Wichmann

2010; Smith and Kieval 2000). Several studies have shown

that DA inputs are differentially distributed in GPe and

GPi, with DA fibers arborizing more profusely in the

medial ‘‘limbic-related’’ pole of GPi than in other func-

tional sectors of GPe and GPi (Hedreen 1999; Lavoie et al.

1989; Parent and Smith 1987; Parent et al. 1989). In

monkeys, the nigropallidal projection originates in part

from a subset of dopaminergic neurons different from those

that give rise to the nigrostriatal system (Smith and Kieval

2000). The importance of the nigropallidal dopaminergic

system in the development of parkinsonian motor symp-

toms is further supported by pharmacological and electro-

physiological data gathered in normal and MPTP-treated

monkeys. Thus, infusion of D1 or D2 dopamine receptor

antagonists into the GPe of normal rats induces akinesia

(Hauber and Lutz 1999). Local intrapallidal delivery of D1

or D2 receptor-related drugs into GPe or GPi of normal and

parkinsonian monkeys affect the firing rate and pattern of

pallidal neurons (Hadipour-Niktarash et al. 2012; Kliem

et al. 2007).

Data from MPTP-treated monkeys support the human

studies suggesting that the PD-related pathology of the

nigropallidal dopaminergic system is less severe than the

nigrostriatal projection, particularly during the asymp-

tomatic or early stages of the disease (Lin et al. 2015;

Mounayar et al. 2007; Pifl et al. 1990). In fact, an

increase in 18F-dopa uptake was demonstrated in the GPi

of early PD patients compared to aged match controls,

suggesting a compensatory response of the nigro-GPi

system to nigrostriatal dopamine denervation (Moore

et al. 2008; Pavese et al. 2011; Rakshi et al. 1999; Whone

et al. 2003). Thus, data from both human and MPTP-

treated monkeys suggest a relative sparing or up-regula-

tion of the nigro-pallidal dopamine projection in the early

stages of PD representing adaptive mechanism to preserve

functionality.

Dopamine denervation of the subthalamic nucleus

Anatomical and tracing studies have demonstrated the

existence of SNC-STN projections in both monkeys and

humans (Augood et al. 2000; Cossette et al. 1999; Francois

et al. 2000; Gauthier et al. 1999; Hassani et al. 1997;

Hedreen 1999; Lavoie et al. 1989). However, very few

vesicle-filled dopamine axonal profiles and terminals were

reported in electron microscopic analysis of the monkey

STN, raising questions about the source and mechanism of

release of dopamine by nigrosubthalamic axons (Smith and

Kieval 2000). The situation is different in the rodent STN,

which is far more enriched in dopamine terminals than the

primate STN (Cragg et al. 2004). Various DA receptor

subtypes are expressed pre- and post-synaptically in the

primate and rodent STN (Augood et al. 2000; Flores et al.

1999; Galvan et al. 2014; Parry et al. 1994; Rommelfanger

and Wichmann 2010; Smith and Villalba 2008). Intra-

subthalamic applications of D1 or D2 receptor agonists

alter the firing rate and pattern of STN neurons in control

and MPTP-treated monkeys (Galvan et al. 2014).

There is a substantial loss of dopamine innervation of

the STN in MPTP-treated monkeys (Francois et al. 2000;

Pifl et al. 1990, 1991) and in human PD patients (Horny-

kiewicz 1998; Pavese et al. 2011). In contrast to the

nigropallidal projection that is relatively spared in motor

asymptomatic MPTP-treated monkeys, the nigrosubthala-

mic system is severely degenerated in these animals (Pifl

et al. 1991), thereby suggesting that the nigropallidal, but

not the nigrosubthalamic, system might functionally com-

pensate striatal dopamine denervation in early parkinsonian

state. Thus, one would speculate that the DA loss in the

STN may concomitantly contribute to the abnormal

increased activity of these glutamatergic neurons and

eventually lead to the expression of motor signs in PD

(Bergman et al. 1994; Fox and Brotchie 2010; Galvan et al.

2014; Rommelfanger and Wichmann 2010; Wichmann and

DeLong 2003).

Dopamine denervation of the cerebral cortex

Dopamine innervation of prefrontal cortices is well estab-

lished and heavily studied because of its possible role in

psychiatric disorders (Akil et al. 1999; Arnsten et al.

