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Abstract The prevalence of both Alzheimer’s disease (AD)

and vascular dementia (VaD) is increasing with the aging of

the population. Studies from the last several years have

shown that people with diabetes have an increased risk for

dementia and cognitive impairment. Therefore, the authors

of this consensus review tried to elaborate on the role of

diabetes, especially diabetes type 2 (T2DM) in both AD and

VaD. Based on the clinical and experimental work of sci-

entists from 18 countries participating in the International

Congress on Vascular Disorders and on literature search

using PUBMED, it can be concluded that T2DM is a risk

factor for both, AD and VaD, based on a pathology of glu-

cose utilization. This pathology is the consequence of a

disturbance of insulin-related mechanisms leading to brain

insulin resistance. Although the underlying pathological

mechanisms for AD and VaD are different in many aspects,

the contribution of T2DM and insulin resistant brain state

(IRBS) to cerebrovascular disturbances in both disorders
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cannot be neglected. Therefore, early diagnosis of metabolic

parameters including those relevant for T2DM is required.

Moreover, it is possible that therapeutic options utilized

today for diabetes treatment may also have an effect on the

risk for dementia. T2DM/IRBS contribute to pathological

processes in AD and VaD.
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Diabetes mellitus � Insulin resistance � Cognition �
Neurotransmitters in dementia � Diabetic brain � Pathology
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disorders � Imaging in dementia
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AGEs Advanced glycation end products

AKT1s1 Proline-rich AKT1 substrate 1

AKT-1 RAC-alpha serine/threonine-protein kinase

AKT-2 RAC-beta serine/threonine-protein kinase

APP Beta-amyloid precursor protein

APOE e4 Apolipoprotein E e4

AQP4 Aquaporin-4

ATP Adenosine triphospate

BBB Blood brain barrier

BChE Butyrylcholinesterase

BHB Beta-hydroxybutyrate

BIR Brain insulin resistance

CBF Cerebral blood flow

CBH Chronic brain hypoperfusion

CSF Cerebrospinal fluid

Ct Control

CVR Cerebrovascular reactivity

DM Diabetes mellitus

DNA Desoxyribonucleic acid

FDG Fluorodeoxyglucose

FTO Fat-mass and obesity-associated gene

Gd-DTPA Gadolinium-based MRI contrast agent

GLP-1 Glucagon-like peptide 1

GLUT3 Glucose transporter 3

GM Grey matter

GSK3b Glycogen synthase kinase 3 b
HOMA-IR Homeostatic model assessment of insulin

resistance

HNE 4-Hydroxynonenal

IDE Insulin degrading enzyme

ICV Intracerebroventricular

IGF-1R Insulin-like growth factor 1 receptor

IR Insulin receptor
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IRb Insulin receptor subunit b
IRS1 Insulin receptor substrate-1

IRS-1pS616 Serin-phosphorylated insulin receptor

substrate-1
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IRS2 Insulin receptor substrate-2

ISF Interstitial fluid

KAT Kynurenine aminotransferase

KYNAC Kynurenic acid

MCI Mild cognitive impairment

MRI Magnet resonance imaging

mTOR Mechanistic target of rapamycin

OS Oxidative stress

PCAD Pre-clinical AD

PET Positron emission tomography

PG Postprandial glycemia

PIK3CB Phosphatidylinositol-4,5-bisphosphate

3-kinase catalytic subunit beta isoform

PIK3CD Phosphatidylinositol-4,5-bisphosphate

3-kinase catalytic subunit delta

PI3 Phosphatidylinositol-3-kinase

PI3K Phosphoinositid-3-kinase

PIP3 Phosphatidylinositol (3,4,5)-triphosphate

PPARc Peroxisome proliferator-activated receptor

gamma

P-Tau Phospho-Tau-Protein

PYY Peptide YY

P53 Phosphoprotein p53

QA Quinolinic acid

RAGE Receptor for AGEs

RNA Ribonucleic acid

ROS Reactive oxygen species

sAD Sporadic Alzheimer’s disease

SGLT2 Sodium/glucose cotransporter 2

STZ Streptozotocin

T2DM Type 2 diabetes mellitus

T1DM Type 1 diabetes mellitus

VaD Vascular dementia

WM White matter

Introduction

A causative association between diabetes mellitus (DM)

and cognitive impairment has been suggested based on

clinical, epidemiological, and experimental studies (Ala-

fuzoff et al. 2009; Bitel et al. 2012; Vagelatos and Eslick

2013; Carvalho et al. 2015; Feinkohl et al. 2015; Jellinger

2015a).

In fact, recent studies demonstrate a pathophysiological

link between diabetes mellitus type II (T2DM) and cog-

nitive decline (Jellinger 2015b). This is demonstrated in

persons with DM showing that a higher risk of developing

Alzheimer’s disease (AD), vascular dementia (VaD) and

mixed-type dementia (AD plus cerebrovascular disease),

and comorbidity, in particular cerebrovascular disease,

hypertension, hypercholesterolemia, etc. increases this risk

(Jellinger 2015b; Haroon et al. 2015; Kuo et al. 2015).

Insulin resistance predicts medial temporal hyperme-

tabolism in Mild Cognitive Impairment (MCI) conversion

to AD (Willette et al. 2015b). In addition, changes in

glucose uptake in medial temporal regions in AD predict

worse memory performance (Willette et al. 2015a).

Moreover, DM facilitates cognitive decline in patients with

mild AD compared to those without comorbid DM (Jel-

linger 2015a; Ascher-Svanum et al. 2015). However, the

precise mechanisms involved in the development of AD in

diabetics are not yet fully understood, and several patho-

genic pathways have been discussed (Feinkohl et al. 2015;

Abner et al. 2016; Hao et al. 2015; Chiu et al. 2015;

Verdile et al. 2015; Bedse et al. 2015; De Felice et al.

2014), including vascular brain disease, insulin resistance,

and other metabolic effects on the brain.

In a meta-analysis, Chatterjee et al. (2016) estimated the

sex-specific relationship between women and men with

DM with incident dementia. Fourteen studies with

2310.330 individuals and 102.174 dementia cases were
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Höppel-Platz 1, 97080 Würzburg, Germany

26 Endocrine and Diabetes Centre, 15-12-15 Krishnanagar,

Visakhapatnam 530 002, India

27 Department of Neurology and MTA-SZTE Neuroscience

Research Group, Faculty of Medicine, Albert Szent-Györgyi

Clinical Center, University of Szeged, Semmelweis u. 6.,

6725 Szeged, Hungary

28 Department of Geriatrics, Medical University of Bialystok,

Fabryczna Str.27, 15-741 Bialystok, Poland

29 Department of Family Medicine, Faculty of Medicine,

Akdeniz University, 07059 Antalya, Turkey

The diabetic brain and cognition 1433

123



included. T2DM showed a *60% greater risk for the

development of dementia compared with those without

DM. For VaD but not for non-vascular dementia, the

additional risk is greater in women (Chatterjee et al. 2016).

In the study of Marseglia et al. (2016), the authors aimed

to identify the cognitive domains initially impaired by

diabetes and the factors that play a role in this first stage.

There were 2.305 cognitively intact participants aged

C60 years. A variety of memory tests were assessed.

Diabetes (controlled and uncontrolled) as well as predia-

betes were ascertained by clinicians. Information on vas-

cular disorders and vascular risk factors has been recorded.

Mainly uncontrolled diabetes in APOEe4 non-carriers was

related to lower performance in perceptual speed, category

fluency, and digit scan forward, and this association was

present only among participants with vascular disorders or

vascular risk factors (Marseglia et al. 2016).

One-fifth of dementia cases are caused by VaD, a dis-

order with heterogenous spectrum of cerebrovascular

pathologies (Nizam and Hyer 2007). VaD is one of the

most prevalent dementia disorders after AD (Ozbabalik

et al. 2012). The prevalence of VaD rises rapidly between

ages 65–85. People with DM as compared to those without

DM have a higher risk for developing VaD [pooled RR

2.27 [95% CI 1.94–2.66] (Gudala et al. 2013) and 2.2 (95%

CI 1.7–2.8)] (Ninomiya 2014). They are 2–4 times more

likely to develop AD and have a 1.5–2-fold greater risk for

an accelerated rate of age-related cognitive decline

(Cukierman et al. 2005). This has been demonstrated uti-

lizing both neuropsychological instruments and surrogates

such as change in MRI volumes (van den Berg et al. 2010;

van Harten et al. 2006; Reijmer et al. 2011). Individuals

with elevated blood glucose levels are at an increased risk

to develop dementia, and those with elevated blood glucose

levels have a more pronounced conversion from MCI to

AD, suggesting that disrupted glucose homeostasis could

play a more causal role in AD pathogenesis (Macauley

et al. 2015).

