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Abstract Non-human primate (NHP) models of Parkinson

disease show many similarities with the human disease.

They are very useful to test novel pharmacotherapies as

reviewed here. The various NHP models of this disease are

described with their characteristics including the macaque,

the marmoset, and the squirrel monkey models. Lesion-

induced and genetic models are described. There is no drug

to slow, delay, stop, or cure Parkinson disease; available

treatments are symptomatic. The dopamine precursor, L-

3,4-dihydroxyphenylalanine (L-Dopa) still remains the gold

standard symptomatic treatment of Parkinson. However,

involuntary movements termed L-Dopa-induced dyskine-

sias appear in most patients after chronic treatment and

may become disabling. Dyskinesias are very difficult to

manage and there is only amantadine approved providing

only a modest benefit. In this respect, NHP models have

been useful to seek new drug targets, since they reproduce

motor complications observed in parkinsonian patients.

Therapies to treat motor symptoms in NHP models are

reviewed with a discussion of their translational value to

humans. Disease-modifying treatments tested in NHP are

reviewed as well as surgical treatments. Many biochemical

changes in the brain of post-mortem Parkinson disease

patients with dyskinesias are reviewed and compare well

with those observed in NHP models. Non-motor symptoms

can be categorized into psychiatric, autonomic, and sensory

symptoms. These symptoms are present in most parkinso-

nian patients and are already installed many years before

the pre-motor phase of the disease. The translational use-

fulness of NHP models of Parkinson is discussed for non-

motor symptoms.

Keywords Non-human primate � Parkinson � Levodopa �
Dyskinesia � Pharmacotherapy � MPTP

Introduction

Parkinson’s disease (PD) is the second most common

neurodegenerative disorder worldwide after Alzheimer’s

disease (Ascherio and Schwarzschild 2016; Dorsey et al.

2007; Pringsheim et al. 2014). The incidence and preva-

lence of PD increase with age and are estimated at about

0.3% in the general population and about 3% among

people over 65 years of age (Pringsheim et al. 2014). PD is

a chronic and progressive movement disorder characterized

by motor symptoms consisting of a combination of resting

tremor, rigidity, bradykinesia, and postural abnormalities

(Siderowf and Stern 2003; Stacy 2009). Furthermore, non-

motor symptoms are also observed in most of the parkin-

sonian patients including cognitive impairment such as

dementia, behavioral symptoms, neuropsychiatric disorders

including depression and anxiety, autonomic dysfunctions

such as bladder dysfunction, sensory symptoms, pain, sleep

disturbances and fatigue which persist despite treatment,

reducing their quality of life (Martinez-Fernandez et al.

2016).

The pivotal pathological hallmarks of PD is loss of

dopamine (DA) neurons in the substantia nigra pars com-

pacta (SNpc) and presence of intracytoplasmatic and

intraneuritic inclusions named Lewy bodies (LB) and
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Lewy neurites, respectively, mainly containing abnormal

aggregates of a-synuclein (Dickson et al. 2009; Spillantini

et al. 1998). Other brain neurotransmitters are also

involved in PD such as noradrenergic neurons of the locus

coeruleus (Chan-Palay 1991; Gesi et al. 2000), cholinergic

neurons of the nucleus basalis of Meynert (Bohnen and

Albin 2011; Korczyn 2001; Whitehouse et al. 1983) and

pedunculopontine nucleus (Bensaid et al. 2016; Hirsch

et al. 1987; Jellinger 1988), serotoninergic neurons of the

raphe nucleus (Politis et al. 2012), glutamatergic neurons in

the thalamus centromedian/parafascicular nucleus (Halli-

day 2009; Henderson et al. 2000), and hypocretin (orexin)

neurons in the hypothalamus (Fronczek et al. 2007;

Thannickal et al. 2007). Several studies have shown that

the presence of LB in some PD patients is not restricted to

SNpc DA neurons but is also observed in amygdala, hip-

pocampus, olfactory nucleus, brainstem and neocortex

neurons as well as in the peripheral nervous system such as

the enteric, sympathic, and parasympathic ganglia (Braak

et al. 2004; Jellinger 2015). Disturbances in non-

dopaminergic systems observed in peripheral and central

nervous systems of PD could explain, at least in part,

appearance of several non-motor symptoms mainly auto-

nomic, enteric, and neuropsychiatric disorders.

Pathological studies have shown that 50–60% of SNpc

perikarya and up to 80–85% of striatal nerve terminals are

degenerated before appearance of motor symptoms and no

treatment is yet available to slow or stop progression of

neuronal degeneration (Bernheimer et al. 1973; Cheng

et al. 2010; Riederer and Wuketich 1976; Wirdefeldt et al.

2011). However, some non-motor features commonly

associated with PD can be detected from prodromal to

early stages of the disease before motor impairment.

Therefore, the preclinical and prodromal stages of PD

provide a good window of opportunity to identify early

markers and to initiate strategic neuroprotective or disease-

modifying treatments (Berg et al. 2014; Gaenslen et al.

2011; Kalia et al. 2015; Kalia and Lang 2015, 2016;

Lindholm et al. 2016; Siderowf and Lang 2012).