1995, 2015; Devoto et al. 2012; Dreher and Burnod 2002;

Drouot et al. 2004; Erickson et al. 2000; Fallon et al. 2015;

Goldman-Rakic 1998; Ko et al. 2013; Naneix et al. 2009;

Narayanan et al. 2013; Sutoo et al. 2001; Thompson et al.

2014; Venator et al. 1999; Winterer and Weinberger 2004).

Imaging and tract-tracing studies have shown that the

mesocortical dopamine system is far more extensive in

primates than in rodents (Akil and Lewis 1994; Berger

et al. 1991; Lewis et al. 1987, 1994, 2001; Preuss 1995;
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Sesack et al. 1995; Williams and Goldman-Rakic 1998a).

Layer I is a widespread target of dense dopaminergic

innervation in all areas of the macaque and human neo-

cortex, while it is mainly confined to prefrontal cortical

regions in rats (Berger et al. 1988, 1992; Gaspar et al.

1989; Petrides and Pandya 1999; Zilles et al. 1996; Preuss

1995). Significant interspecies differences have also been

demonstrated in the origin of the mesocortical system

between rodents and primates, such that it arises almost

exclusively from the VTA in rats (Berger et al. 1991;

Deutch et al. 1988; Hosp et al. 2011; Luft and Schwarz

2009), while neurons in the SNc and the retrorubral area

(RRA) significantly contribute to that system in monkeys

(Gaspar et al. 1992; Williams and Goldman-Rakic 1998b).

Using 18F-dopa PET imaging (Brooks and Piccini 2006)

showed a significant loss of DA terminals in M1 and PFC

of PD patients compared with age-matched control sub-

jects. Postmortem data have revealed a significant degen-

eration of the dopaminergic inputs throughout M1 in

humans, most strongly affecting dopaminergic fibers in

layer I in PD patients (Gaspar et al. 1991, 1992). These

observations are consistent with previous anatomical data

(Jan et al. 2003), and with biochemical findings showing a

30–40% decrease of dopamine levels in M1 of MPTP-

treated parkinsonian monkeys (Jan et al. 2003; Pifl et al.

1991; Scatton et al. 1983). Abnormal cortical metabolic

activity was also noticed in both PD patients and MPTP-

treated monkeys (Carbon et al. 2003; Dogali et al. 1994;

Eckert et al. 2008; Eidelberg et al. 1994; Huang et al. 2007)

with an earlier occurrence and greater magnitude in the M1

than in the PFC (Huang et al. 2007). Knowing that pre-

motor and prefrontal cortical areas are under the influence

of the dopamine system directly through the meso-cortical

network, one would expect that changes in these networks

may contribute to these cortical metabolic dysfunctions. It

has, indeed, been demonstrated that even very subtle cor-

tical dopamine depletion may lead to a severe loss of action

selection ability (Leblois et al. 2006), highlighting the

important role of cortical dopamine in mediating these

regulatory effects.

Thus, because of the evolutionary increase in cortical

dopamine innervation between rodents and primates, and

the comparable extent of degeneration of this system in

motor and non-motor cortices in PD patients and MPTP-

treated monkeys, nonhuman primates are the species of

choice to study the role of cortical dopamine degeneration

in the development of motor and non-motor parkinsonian

symptoms.

Dopamine denervation of the thalamus

Anatomical studies have shown that various thalamic

nuclei receive a significant dopaminergic innervation in

humans and NHP (Brown et al. 1979; Garcia-Cabezas et al.

2007, 2009; Goldman-Rakic and Brown 1981; Oke and

Adams 1987; Pifl et al. 1990, 1991; Sanchez-Gonzalez

et al. 2005). The innervation of midline limbic nuclei, the

mediodorsal and lateral posterior association nuclei, and

the ventral lateral/ventral anterior motor nuclei (Brown

et al. 1979; Garcia-Cabezas et al. 2007, 2009; Goldman-

Rakic and Brown 1981; Oke and Adams 1987; Pifl et al.