Observational studies have also shown an increase in the

incidence of other types of dementia than AD or VaD in

DM (Gudala et al. 2013; Macauley et al. 2015; Irie et al.

2008; Ahtiluoto et al. 2010). Therefore, the precise

mechanisms involved in the development of cognitive

impairment in diabetic patients are not yet fully understood

(Alafuzoff et al. 2009; Feinkohl et al. 2015).

Advances in the management of T2DM have enhanced

preventive and medical services and have diminished its

macro- and microvascular complications. This has led to an

increase in life expectancy of people with diabetes, how-

ever, that has increased the population at risk for cognitive

impairment and dementia (Ninomiya 2014).

Given all these aspects, the group concluded that dis-

rupted glucose homeostasis is of risk for developing

dementia. This includes diabetes-dependent cerebrovascu-

lar pathology. Therefore, the cascade of pathological

events in AD may show first onset of non-vascular

pathology followed by cerebrovascular changes, while for

VaD, cerebrovascular pathology is of primary importance.

Possible mechanisms for the relationship
between diabetes and cognitive impairment

Is cognitive impairment in patients with diabetes mellitus

type 1 (T1DM) a consequence of vascular impairment or a

separate process?

Modest cognitive impairment in patients with T1DM

does not follow any dementia pattern. Compared to healthy

controls, patients with T1DM were slower in information-

processing, but had better scores on visuospatial tests

(Brands et al. 2006). It was shown that patients with T1DM

have an increased risk of lacunar stroke (Luitse et al. 2012)

and those with additional microangiopathy had decreased

structural connectivity in posterior brain regions (van

Duinkerken et al. 2012a) and impaired function in the

ventral attention network (Van Duinkerken et al. 2012b).

However, the effect of vascular lesions on the cognitive

decline in T1DM patients is not entirely clear (Brands et al.

2006; Nunley et al. 2015; Biessels and Reijmer 2014;

Huang et al. 2014). In contrast to T2DM, T1DM begins

earlier in life and may influence brain development

(Biessels et al. 2008; de Felice and Benedict 2015) via

insulin receptors in the hypothalamus, which play a key

role in the memory system (De Felice et al. 2014; de Felice

and Benedict 2015). In a recent small study, patients with

T1DM had partly altered CSF AD biomarkers (Ouwens

et al. 2014). Levels of p-Tau were elevated similar to those

in AD patients. Another biomarker is soluble low-density

lipoprotein receptor-related protein 1 (sLRP1) protein,

which regulates efflux of beta-amyloid (Ab) from the brain

to the blood and is impaired in patients with AD (Ra-

manathan et al. 2015). T1DM patients who had elevated

levels of sLRP1 in the CSF, performed better on the cog-

nitive tests (Ouwens et al. 2014).

Hyperglycemia, which is a primary impairment in T1DM,

can cause permanent cognitive impairment, thus contrasting

the situation with hypoglycemia. In the brain of streptozo-

tocin (STZ)–T1DM rats and mice decreased neurogenesis

(Alvarez et al. 2009), mitochondrial dysfunction due to

decreased activity of respiratory chain complex I (Taurino

et al. 2012), lower release of adenosine triphosphate (ATP)

and downregulation of synaptic purinergic receptors in the

hippocampus (Duarte et al. 2007), a region involved in

learning and memory (Duarte et al. 2007), have been

reported. Moreover, STZ–T1DM animals performed poorly

on cognitive tasks (Alvarez et al. 2009).
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Taken together, it is likely that vascular risk factors

together with metabolic causes may facilitate neurode-

generation and contribute to cognitive impairment in

T1DM patients.

Atherosclerosis, stroke, and insulin resistance

Several pathogenic routes have been suggested for this

relationship. First, chronic hyperglycemia may cause cog-

nitive impairments and abnormalities in synaptic plasticity

(Jacobson et al. 2007). Tight glycemic control significantly

reduced the rate of brain atrophy over a period of

40 months in STZ-induced diabetic rats compared with the

standard glucose treatment (Biessels et al. 1996). Second,

relative insulin deficiency (also termed ‘‘insulin resis-

tance’’) may be of importance. The Hisayama study

reported an increase in the presence of neuritic plaques

with higher postprandial glycemic (PG) levels, fasting

insulin level, and insulin resistance in AD (Doi et al. 2010),

which might be also relevant for mixed forms of dementia

with VaD involvement. It is reasonable to postulate a close

association between 2-h PG levels and the risk of VaD,

because increased 2-h PG levels are associated with the

development of stroke (Thacker et al. 2011; Doi et al.

2010). Insulin resistance is associated with VaD through

atherosclerosis (De Felice et al. 2014; Fitzpatrick et al.

2009). Obesity in T2DM contributes to hyperinsulinemia

and insulin resistance. Insulin also regulates acetylcholine

synthesis (Kimura et al. 2016), thus possibly affecting

cognitive functions in dementia. Insulin resistance reduces

the amount of insulin that crosses the blood–brain barrier

(BBB), which hinders its role in the brain (see details in

glycemic control). It has been found that prolonged

hyperinsulinemia induces an impaired response to insulin

through decreased expression of insulin receptors at the

BBB and brain and consequently inhibits the insulin

transport into cerebrospinal fluid (CSF) and brain tissues

(Neumann et al. 2008). These changes could cause deficits

in learning and memory formation, probably due to a

neuroglial energy crisis (Kimura 2001, 2016; Craft et al.

1998). Higher levels of plasma insulin provoke amyloid

accumulation by limiting the degradation of Ab by direct

competition for the insulin degrading enzyme (IDE), which

degrades both insulin and Ab (Neumann et al. 2008).

However, lower insulin levels in CSF and the impaired

response to insulin and insulin-like growth factor-1 inhibit

the transportation of these carrier proteins and decrease the

clearance of Ab (Craft and Watson 2004). Third, chronic

exposure to hyperglycemia in DM also induces abnor-

malities in the cerebral capillaries (termed ‘‘vasculopenia’’)

(Serlin et al. 2011). Recent human study in asymptomatic,

late middle-aged adults (N = 186) from the Registry for

Alzheimer’s Prevention who underwent [C-11]Pittsburgh

compound B (PiB) position emission tomography as an

indicator of amyloid deposition in the brain tested the

interaction between insulin resistance and glycemic status

on PiB distribution volume in the cerebral cortex (Willette

et al. 2015a). The results of that study demonstrated that in

normoglycemia, higher peripheral insulin resistance cor-

responded to higher PiB uptake in frontal and temporal

areas, indicating that in individuals at risk for AD,

peripheral insulin resistance may contribute to and predicts

brain amyloid deposition in brain regions affected by AD.

Since this association was not confirmed in a much smaller

study on 47 participants (Thambisetty et al. 2013), further

studies are needed to resolve the nature of the link between

insulin resistance/T2DM and amyloid load. On the other

hand, peripheral insulin resistance has been found to pre-

dict MCI progression to AD, as shown by the study of the

Alzheimer’s Disease Neuroimaging Initiative which

included 194 MCI, 60 AD, and 26 cognitively normal

subjects (Willette et al. 2015b). The results suggested that

during the MCI stage, the homeostatic model assessment of

insulin resistance (HOMA-IR) as an index of peripheral

insulin resistance is differently associated with either hypo-

or hyper- glucose (FDG-PET) metabolism in different

brain areas, depending on whether participants progress to

develop clinical AD. Therefore, evidence accumulated

showing that peripheral insulin resistance, which is often

associated with a metabolic syndrome and T2DM, has a

role in prediction of AD pathology development, but its

most specific AD correlates have not been clearly defined

yet.

Finally, severe hypoglycemia may be also a risk factor

for cognitive impairments in patients with DM. It has been

reported that patients with recurrent severe hypoglycemic

episodes have a 1.5–2.0 times greater risk of the develop-

ment or deterioration of cognitive impairment (Thacker

et al. 2011). These are, however, prospective studies, and

as cognitive impairment is a long process, it is hard to

delineate the direction of the relationship, i.e., does cog-

nitive impairment cause severe hypoglycemia or does

severe hypoglycemia cause dementia. Older patients are

thought to have less brain reserve or brain plasticity than

younger patients (Artola et al. 2002). Therefore, it is

plausible that hypoglycemia could cause neurologic chan-

ges that render an older patient more susceptible to

dementia.