There is no cure for PD, but treatment of motor symp-

toms with the DA precursor, L-3,4-dihydroxyphenylalanine

(L-Dopa), introduced 50 years ago still remains the gold

standard treatment and the most effective in early stages of

the disease (Mercuri and Bernardi 2005). However, after

4–6 years of L-Dopa treatment, about 40% of patients

develop various motor complications including L-Dopa-

induced dyskinesias (LIDs) and motor fluctuations (wear-

ing-off), which limit the quality of life in PD patients and

are difficult to manage with available medication (Fabbri

et al. 2016; Fabbrini et al. 2007).

Given the longer life expectancy in industrialized

countries, the number of people suffering of PD will

inevitably increase. Therefore, it is imperative to develop

more effective treatments in the near future. In this review,

we report recent advances of preclinical studies in the

treatment of non-motor and motor symptoms in non-human

primate (NHP) models of PD.

NHP models of PD

Extensive knowledge on the etiology, pathogenesis, and

pathophysiology of PD has been gained thanks to animal

models of PD. The animal models most commonly used in

preclinical studies can be categorized as neurotoxic- and

genetic-based models.

Lesion-induced NHP models of PD

The neurotoxic-based models mimic most of the patho-

logical and behavioral features of PD in human and are

very useful for the development of new therapies. The

synthetic neurotoxins 6-hydroxydopamine (6-OHDA) and

1-methyl-4 phenyl-1,2,3,6-tetrahydropyridine (MPTP)

inducing selective degeneration of nigrostriatal neurones in

rodents and primates are the most often used for modeling

PD in animals (Jagmag et al. 2016). The majority of pre-

clinical studies using neurotoxic-based models of PD are

performed in rats (6-OHDA) and mice (MPTP). Never-

theless, there are a significant amount of studies that use

the NHP neutotoxic-based model. The species most com-

monly used as experimental model are the species of Old

World monkeys, namely, African green monkey (also

called the vervet monkey, Chlorocebus sabaeus), rhesus

and cynomolgus macaques (Macaca mulatta and Macaca

fascicularis respectively), and the species of the New

World monkeys, the common marmosets (Callithrix jac-

chus), and the squirrel monkeys (Saimiri sciureus) (Morin

et al. 2014; Potts et al. 2014). One of the most relevant

benefits of using NHP to study PD is the great similarities

with man in respect to neuroanatomical, neurophysiologi-

cal, immunological, and genetic features (Grow et al. 2016)

allowing translational studies in etiopathophysiology, sur-

gical procedures, and drug treatments in PD. Moreover,

although PD has not been described in monkeys, they show

several similarities with human regarding age-related dys-

function of the nigrostriatal system that is correlated with

motor impairments (Emborg et al. 1998; Zhang et al.

2000).

Ungerstedt (1968) was the first to use 6-OHDA to lesion

the rat nigrostriatal dopaminergic pathway by stereotaxic

bilateral intracerebral injections into the SN or the medial

forebrain bundle (MFB) (Ungerstedt 1968). However, the

bilateral lesion with 6-OHDA caused a high degree of

morbidity and mortality in animals and its administration

was modified to a unilateral intracerebral injection to
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induce unilateral PD symptoms (Ungerstedt 1976).

Depending on animal species used, the rate of the lesion

formation and magnitude of the lesion will depend on the

amount of 6-OHDA injected and the site of injection

chosen (Przedborski et al. 1995).

Although the rat is the preferred species used for the

6-OHDA model of PD, a few studies attempted to replicate

this model in NHPs. Unilateral (Annett et al. 1992) or a

two-stage bilateral (Mitchell et al. 1995) stereotaxic

injections of 6-OHDA into the nigrostriatal bundle of

marmosets or into the SN of baboon (Papio papio) (Api-

cella et al. 1990) replicate parkinsonian features such as

striatal DA depletion, nigral DA cell loss, and a marked

motor impairment of limbs contralateral to the injected

hemisphere. More recently, new methods for behavioral

assessment of PD symptoms in a two-stage bilateral

6-OHDA lesioned common marmoset have been developed

using manual scoring of PD symptoms according to an

adapted PD motor rating scale, and automated movement

tracking procedures based on digital video recording

(Santana et al. 2015). Furthermore, especially, when testing

the neuroprotective efficacy of potential neuroprotective

molecules, a partial lesion animal model is a prerequisite

(Blandini et al. 2008; Boix et al. 2015; Truong et al. 2006).

Therefore, Eslamboli et al. (2003a) characterized the

behavioral effects of intrastriatal injection of 6-OHDA in

the common marmoset. These lesioning procedures led to a

progressive and partial lesion of nigrostriatal dopaminergic

neurons and provide an excellent therapeutic window for

studying the effects of treatments to slow or stop pro-

gression of dopaminergic degeneration (Eslamboli et al.

2003a). An interesting feature of the unilateral 6-OHDA

model is that the unlesioned hemisphere could be used as

an internal control for each animal. However, functional

and compensatory interdependence between the nigrostri-

atal systems in both hemispheres has been demonstrated

(Blesa et al. 2011; Lieu and Subramanian 2012). It is,

therefore, crucial to take into account this compensatory

mechanism when interpreting the behavioral and bio-

chemical results from studies using animals with unilateral

lesions of the nigrostiatal neurons.