1990, 1991; Sanchez-Gonzalez et al. 2005) is particularly

dense. This distribution suggests thalamic dopamine may

play important roles in regulating emotion, attention,

cognition, complex somatosensory and visual processing,

and motor control. In contrast to primates, the dopamine

innervation of the rodent thalamus is very scant (Pa-

padopoulos and Parnavelas 1990; Voorn et al. 1988). The

functional significance of this important species difference

is unknown, but combined with the more widespread

dopamine innervation of the cerebral cortex (see above), it

suggests that dopamine modulatory functions of thalamo-

cortical and corticothalamic relationships may be more

complex in primates than non-primates (Berger et al. 1991;

Papadopoulos and Parnavelas 1990).

Dopaminergic cell groups in the VTA, retrorubral field,

periaqueductal gray and hypothalamus are the main sour-

ces of the primate thalamus innervation (Sanchez-Gonzalez

et al. 2005), although another study suggested that collat-

erals of the nigrostriatal dopamine projection innervate the

primate thalamus (Freeman et al. 2001).

In PD patients and MPTP-treated parkinsonian mon-

keys, DAT binding is significantly decreased throughout

the thalamus (Brownell et al. 2003; Freeman et al. 2001;

Pavese et al. 2010; Pifl et al. 1990, 1991). Postmortem

studies showed that the dopaminergic innervation of the

MD and CnMd nuclei is most affected in PD patients and

MPTP-treated parkinsonian monkeys (Freeman et al. 2001;

Pavese et al. 2010; Pifl et al. 1990, 1991) Although the role

of dopamine in the primate thalamus remains to be estab-

lished, it is reasonable to suggest that thalamic dopamine

denervation may contribute to the pathophysiology of

abnormal activity and transmission of motor and non-mo-

tor innervation through the basal ganglia-thalamocortical

loops.

MPTP-induced dopamine denervation in nonhuman

primates: concluding remarks

In PD, postmortem studies have demonstrated that

dopaminergic lesion affects cortical and sub-cortical

regions beyond the nigrostriatal system. Similarly, chronic

MPTP administration in adult monkeys results in a broad

degeneration of dopaminergic projections to non-striatal

regions. Extra-striatal basal ganglia nuclei such as the

globus pallidus and subthalamic nucleus are both affected,
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but in opposite directions. Most importantly, widespread

cortical dopamine pathology is also induced in this animal

model. Because the mesocortical dopamine innervation of

sensorimotor cortices is far more extensive in primates than

rodents, the MPTP-treated monkey model is essential to

assess the importance of cortical dopamine denervation on

sensorimotor dysfunctions associated with parkinsonism.

Another dopaminergic system that underwent a significant

expansion in primates, and was found to be affected in

MPTP-treated monkeys and PD patients is the meso-tha-

lamic dopaminergic network. Although the function of this

system remains unknown, its widespread termination in

thalamic nuclei involved in the processing of motor, sen-

sory, limbic and cognitive information suggests degenera-

tion of the meso-thalamic system may have broad

consequences on the pathophysiology of the thalamocor-

tical and corticothalamic relationships that underlie some

of the motor and non-motor symptoms of PD.

Thus, the dopaminergic brain pathology induced in the

chronic MPTP-treated monkey model is closely similar to

that reported in PD patients, indicating that chronic MPTP-

treated monkeys can be used to assess the importance of

dopamine denervation beyond the nigrostriatal dopamin-

ergic system that potentially contribute to a wide variety of

non-motor symptoms in PD.

Chronic MPTP administration in non-human
primates induces severe loss of non-dopaminergic
neurons relevant to Parkinson’s disease

In this section, we will review reports about the loss (or

not) of non-DAergic cell groups in MPTP-treated mon-

keys, and discuss their relevance towards the pathophysi-

ology and the development of non-motor signs in

Parkinson’s disease.

Fig. 4 Photomicrographs of

TH-immunostained coronal

sections at the level of

noradrenergic cell groups (a, b),

5HT-immunostained

serotonergic cell groups (c,

d) and ChAT-immunostained

pedunculopontine nucleus (e,

f) of a control (a, c, e) and a

MPTP-treated (b, e, f) monkey.