Glycemic control

Peripheral insulin of pancreatic origin crosses the BBB in a

tightly controlled manner, as the BBB expresses insulin

receptors, which may decrease in number in response to

specific conditions associated with chronic hyperinsuline-

mia and insulin resistance (Banks 2004; Banks 2006;
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Unger et al. 1991). At the level of the BBB, there is a tight

relationship between the presence of insulin receptors and

the topographic expression of glucose transporters partic-

ularly abundant in medial temporal lobe and diencephalic

structures, which notably are related to neurocognitive

functions (White 2002; Zhou et al. 2001), suggesting an

important role of insulin in modulation of glucose uptake

and utilization (Banks 2004; Baker et al. 2011; Craft et al.

2012; Hertz et al. 1981). Insulin stimulation of glucose

transporter-4 (GLUT4) seems to be critical to the regula-

tion of neuronal metabolism and the generation of energy

needed for memory and other neurocognitive functions.

The presence and functional activity of major insulin signal

transduction molecules in human primary astrocytes has

also been demonstrated, including glycogen formation and

cell proliferation, thus supporting neurons with energy,

since neurons cannot store glycogen for their own activity

(Heni et al. 2011).

A growing body of evidence points to the importance of

a condition of the insulin inability to serve its physiological

function in the brain, in literature described by two alter-

native terms, ‘‘brain insulin resistance’’ (BIR) (Su et al.

2017; Talbot et al. 2012; de la Monte et al. 2012) or ‘‘in-

sulin resistant brain state’’ (IRBS) (Correia et al. 2013;

Frisardi et al. 2010; Plaschke et al. 2010a, b; Salkovic-

Petrisic et al. 2009). At the molecular level, BIR is char-

acterized by a reduced response to insulin signalling gen-

erally downstream the insulin receptor (IR)—insulin

receptor substrate (IRS)—phosphatidyl inositol kinase-3

(PI-3) pathway in the brain, which, particularly considering

the neurotrophic, neuroprotective, and neuromodulatory

roles of brain insulin, may lead to neurodegeneration and

cognitive impairment as seen in AD as well as metabolic

alterations in hypothalamic functions, as seen in obesity

and T2DM (Kullmann et al. 2016). Although some authors

proposed that it might be considered as type 3 diabetes (de

la Monte and Tong 2014), others strongly disagree (Talbot

2014; Talbot and Wang 2014). BIR actually represents a

brain-related metabolic syndrome associated with meta-

bolic and oxidative stresses and neuroinflammation in the

brain, which may or may not be accompanied by alter-

ations in peripheral metabolic homeostasis, since T2DM

increases the risk for AD (and vice versa), but neither all

T2DM patients develop AD (and vice versa) nor AD is

necessarily associated with hyperglycemia (Talbot 2014;

Talbot and Wang 2014; Blázquez et al. 2014).

A clinical study on 30 normal, 29 MCI, and 30 AD

patients (Talbot et al. 2012) demonstrated that cognition

was negatively associated with levels of candidate bio-

marker of BIR serin-phosphorylated insulin receptor sub-

strate-1 (IRS-1 pS616) in the hippocampus, and that

association of episodic memory and IRS-1 pS616 was

statistically independent of Ab plaques, suggesting that

BIR is mechanistically closer than the plaques to the

molecular causes of cognitive decline in AD. A very recent

longitudinal, 35-month study in 57 MCI and 64 cognitively

unimpaired controls confirmed the existence of the inter-

action between insulin resistance-related genetic poly-

morphisms (AKT2, PIK3CB, IGF1R, PIK3CD, MTOR,

IDE, AKT1S1, and AKT1) and cognitive impairments in

MCI subjects, providing in vivo evidence that pathway of

BIR modifies cognitive performance, further showing that

the influence occurred in the absence of diabetes (Su et al.

2017).

Insulin resistance impairs the normal activity of the

brain; both experimental, imaginistic, and clinical non-in-

terventional studies have identified correlations between

insulin and cognitive functions—in particular impaired

memory and AD but also increased insulin resistance in a

significant number of patients with other neurodegenera-

tive diseases (de Felice et al. 2014; Craft et al. 2012; de la

Monte et al. 2012; Craft and Christen 2010; Rönnemaa

et al. 2008; de la Monte et al. 2009). These implications

could be related to the role of insulin in the normal APP

and Ab cellular synthesis and processing, but also in the

brain-liver metabolic axis (de la Monte et al. 2012; de la

Monte 2009; Banks et al. 2012; Craft et al. 2013; Gasparini

and Xu 2003; Lin et al. 2000; Matsuzaki et al. 2010;

Passafaro et al. 2001; Sagare et al. 2012; Tamaki et al.

2007; Lopez et al. 2011). The role of brain insulin in the

control of the turn-over of Ab is also important for mixed

and vascular cognitive impairment as there is a tight

interference between the brain vascular risk factors and Ab
(as recently stated by AHA/ASA based on a significant

number of published research data) (Gorelick et al. 2011).

In addition, insulin has been shown to regulate the

phosphorylation of tau proteins (Rudolph et al. 2016).

Hyperphosphorylated tau contributes to the formation of

neurofibrillary tangles (Kimura 2016). It is also reported

that there are genomic/transcriptomic links between AD

and DM by meta-analysis study (Mirza et al. 2014).

A neuropathological evaluation of glucose/insulin-re-

lated molecules in AD, DM and controls is presented in

Table 1. These molecular post-mortem brain data agree

with histological and clinical studies underlying the

importance of glucose/insulin pathology as risk factors for

cognitive dysfunction. These results point to a concomitant

occurrence of alterations in the energy metabolism

pathways.

Considering the dysfunction of the brain insulin system

found in AD patients post-mortem (Luchsinger 2012), an

experimental rat model, the STZ-ICV model, which mir-

rors an insulin resistant brain state, seems to be an appro-

priate animal model for AD (Salkovic-Petrisic et al. 2009;

Luchsinger 2012; Hoyer 1998, 2004; Israili 2011; Grün-

blatt et al. 2007; de la Monte 2009).
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Table 1 Neuropathological evaluation of glucose transporter, insulin/insulin receptor, and its related molecules in AD compared to T2DM and

controls

Parameter Pathological

group (n)

Brain region Results Reference

O-GlcNAcylation

GLUT3

Tau phosphorylation

Control (n = 7)

T2DM (n = 11)

AD (n = 10)

T2DM ? AD
(n = 8)

Frontal cortices ; O-GlcNAcylation

Glucose vs. Ct

; GLUT3 vs. Ct (higher extent in
T2DM)

: Tau-p vs. Ct (in AD and in some
tau epitopes in T2DM)

Liu et al.
(2009)

Ab plaques

AGEs

RAGE

Tau

Control (n = 9)

DM (n = 3)

AD (n = 10)

AD ? DM
(n = 9)

Cerebellum, hippocampus and cerebral
cortex (temporal, frontal and parietal
lobes)

: Ab plaques vs. Ct and DM

: AGEs vs. Ct and DM

: RAGE vs. Ct (in particular in
AD ? DM) hilar cells

: Tau aggregates vs. Ct and DM
(in particular in AD ? DM)

Valente et al.
(2010)

IRb

Phosphorylated PPARc

Control (n = 9)

AD (n = 10)

T2DM (n = 10)

AD ? T2DM
(n = 10)

Frontal cortex, dorsal and ventral
hippocampus

; IRb cortex vs. Ct, T2DM and
AD ? T2DM

; IRb hippocampus vs. Ct

: p-PPARc vs. Ct

Bartl et al.
(2012)

Ceramide (activates insulin
resistance)

Control (n = 8)

Moderate AD
(n = 8)

Advanced AD
(n = 8)

Anterior frontal lobe : Ceramide in advanced AD de la Monte
et al.
(2012)

Insulin stimulation ? IR, IRS-
1, PI3K, IGF-1R and IRS-2

Control (n = 8)

AD (n = 8)

Cerebral cortex, hippocampal formation ; Insulin response IR, IRS-1,
PI3K, IGF-1R and IRS-2 vs. Ct

Talbot et al.
(2012)

IRb-pY960

IRS1

IRS1-pY612

IRS1-pY941

IRS1-pY312

IRS1-pS616

IRS1-pS636/639

PIP3

GSK3b

mTOR-pS2448

Control (n = 30)

MCI (n = 29)

AD (n = 31)

Hippocampal CA1 ; IRb-pY960 in AD

; PIP3 and GSK3b vs. Ct

: IRS1, IRS1-pS616 and IRS1-
pS636/639 vs. Ct

: IRS1-pY612, IRS1-pY941, IRS1-
pY312 and mTOR-pS2448 in AD

Talbot et al.
(2012)

Ab

HNE

AGE

Insulin

GLP-1

PYY

Leptin

Control (n = 8)

Moderate AD
(n = 8)

Advanced AD
(n = 8)

Frontal lobe : Ab and HNE in Advanced AD

: AGE vs. Ct

; Insulin, GLP-1 and PYY in
advanced AD

: Leptin in advanced AD

Lee et al.
(2013)

IRS1-pS616

IRS1-pS312

Akt-pS473

Control (n = 25)

AD (25)

Tauopathy
(n = 38)

a-synucleinopathy
(n = 41)

TDP-43
proteinopathy
(n = 28)

Midfrontal gyrus, angular gyrus,
hippocampus

: In AD and slightly in tauopathies Yarchoan
et al.
(2014)
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Brain insulin resistance (BIR) as a shared
pathological feature in obesity, cardiovascular
disease, T2DM, and dementia

Evidence has gathered suggesting that BIR seems to be a

shared pathological feature of metabolic and cognitive

disturbances in T2DM, obesity, cardiovascular disease, and

dementia patients (Kullmann et al. 2016; Lutski et al.