This neurotoxic-based model does not replicate all of the

clinical features of PD, since it does not induce proteina-

ceous aggregates or typical LB, that is one of the cardinal

hallmarks of the pathophysiology of PD, and does not

affect other neuronal neurotransmitter systems such as

noradrenergic neurons of the locus coeruleus, cholinergic

neurons of the nucleus basalis of Meynert, or serotoniner-

gic neurons of the raphe nucleus (Jellinger 2015). An

important drawback of this animal model is that multiple

stereotaxic injections of 6-OHDA into the primate striatum

are required to reduce spontaneous recovery (Eslamboli

et al. 2003a, 2005). In addition, intracerebral injection of

6-OHDA requires sophisticated surgical procedures per-

formed by highly qualified personnel and proper care of

animals the days following surgery.

Exposure of drug users to the neurotoxin MPTP con-

tained in an illicit meperidine synthesis induced both

behavioral changes and cellular losses that closely mimic

motor symptoms in idiopathic PD (Davis et al. 1979;

Langston and Ballard 1984; Langston et al. 1983). This

provided a rare opportunity of having a toxin taken by

humans to be used thereafter to model PD. Administration

of MPTP in primates induces a parkinsonian syndrome

showing a remarkable resemblance with all primary motor

features of PD (Albanese et al. 1993; Bédard et al. 1992).

Systemic administration of MPTP induces degeneration of

DA neurons in the SNpc resulting in a depletion of DA in

the caudate nucleus and the putamen (Bezard et al. 2001b;

Burns et al. 1983; Jenner et al. 1984; Langston et al. 1984a;

Smeyne and Jackson-Lewis 2005). Neuronal loss after

MPTP intoxication is also observed, but to a lesser extent

than for DA neurons, for noradrenergic and serotonergic

neurons in the locus coeruleus and the raphe nucleus,

respectively, as observed in PD (Engeln et al. 2015;

Masilamoni et al. 2011; Mitchell et al. 1985; Pifl et al.

1991; Rylander et al. 2010b). Dyskinesias, the most com-

mon form of motor complications triggered by chronic

treatment with L-Dopa, is also faithfully replicated in

monkeys treated with MPTP (Bastide et al. 2015; Morin

et al. 2014).

Furthermore, monkeys lesioned with MPTP display

non-motor symptoms similar to those observed in PD such

as neuropsychiatric behavior, cognitive impairment, sleep

disorders, and disturbances of enteric functions (Aron

Badin et al. 2015; Chaumette et al. 2009; Decamp and

Schneider 2004; Duong 2010; Fifel et al. 2014; Johnston

and Fox 2015; Roeltgen and Schneider 1994; Schneider

and Kovelowski 1990; Schneider and Pope-Coleman 1995;

Schneider and Roeltgen 1993; Tereshchenko et al. 2015).

Considering the numerous similarities described above,

the NHP model of PD is still the most useful model to

study the pathophysiology of PD, as well as motor and non-

motor complications related to chronic treatment with L-

Dopa. However, the presence of typical LB has not been

observed so far in the MPTP-treated monkeys albeit

accumulation of a-synuclein and phosphorylated a-synu-
clein immunoreactivity was identified in nigral neurons and

other non-dopaminergic brain structures (Forno et al. 1986;

Halliday et al. 2009; Kowall et al. 2000; McCormack et al.

2008; Purisai et al. 2005; Vermilyea and Emborg 2015).

Among various species of NHP used to model PD, the

Old World monkeys, rhesus, and cynomolgus macaques

(Macaca mulatta and Macaca fascicularis, respectively)

are shown to be superior in modeling PD phenomenology

but are expensive (Burns et al. 1983; Mitchell et al. 1985).
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The New World monkeys, namely, the common marmosets

(Callithrix jacchus) and the squirrel monkeys (Saimiri

sciureus), of smaller size are cheaper, easier to care for but

display not as clear motor symptoms (Jenner et al. 1984;

Langston et al. 1984b). MPTP can also induce a parkin-

sonian syndrome in the baboon (Old World monkey spe-

cies), but because of their large size (15–37 kg), these

animals are seldom used in preclinical studies (Hantraye

et al. 1993; Varastet et al. 1994). The vervet monkey

(Africal green monkey, Chlorocebus Sabaeus) also used to

model PD is the only NHP displaying a validated rest

tremor (Raz et al. 2000).

Different regimens and doses of MPTP administration to

macaques produce various outcomes of interest for the

pathophysiology of PD. A critical analysis of 108 maca-

ques including rhesus and cymomolgus (Macaca mulata

and fascicularis) with a bilateral lesion following intra-

venous MPTP injections was reported to model PD for

translational studies (Potts et al. 2014). This study showed

that the MPTP-treated macaque offers a good model

reproducing marked parkinsonism and LID as seen in

patients with moderate/advanced PD. However, modeling

PD in monkeys for translational studies relies critically on

customized systemic MPTP treatment to the sensitivity of

individual animals for consistency of stable parkinsonian

features. It is also important to produce stable parkinsonism

in macaques that critically depends on reaching ‘‘marked’’

motor disability. Mildly parkinsonian monkeys have a

higher risk of spontaneous recovery thus providing an

inconsistent model (Elsworth et al. 2000); they may be

inadequate for studies of pharmacotherapies for LID but a

useful model to test neuroprotective strategies (Bezard

et al. 2001b, c). A more a chronic delivery of MPTP of

lower doses over 2–3 weeks has been reported as well as

longer treatment schedules over weeks or months and slow

delivery of MPTP through osmotic mini-pumps (see

reviews: Fox and Brotchie 2010; Morin et al. 2013a).