A5,A7 noradrenergic cell groups

A5 and A7, PPN

pedunculopontine nucleus (see

Masilamoni et al. 2011b for

more details)
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Norepinephrine pathology-locus coeruleus

and related brainstem noradrenergic cell groups

There is strong agreement across postmortem pathological

studies that the loss of locus coeruleus (LC) noradrenergic

neurons in PD patients is as prominent as that of the nigral

dopaminergic neurons (Braak et al. 2003b; Chan-Palay

1991; Del Tredici and Braak 2013; German et al. 1992b;

Patt and Gerhard 1993; Zarow et al. 2003a). However,

reports about noradrenergic cell loss in LC of MPTP-

treated monkeys have been inconsistent (Forno et al. 1986;

Gibb et al. 1989; Herrero et al. 1993a), most likely because

of differences in MPTP treatment regimens. Acute MPTP

administration induces parkinsonian motor symptoms with

massive nigrostriatal DA loss, but without significant LC

neuronal death (Forno et al. 1993; Gibb et al. 1989). On the

other hand, monkeys that undergo chronic systemic MPTP

administration display prominent LC neurodegeneration

(Herrero et al. 1993b; Masilamoni et al. 2011b) (Fig. 4a,

b). In light of these findings, it appears that the regimen of

MPTP administration may account for the differences in

norepinephrine cell loss reported in these studies, such that

chronic administration regimen is essential to induce sig-

nificant LC neuronal death.

Another noticeable feature of the noradrenergic system

degeneration in MPTP-treated monkeys is that NE terminal

loss in the midbrain and cerebral cortex is more pro-

nounced than the magnitude of LC neuronal loss (Buddhala

et al. 2015; Masilamoni et al. 2016; Nayyar et al. 2009),

suggesting that NE nerve terminals are the primary target

of the degenerative process after MPTP administration and

in PD patients.

Thus, chronic MPTP injections recreate a pathological

state of the noradrenergic system that mimics human PD

more accurately than acute MPTP bolus injections. These

observations suggest that severe and prolonged stress may

trigger the onset of sporadic PD, thereby contributing to its

progression (Herkenham et al. 1991). It is noteworthy that

similar observations were reported for rotenone, i.e., only

continuous administration of this neurotoxin induces LC

neuronal loss (Hoglinger et al. 2003a, b). Even when

administered at high doses, acute administration of rote-

none damages only the nigrostriatal DA system (Ferrante

et al. 1997; Heikkila et al. 1985).

Because LC plays a central role in cognitive perfor-

mance (Coull et al. 1999; Sterpenich et al. 2006), sleep–

waking cycle (Jouvet 1972) mood regulation and various

autonomic functions, the degeneration of the LC and its

projections likely contribute to a wide variety of non-motor

symptoms in PD patients. Thus, the chronic MPTP-treated

monkey model provides a unique tool needed to better

understand the pathophysiology and refine therapy for

these parkinsonian non-motor signs (Abbott et al. 2005;

Barraud et al. 2009; Lees and Smith 1983; Schneider et al.

1999).

Serotonergic pathology

Serotonergic cell loss in raphe neurons has been well-

documented in advanced PD patients (D’Amato et al. 1987;

Halliday et al. 1990; Ohama and Ikuta 1976). Consistent

with these postmortem pathological observations, PET

imaging studies have reported profound and widespread

neocortical and striatal decrease of 5-HT transporter ligand

binding in advanced PD patients (Albin et al. 2008; Gutt-

man et al. 2007; Politis et al. 2010). However, in early PD

state the serotonergic system is involved in compensatory

phenomenon with an up-regulation or no change in the

expression of 5-HT receptors in the striatum (Kaasinen

et al. 2001; Kumakura et al. 2010; Moore et al. 2008;

Rakshi et al. 1999; Whone et al. 2003). This compensatory

mechanism fades away as the disease progresses so that

advanced PD patients show reduced 5HT tracer uptake in

cortical and striatal regions (Moore et al. 2008; Rakshi

et al. 1999). Because dysfunction of the serotonergic sys-

tem is involved in the pathophysiology of depression

(Cummings 1992; Kostic et al. 1987; McCance-Katz et al.