2017), which may provide the missing link between these

disorders. Indeed, recent evidence suggests that insulin

resistance is related to subsequent poorer cognitive per-

formance and greater cognitive decline among patients

with cardiovascular disease with and without diabetes

(Lutski et al. 2017). Clinical investigation of the link

between the obesity and BIR showed that obese men

respond to cognitive but not to catabolic brain insulin

signalling (Hallschmid et al. 2008), indicating that not all

insulin activities in the brain have been equally affected by

BIR and that insulin resistance in metabolic disorders does

not uniformly affect all target cells and intracellular sig-

naling pathways in the brain (Könner and Brüning 2012).

Whereas dementia predominately affects cognitive target

regions of insulin action, T2DM- and obesity-associated

BIR predominately targets hypothalamic insulin action, but

there is overlap of these three disorders in impairment of

functional connectivity in prefrontal and lateral temporal

cortices and hippocampus as reviewed by Kullmann et al.

(2016). Thus, numerous clinical phenotypes may arise from

selective insulin resistance, leading to inhibition of defined

intracellular signaling pathways in some tissues, while in

other cell types, insulin action is maintained or even

overactivated (Könner and Brüning 2012). Furthermore,

magnetoencephalographic studies on carriers of obesity-

and diabetes-risk genes (fat-mass and obesity-associated

gene/FTO/and IRS-1, respectively) showed an attenuated

insulin-mediated response in the brain (Tschritter et al.

2006, 2007). In lean humans, insulin infusion modulates

cerebrocortical activity as demonstrated by magnetoen-

cephalography, while these effects are suppressed in obese

individuals, indicating lower cerebrocortical response to

insulin, i.e., BIR in this particular region, found in indi-

viduals with the Gly972Arg polymorphism in IRS-1, a

T2DM risk gene (Tschritter et al. 2006). The same group

demonstrated also that variation in the FTO gene locus

(obesity-risk gene) is associated with cerebrocortical

insulin resistance, but in these subjects, the effect of FTO

polymorphism was independent of the Gly972Arg poly-

morphism in IRS-1 (Tschritter et al. 2007). These studies

clearly indicate that each genetic determinant for BIR

involves different neuronal systems (Kullmann et al. 2016),

which may provide an explanation why AD is associated

with T2DM in some, but not all demented patients, and

vice versa, why T2DM is associated with AD in some but

not all diabetic patients.

BIR is not necessarily a secondary pathological event as

mentioned earlier in the text (references Neumann et al.

2008; Kimura 2001, 2016; Craft et al. 1998; Craft and

Watson 2004). Considering the BIR as a shared feature in

obesity, T2DM, and dementia, etiology of BIR as a primary

pathological event could be related to the maternal envi-

ronment during pregnancy and its influence on the fetus,

according to the studies showing that the change of insulin

action in fetuses of diabetic mothers influences the fetal

brain (Sobngwi et al. 2003). Intrauterine exposure of

fetuses to a non-physiological concentration of insulin

during critical periods of early development can lead to a

permanent malprogramming of fundamental regulatory

systems including those in hypothalamus, as demonstrated

Table 1 continued

Parameter Pathological
group (n)

Brain region Results Reference

IRS1-pS616

IRS1-pS636/639

IRS1-pY612

Control (n = 3)

AD (n = 3)

Temporal cortex, hippocampus ; IRS1-pS616 nucleus stains vs. Ct

; IRS1-pS636/639 nucleus stains vs.
Ct

; IRS1-pY612 nucleus stains vs. Ct

Garwood
et al.
(2015)

Ab

Autophagy (Beclin-1 and LC-
3)

PI3K/Akt/mTOR

Phosphatase

Tensin homolog

IRS1

GSK3b

Control (n = 8)

Late AD (n = 8)

Amnestic MCI
(n = 8)

PCAD (n = 8)

Inferior parietal lobule : Ab with ; autophagy vs. Ct

: PI3K/Akt/mTOR in MCI and
AD vs. Ct

; Phosphatase and tensin in MCI
and AD vs. Ct

: IRS1 and GSK3b in MCI and
AD vs. Ct

Tramutola
et al.
(2015)

GLUT3 glucose transporter 3, Ct control, AD Alzheimer’s disease, T2DM type 2 diabetes mellitus, AGEs advanced glycation end products,

RAGE receptor for AGEs, DM diabetes mellitus, IRb insulin receptor subunit b, IRS1 insulin receptor substrate-1, MCI mild cognitive

impairment, PCAD pre-clinical AD, HNE 4-hydroxynonenal
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for elevated insulin level during perinatal life which pro-

grammed the development of obesity and diabetes

(Plagemann 2008). Recent meta-analysis of 19 studies

including 2260 subjects has confirmed a strong support for

the fetal programming hypothesis (Pearson et al. 2015). It

is not only stress that might be a confounding factor, as the

effects of chronic exposure to stress hormones on cognition

at different stages in life including the prenatal age, depend

on the brain areas that are developing or declining at the

time of exposure (Lupien et al. 2009). Therefore, envi-

ronmental factors and epigenetic mechanisms operating

during pregnancy and postnatally may affect particular

susceptibility genes and stress factors, consequently

affecting brain development and causing respective dis-

eases like AD and/or T2DM that manifest late in life when

aging takes place and may become a trigger of desyn-

chronization of biological systems (Salkovic-Petrisic et al.

2009).

Cerebral blood flow

Age-related dysfunction based on reduced capillary func-

tion declines in uptake of energy metabolites, amino acids,

trophic factors, and other metabolic constituents, is of

eminent importance in a variety of brain-related disorders

(Kang et al. 2017; Bellou et al. 2017). T2DM favours such

age-dependent dysfunction and potentiates energy loss in

brain tissue. Therefore, aging eventually combined with

stress, which per se exerts negative effects on T2DM, is

both potential risk factors for AD (de Matos et al. 2017).

While under physiological conditions, compensatory

mechanisms are able to keep the homeostasis of brain

nutrition for a long time, chronic dysfunction finally will

overcome compensatory functions leading to neuronal

death.

Glucose-6-phosphate dehydrogenase plays a pivotal role

in homeostatic redox control by providing reducing

equivalents to glutathione, the major non-enzymatic cel-

lular antioxidant. As OS plays an important role in the

pathogenesis of AD, it is noteworthy that both glucose-6-

phosphate dehydrogenase and sulfhydryl concentrations

are upregulated in AD, showing compensatory regulation.

According to an alternative two-hit vascular hypothesis,

Ab accumulation in the brain is a second pathology (hit 2)

initiated by vascular damage (hit 1; Fig. 1). Neurovascular

dysfunction and hypoperfusion/hypoxia can reduce Ab
vascular clearance across the BBB and increase Ab pro-

duction from Ab precursor protein (APP), respectively,

causing Ab accumulation in the brain. Elevated levels of

Ab in the brain may in turn accelerate neurovascular and

neuronal dysfunction and promote self-propagation, lead-

ing to cerebral b-amyloidosis (Sagare et al. 2012).

Chronic brain hypoperfusion (CBH) can be present for

many years without eliciting mental symptoms, creating

instead an insidious neuronal energy crisis that is finally

expressed by progressive cognitive deficits in affected

individuals.

In this scenario, the presence of advanced aging plus

vascular risk factors can lower cerebral perfusion by

inducing any of number of abnormal hemodynamic

mechanisms affecting blood pressure, vessel patency,

vascular wall shear stress, blood flow resistance, blood

viscosity, and chemical blood flow regulators (Blennow

et al. 1990).

As neurons have no energy reserves, the performance of

cognitive tasks is critically dependent on the steady

delivery of adequate oxygen and glucose to produce ade-

nosine triphosphate (ATP). This nutrient delivery is inad-

equate in the aging brain.