Hemiparkinsonism in monkeys can also be induced with an

intracarotid infusion of MPTP, but necrotic lesions were

observed with this procedure limiting its use (Bankiewicz

et al. 1986; Emborg et al. 2006).

Following treatment with L-Dopa, MPTP-treated maca-

ques will exhibit dyskinetic movements including choreic-

athetoid (random and constant writhing and flicking

movements), dystonic (slow repetitive movements or

abnormal postures), and sometimes, ballistic movements

(high amplitude flailing of the limbs on one side of the

body) (Ahmed et al. 2010; Bastide et al. 2015; Bezard et al.

2001a; 2003; Gregoire et al. 2011; Johnston et al. 2010;

2013; Koprich et al. 2011; Langston et al. 2000; Morin

et al. 2013a, 2014; Porras et al. 2012). However, when

MPTP animals are denervated to the same extent, doses of

L-Dopa must be adjusted individually to produce a full

antiparkinsonian effect and to develop LID to the same

degree, but in general, there is a positive correlation

between L-Dopa dose and the duration and the severity of

LID (Gregoire et al. 2011; Guigoni et al. 2005; Johnston

et al. 2010; Kuoppamaki et al. 2007). Furthermore, each

macaque will display its own pattern of parkinsonian

symptoms and dyskinetic movements as observed in PD

patients (Rajput et al. 2009). Several rating scales exist to

quantify LID and were reviewed and criticized with a focus

on macaques (Fox et al. 2012). Another motor side effect

induced by chronic L-Dopa administration that can be

modeled in MPTP treated macaque is the wearing-off

phenomenon that is described by a shorter antiparkinsonian

effect of L-Dopa response followed by a gradual reap-

pearance of parkinsonian symptoms (Morin et al. 2013a;

Pahwa and Lyons 2009). Another very interesting charac-

teristic of dyskinesias in macaque monkeys is that when L-

Dopa is withdrawn for a few weeks, the next dose of L-

Dopa will induce dyskinesias with the same duration and

severity as measured before (Goetz et al. 1982; Mayeux

et al. 1985). Moreover, treatments with dopaminergic

agonists reverse motor deficit induced by MPTP and induce

little or no dyskinesias before the first exposure to L-Dopa

(see section on symptomatic treatments below). Adaptation

of the brain to long-term DA loss and chronic L-Dopa

treatment is documented in MPTP-lesioned monkeys and

models changes observed in brain of PD patients. This adds

to the translational value of this model that is useful in the

investigation of novel drug targets.

Marmosets treated with MPTP are also frequently used

to model parkinsonian syndromes and LIDs and they show

physiological and behavioral effects characteristic of this

species (Yun et al. 2015). The common marmoset has the

advantage of their small size (about 250 g), which makes

handling and housing facilities more convenient compared

to the macaque (Yun et al. 2015). Systemic administration

of MPTP to marmoset was first described by (Jenner et al.

1984). Acute administration of MPTP (1–3 mg/kg) with

1–5 doses administered during 4–8 days to give a bilateral

DA loss is the favoured regimen (Eslamboli 2005; Yun

et al. 2015). Chronic administration of MPTP

(0.25–4.5 mg/kg) to marmosets over a period of weeks or

months to model the slow progression of PD was shown to

induce a gradual onset of behavioral deficits but with

spontaneous recovery upon cessation of MPTP delivery

thus limiting it use (Eslamboli 2005). Administration of L-

Dopa to MPTP-treated marmosets can induce dyskinetic-

like movements characterized mainly by choreic-like,

dystonic-like, and repetitive aimless movements (Pearce

et al. 1995). It also induces continuous and pronounced

hyperlocomotion making choreic-like and dystonic-like

abnormal movements difficult to assess and to distinguish

(Ando et al. 2014; Bastide et al. 2015; Fox and Brotchie
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2010; Iderberg et al. 2012; Morin et al. 2014). This feature

of dyskinetic-like movements in MPTP-treated marmosets

is not representative of the clinical pattern of dyskinesias

observed in humans in which dyskinetic movements are

more acutely discriminated (Bastide et al. 2015; Morin

et al. 2014). In this context, this model is not privileged to

test new medications intended to reduce dyskinetic move-

ments or specific segments of the latter, but it could be

more useful to test neuroprotective/neurorestorative and

antiparkinsonian treatments as well as non-motor associ-

ated symptoms. In the later case, several studies in MPTP-

treated common marmoset have clearly shown non-motor

symptoms including constipation, bladder hyper-reflexia,

excessive salivation, and sleep disturbance (Albanese et al.

1988; Barraud et al. 2009; Yoshimura et al. 1993, 1998).

Just like the macaque and the common marmoset, the

squirrel monkeys intoxicated with MPTP develop a

parkinsonian-like syndrome including akinesia, rigidity,

and bradykinesia (Langston et al. 1984a). Administration

of L-Dopa to MPTP-treated squirrel monkeys elicits dysk-

inetic-like abnormal movements with a prevalence of

choreic-like compared to dystonic-like components (Bas-

tide et al. 2015; Boyce et al. 1990b; Di Monte et al. 2000).

Curiously, significant LID can be elicited in normal unle-

sioned squirrel monkeys even at therapeutic doses of L-

Dopa (15 mg/kg ? carbidopa, per os for 2 weeks) (To-

gasaki et al. 2005b; 2001). This phenomenon is also

observed in other non-lesioned primate species but at very

high doses of L-Dopa and over a very long period of time

(Sassin et al. 1972; Pearce 1999; Pearce et al. 2001).