1992), cognitive impairments (Brown and Marsden 1988;

Pillon et al. 1989) and other psychiatric disorders (Cooney

and Stacy 2016; Lenka et al. 2016; Reichmann et al. 2016),

dysregulation of this system may contribute to some of the

commonly encountered non-motor psychiatric and sleep

disorders in PD (Abbott et al. 2005; Barraud et al. 2009;

Lees and Smith 1983; Schneider et al. 1999). Mood

changes in PD are, indeed, responsive to antidepressants

including serotonin and norepinephrine (NE)-selective

reuptake inhibitors (Blier 2006; Brooks and Doder 2001;

Lemke 2008; Miyasaki et al. 2006; Zesiewicz and Hauser

2002).

Reports about serotonergic pathology in MPTP-treated

monkeys have been variable (Ballanger et al. 2016;

Beaudoin-Gobert et al. 2015; Boulet et al. 2008; Gaspar

et al. 1993; Mihatsch et al. 1991; Mounayar et al. 2007;

Perez-Otano et al. 1994a, b; Pifl et al. 1991; Zeng et al.

2010). Increased serotonergic fibers (Boulet et al. 2008;

Gaspar et al. 1993; Mounayar et al. 2007; Zeng et al. 2010)

and serotonin levels (Boulet et al. 2008) have been reported

in both MPTP-treated monkeys that recovered from tran-

sient motor symptoms and symptomatic animals. These

reports suggested that this serotonin up-regulation may

compensate for the loss of dopamine and delay the

appearance of motor symptoms. There is evidence from

animal models of PD that the relative sparing of striatal

serotonin innervation over the nigrostriatal dopamine sys-

tem may contribute to the development of L-DOPA-in-

duced dyskinesia via storage and non-physiological release
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of dopamine following L-DOPA administration (Carta et al.

2007). On the other hand, we and others have recently

shown significant neuronal loss in the raphe nuclei (Fig. 4c,

d) (Masilamoni et al. 2011a; Unguez and Schneider 1988)

and a corresponding decrease in serotonin innervation of

the prefrontal cortex and striatum (Masilamoni et al.

2011a; Pifl et al. 1991; Russ et al. 1991) in chronically

MPTP-treated monkeys. The variations of MPTP dosage

schedules and survival times after intoxication probably

account, at least in part, for the differences in the pattern of

serotonin loss between these studies.

Cholinergic pathology

Three major sources of acetylcholine display significant

pathology in PD. Loss of basal forebrain cholinergic neurons

in the nucleus basalis of Meynert (nbM), which provide inputs

to the entire cortical mantle, is well-documented in PD brains

(Candy et al. 1983; Nakano and Hirano 1984; Rogers et al.

1985; Tagliavini et al. 1984; Whitehouse et al. 1983). A sig-

nificant correlation between the extent of cortical cholinergic

denervation and the severity of cognitive dysfunction has been

reported in some PD patients (Bohnen and Albin 2011; Kor-

czyn 2001; Perry et al. 1985). However, very limited data has

been collected about the state of the nbM cholinergic neurons

in MPTP-treated monkeys. To our knowledge, the only sig-

nificant report comes from Garvey et al. (1986), who observed

no significant cholinergic cell loss in nbM of acutely MPTP-

treated marmosets. However, low-dose chronic MPTP

administration to macaque monkeys significantly reduced

cortical cholinergic innervation, and induced changes in

nicotinic AChR expression in the frontal cortex, similar to

those observed in human PD patients (Aubert et al. 1992;

Court and Clementi 1995; Court et al. 2000; Forgacs and

Bodis-Wollner 2004; Lange et al. 1993; Mundinano et al.

2013). Furthermore, stable early cognitive deficits that can be

improved with the b4*-selective nAChR agonist SIB-1553A

treatment were reported in macaque monkeys chronically

treated with low doses of MPTP (Schneider and Kovelowski

1990; Schneider et al. 1999). Additional pathological studies

are needed to further assess the state of the basal forebrain

cholinergic cell group and its cortical innervation in chroni-

cally MPTP-treated monkeys.

The pedunculopontine nucleus–laterodorsal tegmental

complex (PPN) is another cholinergic cell group of

potential importance in PD pathology. Cholinergic neurons

in this region provide widespread ascending and descend-

ing inputs to the all basal ganglia nuclei, the basal fore-

brain, thalamus, cerebellum, several brainstem nuclei, and

the spinal cord (Heckers et al. 1992). Importance of these

systems in regulating sleep–wake cycle, vigilance, atten-

tion, gait and other motor functions has been suggested

(Datta et al. 2002; Delwaide 2001; Gilman et al. 2003; Gut

and Winn 2016; Munro-Davies et al. 1999; Nandi et al.