Diminished CBF, neurovascular dysfunction, and

impaired vascular clearance of Ab from brain support an

essential role in linking DM and AD pathogenesis (de la

Torre 2010).

The glymphatic system mediates clearance of the

interstitial solutes in the brain by exchange of cerebrospinal

and interstitial fluids (CSF and ISF). The glymphatic sys-

tem consists of CSF influx from the paravascular space of

cerebral arteries, ISF clearance along the para-venous

space and the astroglial water channel AQP4 that partially

mediates transparenchymal changes of CSF and ISF (Iliff

et al. 2013; Yang et al. 2013). Impairment of the glym-

phatic system induces accumulation of Ab (Iliff et al. 2013;

Yang et al. 2013). Using a rat model of DM induced by

nicotinamide and STZ, Jiang et al. (2016) showed that

compared to age matched non-diabetic rats, middle-aged

DM rats exhibited spatial learning deficits. An odour

recognition test which detects non-spatial memory deficits

showed that DM rats failed to form new memories. In vivo

dynamic Gd-DTPA contrast-enhanced MRI analysis con-

firmed by ex vivo confocal image analysis indicated that

DM impairs the glymphatic system that mediates clearance

of the interstitial solutes in the brain (Jiang et al. 2017).

Cognitive deficits were highly and inversely correlated to

the impairment of the glymphatic system. Immunohisto-

logical analysis showed the presence of microvascular

leakage and loss of AQP4, axons, and oligodendrocytes in

the hippocampi of DM rats (Hamed 2017).

Inflammation in the diabetic brain

It has been shown clinically that disturbances of the BBB

play a role in the development of AD, especially in elderly

patients (Blennow et al. 1990). Therefore, peripheral

inflammatory factors from DM could leak to the brain
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parenchyma and induce activation of microglial cells to

release inflammatory molecules (Breteler 2000), thus

contributing to the pathophysiology of AD and VaD. There

have been studies which have pointed out that inflamma-

tory pathways may be acting as a possible mechanistic link

between the two disorders. Takeda et al. (2010, AD and

VaD) crossed transgenic mice (APP23) with diabetic mice

(ob/ob) and looked at the metabolism and pathology of the

brains in those double mutant mice (APP?-ob/ob). AD-

like cognitive impairment was observed in APP?-ob/ob

mice. Cerebrovascular inflammation, severe cerebral

amyloid angiopathy, and up-regulation of RAGEs were

observed in those double mutant mice even before the

appearance of cerebral amyloid angiopathy, suggesting

their role in cognitive impairment (Takeda et al. 2010).

These findings agree with pathology of the cerebral vas-

culature in AD and DM (Blennow et al. 1990; Breteler

2000).

Oxidative stress (OS) caused by chronic hyperglycemia

in chronic experimental diabetic neuropathy has been

shown to cause oxidative injury of dorsal root ganglion

neurons, specifically damaging the mitochondrial function

and neuronal cell death (Schmeichel et al. 2003).

Prolonged metabolic stress conditions could be activated

by various cell stressors, as hypoxia, oxidative stress, viral

infections, and trophic withdrawal or various insults unveil

deleterious effects of p53-evoked insulin resistance in

neurons; enhancement of transcription of pro-oxidant fac-

tors, accumulation of toxic metabolites (AGE and ROS)-

modified cellular components, together with activation of

proapoptotic genes, could finally move a suicide death

program of autophagy/apoptosis in neurons. The important

role of p53 driving insulin resistance in AD brains validates

attempts to inhibit p53 activity in neurons, since it could

promise an improvement of the disease therapy. Recent

studies reveal the impact of p53 on expression and pro-

cessing of several microRNA (miRs) under DNA damage-

inducing conditions. In addition, the role of miRs in pro-

motion of insulin resistances and in T2DM has been well

documented. Detailed recognition of the role of p53/miRs

Fig. 1 Vascular hypothesis of

Alzheimer disease. HIT 1

Vascular damage as primary

pathological event. HIT 2 Ab
accumulation as secondary

pathological event. Modified

from Sagare et al. (2012) (This

copyright agreement is admitted

by describing Cold Spring Herb

Perspect Med 2012;2:a011452)
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crosstalk in driving insulin resistance in AD brains could

improve the disease diagnostics and future therapy

(Vousden 2010).

The kynurenine pathway, the main metabolic route of

tryptophan degradation, produces several neuroactive

molecules [such as the excitotoxin antagonist kynurenic

acid (KYNAC) and the excitotoxin quinolinic acid (QA)].

Alterations in the kynurenine pathway may promote glu-

tamate-mediated excitotoxic neuronal damage and inflam-

matory processes (Vecsei et al. 2013). Recently, it was

shown that STZ-induced experimental T1DM increases

hippocampal content of KYNAC (Chmiel-Perzynska et al.

2014). The increased KYNAC level may have negative

impact on cognition. KYNAC in the course of DM could

be associated with an enhanced ketone body formation. In

cortical slices and glial cultures, beta-hydroxybutyrate

(BHB) augments KYNAC production by stimulating KATs

activity in the protein kinase-A dependent way, thus

explaining the neuroprotective actions of BHB (Chmiel-

Perzynska et al. 2011).

Potential role of butyrylcholinesterase in linking
diabetes and cognitive dysfunction

In AD, the brain levels of AChE go down, while those of

BChE (the protein butyrilcholinesterase) go up, resulting in

a dysregulation causing cholinergic deficit. As levels of

that enzyme are altered in T2DM too, those authors suggest

a synergistic negative interaction of T2DM and AD on

cholinergic neurotransmission (Mushtaq et al. 2014).

Among common pathogenic factors between DM and AD,

BChE has been studied in vitro and in plasma (Sridhar

et al. 2006; Rao et al. 2007; Shaikh et al. 2014). Alterations

in the level of plasma BChE occur in DM; variant forms of

the plasma enzyme occur in both DM and AD (Sridhar

et al. 2010; Raygani et al. 2004). In vitro studies demon-

strate a common pathogenic mechanism (Sridhar et al.

2006; Diamant et al. 2006). Whereas brain hyperglycemia

mediates hippocampal neuron responses (Macauley et al.

2015), BCHE levels also correlate with cerebral glucose

metabolism and cerebral Ab load (Darreh-Shori et al.

2011). BChE associates particularly with the malignant

form of Ab plaques, suggesting its role in transforming

non-fibrillar to the malignant fibrillar form (Reid and

Darvesh 2015). To account for a gender difference, a gene–

gene interaction between BChE and estrogen-associated

genes was proposed (Reid and Darvesh 2015). However,

the relation between BChE and AD is not settled yet. While

an earlier meta-analysis of the K-Variant of BChE sug-

gested that it was related to development of AD in Asians

(Want et al. 2015), but a more comprehensive meta-anal-

ysis failed to confirm the relation (Ji et al. 2015).

T2DM is not only associated with an increased risk of

cognitive decline and different types of dementia but also

with cerebrovascular and peripheral vascular disease

(Hoyer et al. 1999; Hoyer 1998, 2004; Israili 2011).

Moreover, cerebrovascular disease may contribute to the

severity of cognitive decline in AD (Last et al. 2007).

For the group, it is evident that disruption of glucose

metabolism in both AD and VaD is based on multiple

triggers. However, there is no agreement on follow-up and

time-course of pathological cascade.

Imaging the diabetes–cognitive impairment
relationship

Rapid advances in neuroimaging have confirmed a link

between cognitive impairment and poor metabolic control

in DM, mediated by the structural and functional brain

changes (van Bussel et al. 2017). Whole-brain analysis

revealed a consistent link between DM and brain atrophy

and this atrophy is often more pronounced within the

hippocampus (Gold et al. 2007). However, a pooled anal-

ysis of three cohort studies showed that the degree of

hippocampal atrophy in T2DM is comparable to the degree

of total brain atrophy (Biessels et al. 2006a, b). Brain

atrophy in T2DM is associated with poor cognition, pre-

dominantly attention and executive function, and infor-

mation-processing speed and memory (Moran et al. 2013;

van Elderen et al. 2010; Manschot et al. 2006).

Whole-brain grey matter (GM) atrophy may be associ-

ated with T2DM; the association is more convincing for

regional GM atrophy (Gold et al. 2007; Last et al. 2007).

Similarly, the association of global and regional white

matter (WM) atrophy and WM hyperintensities with DM

was not consistently reported (Friedman et al. 2014).

T2DM is clearly associated with the occurrence of lacunes

(van Harten et al. 2007).

Functional magnetic resonance imaging (fMRI)

demonstrated reduced synchronized activity within default

mode network in cognitively normal T2DM patients

(Musen et al. 2012). Regional basal cerebral blood flow

(CBF) and cerebrovascular reactivity (CVR) have been

shown to be decreased in T2DM patients (Zlokovic 2008).