Hence, the squirrel monkey may not be an adequate model

to study this motor complication; they do not accurately

model the abnormal movements of PD patients. In contrast,

several studies using aged and MPTP-treated squirrel

monkeys have shown the propensity of this species to

accumulate a-synuclein in various brain regions as well as

nitrated and phosphorylated forms of a-synuclein and also

proteinase K-resistant (insoluble) a-synuclein aggregates

which suggest possible development of LB in the later

stages of the disease or at advanced age (Forno et al. 1986;

McCormack et al. 2008; Purisai et al. 2005).

In MPTP-lesioned monkeys, a loss of striatal membrane

DA transporter (DAT) is observed as in human PD (Calon

et al. 2003a; Morin et al. 2013b). Striatal DA receptors

particularly the D2 subtypes are reported to be increased in

PD patients (Bokobza et al. 1984; Guttman et al. 1986; Lee

et al. 1978); this is also observed for D1 an D2 receptors in

MPTP-lesioned monkeys (Bedard et al. 1986; Falardeau

et al. 1988; Gagnon et al. 1990; Graham et al. 1993). L-

Dopa treatment is reported to reverse this increase in

humans (Guttman et al. 1986; Lee et al. 1978) and mon-

keys (Berretta et al. 1997; Falardeau et al. 1988; Gagnon

et al. 1990). In MPTP monkeys D3 receptors are decreased;

this is corrected with dopaminergic treatments (Morissette

et al. 1998; Quik et al. 2000); in PD, these receptors were

reported to be either decreased (Ryoo et al. 1998) or

unchanged (Hurley et al. 1996).

Glutamate is the most abundant excitatory neurotrans-

mitter, mediating as much as 70% of brain synaptic

transmission (Klockgether and Turski 1993). In PD, loss of

striatal DA is associated with loss of the inhibitory DA

control of corticostriatal glutamatergic drive with conse-

quent increased glutamate release (Garcia et al. 2010).

Glutamate activity is increased in the basal ganglia in PD

(Klockgether and Turski 1993) and is also believed to be

involved in LID (Calon et al. 2003b; Chase and Oh 2000).

Changes in ionotropic (NMDA, AMPA) and metabotropic

(mGlu2/3,m Glu5) glutamate receptors are reported in the

brain of PD patients with dyskinesias and this is modeled in

dyskinetic MPTP-lesioned monkeys (Calon et al.

2002b, 2003b; Carlsson 1993; Ouattara et al.

2009, 2010a, b).

GABA is the most abundant inhibitory neurotransmitter

and its receptors are also changed in the brains of PD

patients and MPTP-lesioned monkeys (Calon and Di Paolo

2002).

Striatal serotonin content is decreased in MPTP-lesioned

monkeys but to a lesser extent that DA (Riahi et al. 2011);

this loss is also observed in the striatum of PD patients

(Hornykiewicz 1975; Kish 2003; Kish et al. 2008). The

serotonin transporter (SERT) and several serotonin recep-

tor subtypes are implicated in PD and LID (Ballanger et al.

2016; Huot et al. 2011) and these transporter and receptor

changes are modeled in MPTP-lesioned monkeys. (Agid

et al. 1989; Chen et al. 1998; Huot et al. 2012b; Morin et al.

2015a, b; Riahi et al. 2012; 2011; Rylander et al. 2010b).

Other receptors in the brain such as adenosine A2A

(Calon et al. 2004; Morin and Di Paolo 2014; Morissette

et al. 2006a), and a7 nicotinic acetylcholine receptors

(Morissette et al. 2016) as well as the neuropeptide pre-

proenkephalin have shown similar changes in the brain

associated with LID in MPTP-lesioned monkeys and

human PD (Calon et al. 2002a; Morissette et al. 2006b;

Tamim et al. 2010).

Genetic-based NHP models of PD

The majority of PD cases are sporadic with unknown eti-

ology, while approximately 5–10% of patients have

monogenic Mendelian inheritance form of the disease

(Tysnes and Storstein 2017). The mutated genes associated

with early- or late-onset familial PD include autosomal

dominant mutations in the a-synuclein, leucine-rich repeat

kinase 2 (LRRK2) and the vacuolar protein sorting 35

homolog (VPS35) genes, and autosomal recessive muta-

tions in the genes encoding for Parkin, DJ-1, and PINK-1
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(Kalinderi et al. 2016). This discovery has prompted the

development of various transgenic rodent lines to replicate

inherited PD forms (Jagmag et al. 2016). a-Synuclein being
recognized to play a key role in the sporadic and hereditary

forms of PD, several transgenic models overexpressing the

native or mutated form of a-synuclein have been developed
(reviewed in: Jagmag et al. 2016).

Development of transgenic NHP models of PD has

proven to be more difficult than in rodents (Izpisua Bel-

monte et al. 2015; Jennings et al. 2016). Nevertheless,

genetic manipulation to create transgenic monkeys has

been reported (Chan et al. 2001; Chen et al. 2015; Liu et al.

2014; Niu et al. 2010, 2014; Sasaki et al. 2009; Seita et al.