2002; Steriade 2005; Takakusaki et al. 2004; Thevathasan

et al. 2010). Various neuropathological studies reported

that around 50% of the cholinergic neurons are degenerated

in the lateral part of the PPN, pars compacta in PD (Gai

et al. 1991; Hirsch et al. 1987; Jellinger 1988; Zweig et al.

1989). Recently, (Karachi et al. 2010) reported that aged,

but not young, MPTP-treated monkeys display significant

PPN cholinergic cell loss. Preliminary studies from our

laboratory confirmed the lack of significant cholinergic

pathology in the PPN/LDT of chronically MPTP-treated

young adult rhesus monkeys (Masilamoni et al., unpub-

lished observations; Fig. 4e, f). Thus, chronic MPTP

intoxication can recapitulate some aspect of the brainstem

cholinergic pathology in aged, but not young adult mon-

keys. Further studies are needed to determine the extent of

non-cholinergic cell loss in the PPN/LDT region of both

PD patients and MPTP-treated monkeys.

Another major group of cholinergic neurons known to

play an important role in basal ganglia function in normal

and diseased states are the striatal cholinergic interneurons

(Tanimura et al. 2017). Although there is evidence for

dysregulation of the intrastriatal cholinergic function in

PD, very few studies have assessed changes in the mor-

phology or number of striatal cholinergic interneurons in

PD patients (Gonzales and Smith 2015; Kharkwal et al.

2016). Two recent studies addressed this issue in MPTP-

treated monkeys and came up to different conclusions. On

the one hand, some authors reported that the total number

of striatal cholinergic neurons is not changed in the stria-

tum of parkinsonian monkeys, but that a significantly larger

number of cholinergic neurons co-express calretinin

immunoreactivity in parkinsonian animals than in controls

(Petryszyn et al. 2016). On the other hand, recent findings

from our laboratory showed a 30–40% increase in the total

number of ChAT-IR neurons in the head of the caudate

nucleus of chronically MPTP-treated monkeys, with no

significant change in other striatal regions (caudate body,

pre- and post-commissural putamen) (Villalba and Smith

2017). Although, there is no clear explanation for the dis-

crepancy between these studies, the different MPTP regi-

men, monkeys were exposed to may be a contributing

factor.

Quantitative studies of the number and density of striatal

cholinergic interneurons in the striatum of PD patients are

needed to validate the significance of these data from

MPTP-treated monkeys towards our understanding of

striatal cholinergic pathology in PD.

Olfactory pathology

Deficits in odor detection, discrimination and identification

are commonly seen during the prodromal stage of PD
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(Berendse and Ponsen 2009; Mesholam et al. 1998). This

olfactory dysfunction does not respond to L-DOPA therapy

(Doty et al. 1992; Hawkes et al. 1997). Various groups

have reported an increased number of DA cells in the

olfactory bulb (OB) of PD patients with olfactory deficits

(Berendse et al. 2001; Hawkes et al. 1997; Huisman et al.

2004). This increased DA activity in the OB of PD patients

may lead to a suppression of olfactory information due to

the inhibitory effect of DA on the transmission between

olfactory receptor cells and mitral cells within the olfactory

glomeruli (Doty and Risser 1989; Duchamp-Viret et al.

1997; Hsia et al. 1999; Koster et al. 1999; Mundinano et al.

2011; Wilson and Sullivan 1995). Recent findings revealed

that DA levels are also increased in the OB of chronically

MPTP-treated monkeys irrespective of their state of

parkinsonism, such that motor asymptomatic and moderate

or severe parkinsonian animals display comparable

increases in OB DA levels (Pifl et al. 2017). These findings

are consistent with the previous report of an increased

number of intrinsic DA neurons in the OB of chronically

MPTP-treated monkeys (Belzunegui et al. 2007). However,

because olfactory tests were not performed in these mon-

keys, the significance of these anatomical observations

remains unclear and warrants further studies.