Longitudinal studies have confirmed the association of

CBF and CVR with cognitive function and total brain

volume in T2DM at baseline. However, both indexes of

cerebral hemodynamics have not been predictive for atro-

phy and cognitive decline, and seem to be secondary

phenomena (Brundel et al. 2012).

Neuroimaging studies may serve as early biomarkers

and as monitors of progression of cognitive impairment in

subjects with DM (Moran et al. 2015). Several methods
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have been attempted to identify anatomical and

biomolecular markers linking accelerated cognitive decline

with insulin resistance. First, MRI studies have consistently

shown that chronic hyperglycemia is associated with brain

atrophy and cerebrovascular lesions (Moran et al. 2013;

van Bussel et al. 2017), which are hallmarks of attention

deficits and impaired executive functioning (McCrimmon

et al. 2012). There is no consensus on the exact mechanism

of neurodegeneration leading to accelerated cognitive

decline in DM and whether it is mediated by neuronal

atrophy or/and cerebrovascular lesions (Biessels 2013).

Such uncertainty undermines MRI as an early predictive

tool for the transformation potential of MCI into AD in

normal as well as DM subjects. For example, the AD

Neuroimaging Initiative (http://www.adni-info.org/) has

been validating the use of MRI/PET imaging for the pre-

diction of MCI-to-dementia conversion within 18 months

of diagnosis. Patients who converted to dementia showed

changes in GM volume, amyloid deposition, and glucose

metabolism in multiple regions compared with those who

did not develop dementia. In a recent analysis of the data

collected using structural MRI, amyloid-PET and 18F-

FDG-PET scans, investigators could predict the transition

with maximum accuracy of 72% (Teipel et al. 2015). In

addition to its low predictive potential, this approach can

only provide circumstantial clues on the underlying

mechanism of accelerated cognitive decline leading to AD

and dementia in DM patients.

In addition, DM triggers molecular alterations that elicit

deranged microvascular and mitochondrial functions,

increased inflammation, and elevated levels of advanced

glycation end products (AGEs) (Kim et al. 2012; Goldin

et al. 2006). All these diverse pathways converge at a nodal

point where positive feedback loops exacerbate OS which

is invariably implicated in neurotoxicity, neurodegenera-

tion, and cognitive deficits. It can be suggested, therefore,

that biomarkers of OS may provide early predictive probes

for cognitive decline in DM subjects (Praticò et al.

2000, 2002; Keller et al. 2005; Aluise et al. 2011; Baldeiras

et al. 2010; Thomas et al. 1996).

The group concluded that imaging studies (MRI, PET)

contribute to an early diagnosis of AD and VaD. However,

specificity and selectivity do not reach sufficient levels to

be used solely for a precise clinical diagnosis.

Pathology

Both T1DM and T2DM induce regional microstructural

changes in cortical and subcortical brain structures that are

associated with impairment of neurocognitive functions

(Seaquist 2015). Some autopsy studies stated that patients

with DM have significantly less AD pathology but more

frequent cerebrovascular lesions including microvascular

changes (Alafuzoff et al. 2009; Beeri et al. 2005; Nelson

et al. 2009; Ahtiluoto et al. 2010) or both types of cerebral

pathology (Alafuzoff et al. 2009; Vagelatos and Eslick

2013; Ahtiluoto et al. 2010; Takeda et al. 2011; Verdile

et al. 2015), and white matter lesions (Jellinger 2015a, b).

The increased risk of cognitive decline in elderly subjects

with DM is due to dual pathology, involving both the CVD

and cortical atrophy (Biessels et al. 2006a, b; Umegaki

2012). Two different patterns of cerebral injury were seen

in patients with dementia depending on DM status: greater

amyloid plaque load in untreated DM patients but more

frequent deep microvascular infarcts in those with treated

DM (Sonnen et al. 2009). Central vascular disease and

exacerbated pathology were seen in a mixed model of DM

and AD by crossing APP/PS1 mice (AD model) with db/db

mice (DM model) that show an age-dependent synergistic

effect between DM and AD, including brain atrophy, senile

plaques, hemorrhagic burden, and increase of microglia

activation (Ramos-Rodriguez et al. 2015). Insulin resis-

tance, hyperinsulinemia, and hyperglycemia can promote

the onset of AD (Rönnemaa et al. 2008; de Oliveira Lanna

et al. 2014) by accelerating tau phosphorylation and neu-

ritic plaque formation (Bitel et al. 2012; Matsuzaki et al.

2010) and, overlapping with AD pathology, aggravate the

progression of neurodegeneration due to OS, mitochondrial

dysfunction, neuroinflammation, etc. as a common back-

ground (Carvalho et al. 2015; Kraska et al. 2012; Roriz-

Filho et al. 2009; Rosales-Corral et al. 2015). Thus,

impaired insulin signaling may be a possible link between

AD and DM (Jellinger 2015a, b; Sato et al. 2011).

Although insulin mitigates Ab deposition and phosphory-

lation of tau (Bedse et al. 2015), DM in combination with

APOEe4 may lead to excessive hyperphosphorylation of

tau (Matsuzaki et al. 2010) and exacerbation of AD

pathology (Malek-Ahmadi et al. 2013). However, a very

recent publication (Abner et al. 2016) concludes that dia-

betes is associated with cerebrovascular but not AD

pathology.

An extensive literature search reviewing 275 publica-

tions reporting post-mortem brain analyses of AD and VaD

and published between 1980 and 1994 was performed

(Gsell et al. 1996). In comparison to AD, in VaD, human

brain neurotransmitter alterations are mild, e.g., for choline

acetyltransferase activity, muscarinic receptor density,

serotonin, dopamine, homovanillic acid, dopamine D1-and

D2-receptor density, noradrenaline, and gamma aminobu-

tyric acid (GABA), while 5-hydroxyindoleacetic acid (5-

HIAA) shows a more pronounced deficiency. This data

summarized here agree in principle with more recent

conclusions of post-mortem human brain studies and

experimental models (Ohara et al. 1994; Pimlott et al.
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2004; Jia et al. 2004; Tohgi et al. 1996; Chen et al. 2013;

Lee et al. 2014; Niwa et al. 2002; Pedrós et al. 2014;

Knezovic et al. 2015; Barilar et al. 2015). CSF concen-

trations of choline were significantly higher in VaD

patients compared to AD and controls but did no correlate

with mini-mental state examination (MMSE) scores (Jia

et al. 2004; Tohgi et al. 1996).

It is evident for the group that the pathology of AD and

VaD shows multiple alterations at both neuropathological

and neurochemical levels. In addition, mixed-type

dementia pathology is frequent.

Animal models

There are few literature data on brain insulin resistance

(BIR) and glucose hypometabolism in widely exploited

transgenic AD mice models in which amyloid/tau-related

gene manipulation is an inevitable starting point as ante-

cedent to BIR allowing thus no clear conclusion on BIR–

cognition relationship (Chen et al. 2013; Lee et al. 2014;

Niwa et al. 2002; Pedrós et al. 2014), which contrasts

animal treated intracerebroventricularly with STZ (non-

transgenic STZ-icv model). STZ-icv administration indu-

ces dysfunctional insulin receptor signalling and mirrors

the etiology of AD and in part that of cerebrovascular

diseases (Table 2). Two long-term follow-up studies of

STZ-icv rat model which provided the first staging of

cognitive, structural/ultrastructural, neuropathological, and

BIR markers in the STZ-icv rat model showed that cog-

nitive deficit correlated well with GSK-3b activity (larger

deficits–higher activity) and IDE protein expression (larger

deficits–lower expression), in a bi-phasic time-dependent

manner, with cognitive deficits becoming manifested later

than dysfunctions in brain insulin system (Knezovic et al.

2015; Barilar et al. 2015). AD-like structural pathology

seen in STZ-icv rat model in the form of early neurofib-

rillary changes and Ab accumulation becomes manifested

later than insulin- and memory-related changes and follows

slow, graduating progression (Knezovic et al. 2015).

Findings in this non-transgenic sAD animal model strongly

support clinical data indicating BIR as a possible primary

pathological event in AD development. Furthermore,

recently developed and thus far less explored STZ-icv

mokey model demonstrates BIR (Lee et al. 2014) accom-

panied by Ab deposition and tauopathy (Yeo et al. 2015),

while BIR induced by STZ-icv treatment aggravates cog-

nitive deficits and increases the formation of pathomor-

phological AD hallmarks, particularly Ab accumulation in

APP overexpressing (Plaschke et al. 2010a, b) and Prese-

nilin-1-Val97Leu mutant (Lin et al. 2014) transgenic mice

AD models.