2016; Yang et al. 2008). Niu et al. (2015) created trans-

genic PD rhesus monkeys that express mutant a-synuclein
(A53T missense mutation) that developed age-dependent

(around 2.5 years of age) non-motor symptoms, including

cognitive defects and anxiety phenotype, without

detectable sleeping disorders (Niu et al. 2015). These

authors suggest that expression of mutant a-synuclein at

the early stage of the disease is more likely to affect mood

behavior rather than sleep disorders. These transgenic

monkeys did not demonstrate motor PD phenotypes prob-

ably due to their young age. This new model seems very

promising, but a more extensive evaluation will be neces-

sary to validate and demonstrate its usefulness and trans-

lational value especially in the pre-motor phase of PD.

The lack of transgenic models with strong genotypes

and phenotypes of PD is mainly to be imputed to the

limited expression of the transgene in the transgenic ani-

mal. Several studies have attempted to circumvent these

problems using the viral modeling approach. A benefit of

this approach is that the amount of injected viral particles

can be adjusted to obtain much higher levels of transgene

expression than those obtained in transgenic animals.

Furthermore, the intracerebral injection of the viral parti-

cles containing the transgene of interest or a combination

of different transgenes may be restricted to specific brain

structures such as the striatum and SNpc (Fiandaca and

Federoff 2014; Low and Aebischer 2012; Van der Perren

et al. 2015). These models are widely used in rodents, but

as observed in transgenic models, most of them do not

faithfully replicate all of the etiopathological characteris-

tics of PD (Fiandaca and Federoff 2014; Low and Aebis-

cher 2012; Van der Perren et al. 2015).

The first NHP model using a viral gene expression

system was performed on common marmosets (Eslamboli

et al. 2007; Kirik et al. 2003). The recombinant adeno-

associated viral vector serotype 2/2 (rAAV2/2) or rAAV2/5

vectors expressing the wild type and mutated forms of a-
synuclein were injected unilaterally in the SN (Eslamboli

et al. 2007; Kirik et al. 2003). Although these NHP models

display some features of the PD phenotype, progression of

this phenotype is slow and loss of DA neurons is low to

moderate and a high degree of variability is observed

between animals. The development of new viral vectors

able to deliver a-synuclein or mutated a-synuclein in larger

amounts would be advisable to produce a more robust

degeneration of DA neurons in the SNpc.

Clinical and preclinical studies clearly show that high

levels of a-synuclein in nigrostriatal DA neurons are

associated with greater susceptibility to degeneration.

Thus, a reduction or suppression of neuronal a-synuclein
expression should induce a neuroprotective effect for these

neurons (Collier et al. 2016). rAAV expressing a-synuclein
short hairpin RNA (shRNA) to knock down a-synuclein
expression was generated and injected into the SN of

vervet monkeys, where it led to a significant degeneration

of TH-positive neurons (Collier et al. 2016). The loss of

TH-positive fibers was much more important in the puta-

men than the caudate nucleus and the presence of TH-

negative neuromelanin-positive neurons was detected

(Collier et al. 2016). This demonstrates that expression of

a-synuclein is crucial for maintenance and survival of DA

neurons and that a-synuclein loss-of-function could play a

significant role in the etiopathology of PD (Chu and Kor-

dower 2007; Collier et al. 2016; Kanaan and Manfredsson

2012).

Numerous experimental approaches are used to reduce

overexpression of natural and pathological forms of a-
synuclein and most of these new treatments are in clinical

trials (Wong and Krainc 2017). The majority of the pre-

clinical studies that led to clinical trials were performed in

rodents. It would be very useful to conduct similar studies

in NHPs to better understand the mechanisms of action

involved in their therapeutic effects.

NHP for treatment studies of PD

Symptomatic treatment

Pharmacotherapies to test motor symptoms The MPTP

cynomolgus macaque with an extensive loss of striatal DA

(of about 95%) is often used to model advanced PD. This

model is widely used to test compounds for antiparkinso-

nian activity, it is rapid, and animals may be used for

several studies. It provides an invaluable model to study

Parkinsonism and treatment-related complications. Thus,

pharmacologically MPTP-lesioned NHPs have proven

most useful. The nature of dyskinesias developed in NHPs

is almost indistinguishable from those occurring in human

PD consisting of chorea, dystonia, and athetosis, which can

be assessed using semi-quantitative rating scales akin to

those used in man (Langston et al. 2000). Various dyski-

nesias rating scales for MPTP monkeys have been
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developed and were critically compared (Imbert et al.

2000). These scales are based on those used to assess

dyskinesias in PD patients such as the Abnormal Invol-

untary Movement Scales (AIMS) and the Unified Parkin-

son’s disease rating scale (UPDRS) and have good

translational value to humans. The NHP scales include

assessment of severity and range of movement, bradyki-

nesia, posture, altertness, and tremor. These scales can be

complemented with measures of motor activity using var-

ious activity monitors or video analysis systems to provide

additional objective measures of overall motor activity

(Campos-Romo et al. 2009; Liu et al. 2009; Togasaki et al.

2005a). Through the years, these motor scales have been

revised and refined to model better the human condition

such as reporting good ON time (by contrast to bad ON

time) that is time with good antiparkinsonian activity of L-

Dopa without disabling dyskinesias. Dyskinesias have been

categorized as disabling or troublesome compared to non-

disabling or mild dyskinesias (for example: Huot et al.

2015). This is to model in NHPs measures such as ON time

and ON time with troublesome dyskinesias used in clinical

studies (Fox et al. 2012; Rascol et al. 2005).