Thalamus CM/PF pathology

A profound degeneration (*40–50% cell loss) of the

caudal intralaminar thalamic nuclei, namely the centro-

median (CM) and parafascicular nuclei (Pf) has been

reported in idiopathic PD patients (Henderson et al.

2000a, b). The extent of CM/Pf cells loss is not related to

the severity of parkinsonian motor signs. Even patients in

early stages of the disease harbor major thalamic pathology

(Henderson et al. 2000a, b), suggesting that CM/Pf

degeneration is an early event that likely starts during the

prodromal period of PD, even before the degeneration of

midbrain dopaminergic neurons (see Smith et al. 2014 for

discussion). Because CM/Pf neurons are the main sources

of the thalamostriatal glutamatergic system (Galvan and

Smith 2011; Smith et al. 2004, 2009, 2011, 2014), early

degeneration of these neurons may significantly disrupt the

glutamatergic drive of striatal projection neurons and

cholinergic interneurons. In light of recent studies showing

that CM/Pf neurons are sensitive to salient sensory stimuli

and may play an important role in cognitive processes

related to attention and reinforcement, it has been sug-

gested that the loss of CM/Pf neurons may contribute to

early cognitive impairments in attentional set-shifting or

behavioral switching commonly found in PD patients

(Smith et al. 2014).

We have recently shown that CM/Pf degeneration can

be induced in chronically MPTP-treated rhesus monkeys

(Villalba et al. 2014). Although the mechanisms by which

MPTP kills these glutamatergic thalamic cells remain to be

established, there is evidence that CM/Pf loss occurs early

during the course of MPTP intoxication, an reach its

maximum extent even before the development of parkin-

sonian motor signs. As expected, this thalamic cell loss

results in decreased thalamic innervation of striatal neurons

(Villalba and Smith 2011). Behavioral studies are currently

in progress to assess the potential role of CM/Pf pathology

on cognitive and motor functions in these monkeys. Thus,

the chronic MPTP-treated monkey model of PD is a suit-

able tool to assess the potential contribution of the thala-

mostriatal degeneration to early attentional cognitive

deficits in PD (Decamp and Schneider 2004, 2006; Ko

et al. 2016; Roeltgen and Schneider 1994; Schneider 2006).

Lewy body pathology in monkeys

In addition to the profound degeneration of various

dopaminergic and non-dopaminergic cell groups, another

key element of PD pathology is the development of cyto-

plasmic inclusions called Lewy bodies. These inclusions

are made up of protein aggregates that are found

throughout the whole brain of PD patients, but are partic-

ularly abundant in lower and upper brainstem regions and

the ventral midbrain dopaminergic cell groups (Baba et al.

1998; Devine et al. 2011; Irizarry et al. 1998; Spillantini

et al. 1997). One of the key component protein of Lewy

bodies is a-synuclein, a ubiquitous pre-synaptic protein

that likely plays an important role in the pre-synaptic

regulation of neurotransmission throughout the brain.

Because of its abundance in Lewy bodies (Niu et al. 2015),

alpha-synuclein has become a major target of PD patho-

biology. Its abnormal aggregation throughout the parkin-

sonian brain may lead to disruption of axonal transport and

contribute to a wide array of motor and non-motor symp-

toms of PD. Recent evidence suggest that these aggregates

may be transported throughout the brain in a prion-like

fashion has generated significant interest in the field (Braak

and Braak 2000; Braak et al. 2003a; Chu and Kordower

2015; Dunning et al. 2012, 2013; Rey et al. 2016). How-

ever, significant controversy exists in understanding the

mechanisms by which these aggregates are transported

from one structure to another in the mammalian CNS

(Surmeier et al. 2017).

Because of the increased significance of alpha-synuclein

pathology in the etiology, degeneration process and pos-

sible development of PD motor and non-motor symptoms,

efforts at developing a nonhuman primate model of PD that

displays alpha-synuclein aggregates and Lewy body-like

pathology could be of utmost importance for future thera-

peutic and neuroprotective studies in PD. As discussed in
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another review of this Special Issue (Marmion and Kor-

dower 2017), attempts at developing such model are cur-

rently in progress in various laboratories (Collier et al.