Long-term drug testing polygon considering the pre-

liminary data of the therapeutic role of icv insulin in the

STZ-icv model (Shingo et al. 2013) and of intranasal

insulin in AD patients (Claxton et al. 2015) should be

performed to elucidate the importance of glucose/insulin

pathology as risk factor for both, AD and VaD.

The representative experiments (C3 mg/kg STZ-icv;

rat) demonstrate the following order of AD-like pathology

appearance: IRBS = oxidative stress = neuroinflamma-

tion[ glucose hypometabolism = tau pathology = cog-

nitive deficits[ amyloid b1-42 accumulation[ amyloid

angiopathy[ amyloid plaques. These data support possi-

ble causal role of IRBS in sAD etiopathogenesis (Chen

et al. 2014; de la Monte et al. 2014), confirmed by thera-

peutic effect of icv insulin in this model (Shingo et al.

2013) and intranasal insulin in AD patients (Claxton et al.

2015), and contributing role of vascular pathology in pro-

gression of cognitive decline as demonstrated in 9-month

follow-up studies of this model (Knezovic et al. 2015;

Salkovic-Petrisic et al. 2011).

IRBS is a condition characterized at the molecular level

by reduced response to insulin signaling downstream the

insulin receptor (IR)–insulin receptor substrate (IRS)–

phosphatidyl inositol kinase-3 (PI-3) pathway in the brain,

which, particularly considering the neurotrophic, neuro-

protective and neuromodulatory role of brain insulin (Craft

and Christen 2010; Gasparini and Xu 2003; Sato et al.

2011), may lead to neurodegeneration and cognitive

impairment as seen in AD. Although sometimes termed

‘‘type 3 diabetes’’ (de la Monte and Tong 2014), it actually

represents a brain-related metabolic syndrome associated

with metabolic and oxidative stress and neuroinflammation

in the brain, which may or may not be accompanied by

alterations in peripheral metabolic homeostasis, since

T2DM increases the risk for AD (and vice versa), but

neither all T2DM patients develop AD (and vice versa) nor

AD is necessarily associated with hyperglycemia (Talbot

and Wang 2014; Talbot and Wang 2014; Blázquez et al.

2014).

While animal models are referred to in other consensus

BMC-related manuscript, the group focused here on mod-

elling the IRBS. It is concluded that the icv STZ rodent

model mirrors AD and VaD pathologies in many respects.

The model should be used with or without combination of

transgenic mouse models.

Treatment of diabetes-related cognitive
impairment

Currently little is known regarding the effect of diabetes

interventions on diabetes-related cognitive impairment. The

ACCORD-MIND study conducted among *3000
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individuals with DM demonstrated that tight glycemic con-

trol significantly reduced the rate of brain atrophy over a

period of 20–40 months compared with the standard glucose

treatment; however, there was no difference between the

groups in the rate of cognitive decline as measured by 4

cognitive instruments (Cukierman-Yaffe et al. 2009).

Table 2 Cerebral amyloid angiopathy in the rat model of sporadic Alzheimer’s disease (sAD) induced by intracerebroventricular administration

of streptozotocin (STZ-icv) which generates insulin resistant brain state (IRBS) and dose- and time-dependent AD-like pathology

AD-like pathology

in rat

Time after C3 mg/kg STZ-icv treatment (months)

\0.5 C0.5 C1 C3 C6

Cognitive deficit - ? ? ? ?

Knezovic et al.

(2015)

Knezovic et al. (2015),

Agrawal et al. (2011)

Knezovic et al. 2015,

Kosaraju et al. (2013)

Knezovic et al.

(2015), Hoyer

et al. (1999),

Samy et al. (2016)

Knezovic

et al. (2015)

Tau pathology ND ? ? ? ?

Knezovic et al. (2015), Barilar

et al. (2015), Deng et al.

(2009a, b), Lester-Coll et al.

(2006)

Knezovic et al. (2015),

Barilar et al. (2015),

Kumar et al. (2010),

Lester-Coll et al. (2006)

Knezovic et al.

(2015), Barilar

et al. (2015)

Knezovic

et al.

(2015),

Barilar et al.

(2015)

Amyloid b1-42

accumulation

- - -/? ? ?

Knezovic et al.

(2015)

Knezovic et al. (2015) Knezovic et al. (2015),

Correia et al. (2013),

Kosaraju et al. (2013)

Knezovic et al.

(2015); Samy

et al. (2016)

Knezovic

et al. (2015)

Amyloid b1-42

plaques

- - - - ?

Knezovic et al.

(2015)

Knezovic et al. (2015) Knezovic et al. (2015) Knezovic et al.

(2015), Samy

et al. (2016)

Knezovic

et al. (2015)

Amyloid

angiopathy

ND ND -

Salkovic-Petrisic et al.

(2011)

Salkovic-Petrisic

et al. (2011)

Salkovic-

Petrisic

et al. (2011)

Insulin receptor

signalling

pathway

dysfunction

? ? ? ? ?

Barilar et al. 2015 Barilar et al. (2015), Sharma

and Gupta (2003), Agrawal

et al. (2011), Lester-Coll

et al. (2006)

Barilar et al. (2015), Du et al.

(2014)

Barilar et al. (2015) Barilar et al.

(2015)

Glucose

hypometabolism

ND ? ? ND ND

Hoyer and Lannert (2007),

Plaschke and Hoyer (1993)

Hoyer and Lannert (2007),

Plaschke and Hoyer (1993)

Cholinergic deficit ND ? ? ND ND

Kumar et al. (2010), Tota et al.

(2012)

De la Monte et al. (2006),

Sharma et al. (2010)

Oxidative stress ? ? ? ? ND

Shoham et al.

(2007),

Hassanzadeh

et al. (2015)

Shoham et al. (2007), Sharma

and Gupta (2003), Javed

et al. (2012)

Shoham et al. (2007) Deng et al.

(2009a, b), Samy

et al. (2016)

Neuroinflammation ? ? ? ND ND

Shoham et al.

(2007), Deng

et al. (2009a, b)

Shoham et al. (2007),

Rodrigues et al. (2009)

Shoham et al. (2007)

STZ-icv streptozotocin-intracerebroventricularly, AD Alzheimer’s disease, ND no data

? Change reported

- No changes found

?/- Inconsistent reports with changed or unchanged parameter
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Analogue compounds for the incretin hormone GLP-1

(glucagon-like peptide-1), which facilitate endogenous

insulin release and are used to treat T2DM, reduce Ab
accumulation, and rescue impairments in hippocampal

synaptic plasticity and spatial learning memory in trans-

genic mouse models of AD (Gengler et al. 2012).

Many studies suggest that adding more insulin to the

brain would improve memory and prevent cell damage

(Shingo et al. 2013; Claxton et al. 2015). In individuals

without DM, it has been shown amongst cognitively intact

and cognitively impaired individuals that a form of insulin

that enters the brain selectively has beneficial effects on

some cognitive domains (Shemesh et al. 2012). In the

ORIGIN cognitive sub-study, treatment of people with DM

and prediabetes for 6.5 years with basal insulin had a

neutral effect on cognitive function (Cukierman-Yaffe

et al. 2014).

There is one interesting report on the use of bacterio-

phage as a common divergent therapeutic approach for

treating AD and T2DM (Sohrab et al. 2014). Invokana

(Canagliflozin), which has dual inhibitory effect on

acetylcholinesterase as well as on SGLT2, represents

advancement in the parallel management of AD and T2DM

(Rizvi et al. 2014). Galangin (a novel natural ligand) has

inhibition characteristics on human brain acetyl-

cholinesterase, butyrylcholinesterase, and 5-lipoxygenase

(Shaikh et al. 2014). Molecular interaction of human brain

acetylcholinesterase (target enzyme in AD therapy) has

also been studied with a natural inhibitor, Huperzine-B

(Alam et al. 2014a).

Elements such as magnesium play an important role in

the normal functioning of many enzymatic activities. There

has been some evidence for the role of magnesium in the

prevention and therapy of AD and T2DM (Gröber et al.

2015), and there are some recent nanotechnological

approaches in the management of AD and T2DM (Alam

et al. 2014b).

Pantethine has beneficial effects in vascular disease,

is able to decrease the hyperlipidemia, moderates the

platelet function, and prevents lipid-peroxidation (Hor-

váth and Vécsei 2009). The disulfide group (oxidized

form of pantethine) is necessary to lower the platelet

response to activation by thrombin and collagen (Penet

et al. 2008). It was found that orally active multi-

functional antioxidants including pantethine delay cat-

aract formation in streptozotocin T1DM and gamma-

irradiated rats (Randazzo et al. 2011). Pantethine should

be considered for the treatment of lipid abnormalities

also in patients at risk such as those with DM and other

dementia disorders.