L-Dopa L-Dopa is the gold standard symptomatic treat-

ment for PD, but after years of treatment, the majority of

PD patients develop LIDs that are troublesome and difficult

to treat (Fabbrini et al. 2007). The MPTP-lesioned maca-

que model is also valuable to investigate LID. Macaques

are first rendered parkinsonian with MPTP and then

chronically treated with L-Dopa for several weeks or

months until they express stable and well-established LID

both choreic and dystonic similar to those that develop in

human PD (reviewed in: Morin et al. 2014). As in MPTP-

exposed drug addicts, MPTP-lesioned NHPs repeatedly

administered L-Dopa develop LID rapidly after initiation of

L-Dopa therapy (Bedard et al. 1986; Clarke et al. 1987;

Langston and Ballard 1984; Langston et al. 2000). The

rapidity of onset differs from idiopathic PD where LIDs

generally take years to emerge; this reflects the high degree

of nigral denervation in these NHPs that lower the extent

and duration of L-Dopa exposure required for the appear-

ance of involuntary movements (Kuoppamaki et al. 2007;

Smith et al. 2003).

The doses of L-Dopa to investigate LID in MPTP-le-

sioned macaques are generally higher than those used to

treat PD patients (Huot et al. 2012a). Nevertheless, an L-

Dopa pharmacokinetic study showed that a high dose of

30 mg/kg L-Dopa administered to MPTP monkeys leads to

similar maximal plasma concentrations than with 200 mg

L-Dopa in PD patients with a similar half-life and time at

maximal plasma levels (Huot et al. 2012a). This thus

supports the validity of the MPTP-lesioned macaque to

investigate pharmacotherapies for LID.

Acute dose–responses or chronic (generally for less than

a month) treatments of new compounds are investigated

co-administered with L-Dopa (for example: Bezard et al.

2004; Gregoire et al. 2011, 2009) to potentiate the

antiparkinsonian activity of L-DOPA and inhibit and/or

delay the development of LID.

Another experimental approach uses two groups of de

novo macaques rendered parkinsonian with MPTP and then

treated with L-Dopa alone or in combination with a com-

pound under investigation. The latter paradigm allows

studying specific effects of the test compound on the

development of LID and assessing if the effects diminish

with long-term use, that is ‘‘wearing-off’’ (Gregoire et al.

2008; Hadj Tahar et al. 2004; Morin et al. 2013a; Rylander

et al. 2010a; Samadi et al. 2006). Furthermore, measures of

the long-term biochemical changes associated with LID

and their prevention (and/or inhibition) are made possible

if the animals are killed at the end of the protocol along

with controls and MPTP-lesioned untreated macaques

(Morin et al. 2013a; Ouattara et al. 2010a; Samadi et al.

2008). Alternatively, a crossover design is possible to

decipher if the adjunct treatment with L-Dopa inhibited the

expression of LID or inhibited their development (Rylan-

der et al. 2010a).

In pharmacotherapeutic investigations using MPTP-le-

sioned primates, L-Dopa is mainly administered orally or

injected systemically. In the former case, L-Dopa is deliv-

ered by nasogastric gavage using human formulations of L-

Dopa (per os route). This route gives a shorter but stronger

response compared to injected forms, allowing higher

dyskinesias that are useful in studies investigating peak-

dose LID (Hadj Tahar et al. 2004). Subcutaneous admin-

istration of L-Dopa in its methylester form offers more

stable and reproducible plasma levels, since it avoids first-

pass liver metabolism (Cooper et al. 1984). A subcutaneous

injection of L-Dopa with oral administration of the inves-

tigational compound also allows minimizing possible

pharmacokinetic interactions between these drugs. How-

ever, L-Dopa methyl ester administered subcutaneous may

accumulate in fat tissues, and consequently, peak dose LID

may be lower than those obtained with per os administra-

tion, but will last longer with a smoother response.

Moreover, in pharmacotherapeutic investigations using

MPTP-lesioned primates, the dose of L-Dopa will also be

adjusted depending on the compound investigated. For

compounds with expected antidyskinetic activity, high

doses of L-Dopa with optimal antiparkinsonian activity but

also inducing dyskinesias will be administered. Com-

pounds with potential antiparkinsonian activity will be

tested alone but will likely be less effective than L-Dopa

and will also be tested combined with L-Dopa to investigate

possible additive or synergistic effect. Indeed, since LIDs

are considered dose dependent, reducing the L-Dopa dose
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with the addition of an adjunct treatment could maintain

the antiparkinsonian activity of L-Dopa with less dyskine-

sias. Thus, to avoid a celling effect, a suboptimal dose of L-

Dopa giving partial alleviation of parkinsonian symptoms

should be used to combine with the new agent under

investigation.

In addition to LID, MPTP-lesioned primates treated in

the long-term with L-Dopa also display a reduction in the

duration of the antiparkinsonian effect of L-Dopa, wearing-

off (Fox et al. 2010; Jenner 2003b).

Care should be taken in pharmacotherapeutic investi-

gations using MPTP-lesioned primates to administer doses

L-Dopa not too high that could induce stereotypies (Gray-

biel et al. 2000). In PD patients, stereotyped behaviors can

be observed with high doses of L-Dopa (Evans et al. 2012;

Fernandez and Friedman 1999). Monkeys displaying

stereotypies will usually do not display dyskinesias and this

will be associated with increased or decreased locomotor

activity (Mones 1973; Sassin 1975); hence, the parkinso-

nian and dyskinetic scores may not be representative.