2016; Low and Aebischer 2012; Niu et al. 2015; Recasens

et al. 2014; Yang et al. 2015). Although transgenic models

offer insights into the causes of PD pathogenesis or LB-like

formation, the absence of consistent neuronal loss in the

SNc remains a major limitation for these models. On the

other hand, viral transduction of wild type or mutant a-

synuclein protein has been shown to induce loss of DA

neurons, and cause motor impairment in both mice and rats

(Oliveras-Salva et al. 2013) but it is limited to the region

targeted (Eslamboli et al. 2007; Koprich et al. 2016; Yang

et al. 2015). Recently, Shimozawa et al. (2017) reported

that intracerebral injection of synthetic a-synuclein fibrils

into wild-type marmoset brains (caudate nucleus and/or

putamen) results in the formation of abundant a-synuclein-

positive inclusions in midbrain TH-positive neurons, sug-

gesting the retrograde spreading of abnormal a-synuclein

from the striatum to the SNC. Moreover, the authors

reported a significant decrease in the number of nigral DA

neurons ipsilateral to the striatal injection sites of a-synu-

clein fibrils. However, despite such pathology, these

monkeys did not exhibit any apparent motor deficits up to

3 months after inoculation. Further studies are needed to

establish the relationship between pathologies and symp-

toms in wild-type marmosets.

A common criticism raised about the MPTP-treated

NHP model of PD is that it fails to produce cytoplasmic

inclusion bodies in DA neurons and other brain regions.

Although protein aggregates structurally similar to Lewy

bodies are, indeed, not found in the brain of MPTP-treated

monkeys, there is strong evidence that chronic MPTP

treatment induces the formation of alpha-synuclein-posi-

tive inclusion bodies or aggregates. Early reports have

described eosine-positive inclusion bodies in the SNC, LC,

nucleus basalis of Meynert, dorsal motor nucleus of the

vagus, and raphe nucleus of MPTP-treated aged squirrel

monkeys (Forno et al. 1986, 1993). More recently, we and

others have demonstrated a-synuclein aggregation in

midbrain DA neurons and dystrophic nigrostriatal axons in

chronically MPTP-treated young adult squirrel and rhesus

monkeys (Masilamoni and Smith 2011; McCormack et al.

2008) (Fig. 5a–d). Although this issue remains to be

addressed in a more systematic fashion, these observations

suggest that MPTP treatment induces alpha-synuclein

inclusions only when mild and prolonged inhibition of the

mitochondrial respiratory chain causes a chronic decrease

of the ubiquitin-proteasome activity.

Fig. 5 Photomicrographs of a-synuclein-immunostained coronal

sections at the level of the ventral midbrain (a–d) of a control (left

column) and a MPTP-treated (right column) monkey. Alpha-

synuclein-positive aggregates in SNCd and VTA of chronically

MPTP-treated monkeys are shown in b and d
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Concluding remarks

In conclusion, the MPTP-treated monkey model has been

recognized as the gold standard model of PD because the

degeneration of the dopaminergic nigrostriatal system

leads to parkinsonian motor signs that closely mimic those

seen in PD patients. This model has been instrumental to

our understanding of the pathophysiology of the basal

ganglia-thalamocortical loops in PD and to the rejuvena-

tion and refinement of surgical therapies for the disease.

However, as is the case for most neurotoxin-based

models of PD, it is recognized by many investigators as a

mere model of nigrostriatal dopaminergic lesion that does

not involve other monoaminergic brain systems affected in

PD. In this review, we discussed series of data published by

various groups over the years that negate this misconcep-

tion. It is clear from the literature that monkeys treated

chronically with low doses of MPTP display brain patho-

logical changes that extend far beyond the nigral

dopaminergic neurons. Among the various systems that are

known to be partly degenerated in PD, chronically MPTP-

treated monkeys exhibit loss of noradrenergic neurons in

the locus coeruleus and related brainstem regions, sero-

tonergic neurons in the dorsal raphe, glutamatergic neurons

in the thalamic CM/Pf nuclear complex and loss of

cholinergic neurons in the pedunculopontine region (only

in aged animals). Because these systems are involved in a

wide range of cognitive and limbic functions and that their

disruption leads to various neuropsychiatric and sleep

disorders, their sensitivity to chronic MPTP intoxication

adds some significant value to the MPTP-treated monkey

model as a tool to study the pathophysiology and develop

new therapies for non-motor features of PD.
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