The possible implications of the relationship
between dementia/cognitive impairment
and diabetes on the care of the older individual
with diabetes

Current guidelines for treatment of individuals with DM

include extensive life style changes in diet, physical

activity, smoking cessation, medication, and routine med-

ical follow-up (Powers et al. 2015). To successfully man-

age self-care of such changes, the individual with DM is

required to have intact cognitive function; i.e., to under-

stand and learn new information, memorize it, apply new

behaviors and procedures, and make complex decisions in

a changing environment. However, current DM treatment

and surveillance do not include routine assessment of

cognitive function and the cognitive function of the indi-

vidual is not taken into consideration when devising a

treatment plan. This is especially important when treating

older people with DM, since DM and aging are both

independent risk factors for cognitive dysfunction. In the

face of increasing numbers of older people with DM the

fact that cognitive impairment is another complication of

DM has two important implications. One is that it is pivotal

that the effect of currently used glucose lowering agents on

this complication be understood. Second, cognitive

assessment, i.e., screening and surveillance should be part

of the routine care of the older person with DM.

Cognitive dysfunction can potentially present new bar-

riers to self-care and to achieving glycemic control. Indeed,

population studies have shown that among people with DM

lower cognitive function was associated with worse effi-

cacy of treatment indices such as glucose control

(Cukierman-Yaffe et al. 2009) and a greater risk for inci-

dent hypoglycemia (Punthakee et al. 2012). Reciprocal

associations are assumed between DM self-care, glycemic

control, micro and macro vascular outcomes, and cognitive

impairment. Indeed, in a sample of 1398 older community-

dwelling adults with DM, as cognitive impairment wors-

ened, so did participants’ adherence to each diabetes self-

care task with incremental increases in DM comorbidity

(Esmaeili et al. 2016). In a population-based study,

amongst *3000 middle-aged individuals with diabetes,

those with lower cognitive scores had a higher risk for

hypoglycemia events that required the help of another (a

possible sequel of poor self-care management skills as it

requires the patient to be self-alert and active in the man-

agement of the disease) (Punthakee et al. 2012). Another

study reported that providing memory strategies improved

adherence to medication amongst elderly DM patients

(Vedhara et al. 2010). Finally, a recent study reported that
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in individuals with DM, lower executive function was

associated with higher need of outpatient care.

Current guidelines for treating older people with DM rec-

ommend routine screening for cognitive dysfunction (Kirk-

man et al. 2012; Sinclair et al. 2015). However, cognitive

dysfunction is only the tip of the iceberg of a continuum of

cognitive decline which is accelerated in people with DM.

Thus, it is also important to characterize the cognitive profile

of the intact individual with DM enabling care takers to adapt

the treatment plan according to the individual’s cognitive

capacities. Indeed, in the past 3 years at the Center for Suc-

cessful aging with Diabetes at the Sheba Medical Center,

Israel, we have been conducting multi-disciplinary evaluation

that include extensive neuropsychological testing and evalu-

ation of the medical, functional, and physical status of the

older person with DM, followed by cognitively adapted tailor-

made recommendations (including the use of cognitive

rehabilitation strategies) and a follow-up plan that takes into

consideration the cognitive profile of the individual. Partici-

pants have reported a significant improvement in quality of

life. We hypothesize that this type of approach which includes

cognitive screening, surveillance, and rehabilitation will

improve the self-care capacity of the older individual with

DM, thus improving glucose control and reducing the risk for

DM complications and possibly reducing the accelerated rate

of cognitive decline this population experiences.

When deciding which drug to add to the regimen of an

older individual with DM, the potential risk for hypo-

glycemia with this agent should be evaluated. Hypo-

glycemia unawareness is very common in elderly DM

patients. A study involving T2DM patients over 65 years

of age and using continuous glucose monitoring revealed

hypoglycemic episodes in as many as 80% of patients,

including 56% with severe hypoglycemic episodes

(\40 mg/dl), and none of these episodes were actually

‘‘felt’’ by a patient (Kagansky et al. 2003; Zoungas et al.

2010; Whitmer et al. 2009; Sinclair et al. 2011; Kasiukie-

wicz et al. 2015; Tseng et al. 2014). Thus, the type of

glucose lowering agent chosen should take into consider-

ation hypoglycemia unawareness as well as the cognitive

profile of the older person with diabetes choosing therapy

that is safer in this respect such as metformin, alpha-glu-

cosidase inhibitors, thiazolidinediones, GLP-1 receptor

agonists, DPP-4 inhibitors, SGLT-2 as opposed to insulin,

sulfonylureas, or glinides (Chamberlain et al. 2016).

Differences between treated and not treated DM2
patients

T2DM patients may be treated with oral antidiabetic agents

[such as sulfonylurea, metformin and dipeptidyl peptidase

4 inhibitor (DPP-4I)], insulin, or by diet control only.

Although all treatments may reduce glucose level, which

type of treatment is helpful in reducing the cognitive

impairment, is not clear.

Early studies suggest that cognitive decline may be

slower, if T2DM patients are treated with insulin instead

than oral antidiabetic agents. Therapy with insulin may

lower neuritic plaque density in hippocampus and other

brain areas (Beeri et al. 2008). In addition, Plastino et al.

demonstrated slower cognitive decline in T2DM patients

with AD treated with insulin in comparison to patients

treated with oral antidiabetic agents (Plastino et al. 2010).

However, this relationship may not be straight forward. In

a recent study, Herath et al. followed T2DM patients for

4 years and found no significant differences between

patients from diet only, oral antidiabetic agents, and insulin

groups (Herath et al. 2016).

New research shows that treatment with DPP-4 inhibi-

tors (DPP4I) is helpful. Rizzo et al. demonstrated in a

prospective 2-year study that patients treated with DPP4I

and metformin had better cognitive functioning in com-

parison to patients treated only with sulphonyl urea and

metformin (Rizzo et al. 2014). Similar results were found

in a shorter study, where they followed patients for

6 months (Isik et al. 2017). T2DM patients with AD and

without AD treated with DPP-4I performed better on

MMSE 6 months after they started with the treatment than

patients taking metformin (Isik et al. 2017). In addition,

patients treated with insulin or DPP-4I also had better

glucose control and lower HbA1c at the end visit.

Future strategies

Increasing evidence suggests that the production of new

neurons in the adult hippocampus (adult neurogenesis; AN)

plays an important role in different subtypes of learning

processes and memory formations (Deng et al. 2009a, b)

and seems also to contribute to cognitive flexibility (Bur-

ghardt et al. 2012). Indeed, hippocampal AN was demon-

strated to be diminished in these icv STZ rats after

3 months (Sun et al. 2015).

Therefore, it has been suggested that altered AN in the

hippocampus plays a role in the etiopathology of neu-

rodegenerative disorders such as AD (for review, see

Winner and Winkler 2015) and vascular dementia (Eko-

nomou et al. 2011). Cerebrovascular functions and AN

both decline during aging (Kalaria 2009; Kempermann

2015) which stands to reason as AN occurs within an

angiogenic niche (Palmer et al. 2000). Improved energy

supply in experimental AN studies show improved AN

when using DM related therapeutic strategies (Luitse et al.

2012; Biessels 2013; Sonnen et al. 2009; Jia et al. 2004;

Tohgi et al. 1996; Chen et al. 2013; Lee et al. 2014; Niwa
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et al. 2002), indicating an important role of glucose/energy

supply for the proper integrity of AN physiology.

Conclusion

In many individuals, AD and VaD show an underlying

pathology of glucose utilization based on a disturbance of

insulin-related pathology, leading to a brain insulin resis-

tance state. However, the risk factors rather induce a

mechanisms independent from pathological mechanisms

underlying AD and VaD. In fact, these probably have

different causality, which is reflected in the prevalence/

incidence of AD (about 60%) and VaD (about 20%) of all

dementia disorders. Considering the brain insulin resis-

tance as a shared pathological feature of T2DM and

dementia which, most probably are a consequence of

environmental factors and epigenetic mechanisms operat-

ing during pregnancy and postnatally may be manifested as

one or the other disorder, T2DM contributes to disease

onset and progression of both AD and VaD. Therefore,

therapeutic strategies focusing on DM should be consid-

ered already in early stages of AD and VaD. Future

strategies including AN may enlarge the therapeutic

armamentarium. More focus should be put on delaying

dementia onset in people with diabetes and on the chal-

lenges cognitive impairment imposes on the self-care

capacity of this population.
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