Finally, in pharmacotherapeutic investigations, the dose of

L-Dopa should be adjusted for each MPTP-lesioned pri-

mate modeling the clinical situation, where each patient

has its medication titrated for an optimal response.

Therefore, L-Dopa titration for each animal allows a better

assessment of the investigational drugs before moving to

clinical trials.

Dopamine receptor agonist Such as PD patients, MPTP-

lesioned NHPs respond well to DA receptor agonists, for

example, bromocriptine, pergolide, cabergoline, apomor-

phine, ropinirole, pramipexole, and piribedil (Close et al.

1990; Fukuzaki et al. 2000; Jenner 2003a, 2008a). It is well

documented that the DA receptor agonists have a lower

efficacy than L-Dopa in controlling motor symptoms but

induce less dyskinesias (Oertel and Schulz 2016). The

long-acting DA agonists ropinirole, pergolide, and caber-

goline improve motor behavior with low dyskinesias in

drug naı̈ve MPTP-lesioned NHPs (Grondin et al. 1996;

Hadj Tahar et al. 2000; Maratos et al. 2001) and in de novo

PD patients (Korczyn et al. 1999; Rascol et al. 1998; 2000;

Rinne et al. 1997, 1998a). Since these agonists show more

affinity for the D2 and D3 receptor subtypes, it was initially

proposed that D1 receptor activation was responsible for

the development of dyskinesias. Hence, bromocriptine, a

D2 receptor agonist, given to de novo PD patients (Lees

et al. 1978; Lees and Stern 1981; Rascol et al. 1979) and to

MPTP-lesioned NHPs (Bedard et al. 1986; Falardeau et al.

1988; Pearce et al. 1998), is less likely to induce significant

dyskinesias compared to L-Dopa, activating all DA recep-

tors. MPTP-lesioned NHPs treated with selective D1

receptor agonists, such as SKF 82958, relieves parkinson-

ism but induces dyskinesias (Blanchet et al. 1996); the

selective D2 receptor agonists quinpirole and (?)-PHNO

also rapidly induce dyskinesias to drug naı̈ve MPTP-le-

sioned NHPs (Bedard et al. 1992; Gomez-Mancilla and

Bedard 1992; Luquin et al. 1992). Taken together, these

results suggest in human PD and this is well modeled in

NHPs that the DA receptor subtype selectivity cannot be

related simply to the propensity to induce dyskinesias.

A common feature of many DA agonists that induce

modest or no dyskinesias is their relatively long half-life

compared to L-Dopa. Based on MPTP-lesioned NHPs and

clinical data, the short half-life of L-Dopa giving fluctuating

striatal DA levels was proposed to be an important con-

tributing factor to the priming of the basal ganglia for

dyskinesias (Nutt et al. 2000; Olanow and Obeso 2000;

Stocchi 1998). Once primed, all dopaminergic therapies

will produce dyskinesias similar in MPTP-lesioned NHPs

and in PD patients (Jenner 2002). The importance of con-

tinuous dopaminergic stimulation to avoid LID is well

illustrated in our earlier study comparing the behavioral

effect of repeated subcutaneous injection and continuous

subcutaneous infusion of the same short-acting D2 selec-

tive DA agonist in MPTP-lesioned NHPs. Repeated

injection of U-91356A produced marked dyskinesias,

whereas they were mild with the continuous infusion via an

osmotic mini-pump (Blanchet et al. 1995; Morissette et al.

1997). Continuous dopaminergic stimulation to avoid LID

has also been developed using transdermal patches such as

for the D3/D2/D1 DA receptor agonist rotigotine (Losch-

mann et al. 1989; Stockwell et al. 2009). In parkinsonian

NHPs, the continuous delivery of apomorphine, ropinirole

or rotigotine from osmotic mini pumps or subcutaneous

depots was shown to produce less dyskinesias than by oral

administration or with repeated subcutaneous injections

(Bibbiani et al. 2005; Stockwell et al. 2008, 2009). Hence,

this suggests that more continuous drug delivery should be

used in the treatment of PD. Indeed, continuous delivery of

apomorphine by subcutaneous infusion and L-Dopa by

intraduodenal infusion in late stage PD improves motor

function over oral therapy and reduces dyskinesias (Man-

son et al. 2002; Stocchi et al. 2005).

D1 agonists, such as ABT-431and CY 208–243, all

show effectiveness in animal models of PD, but none has

yet been generally been used clinically (Gnanalingham

et al. 1995a, b; Kebabian et al. 1992; Loschmann et al.

1992; Nomoto et al. 1988; Shiosaki et al. 1996; Temlett

et al. 1988, 1989).

In MPTP-lesioned NHPs, repeated administration of

ropinirole or piribedil was reported to induce little or no

dyskinesias but on first exposure to L-Dopa intense dyski-

nesias appears (Jackson et al. 2007; Smith et al. 2006).

Similarly, PD started on a DA agonist in the long-term, as

disease progresses, are supplemented with L-Dopa because

of the lower efficacy of DA agonists to control motor

298 M. Morissette, T. Di Paolo

123



symptoms; they develop troublesome dyskinesias as PD

patients initially started on L-DOPA (Katzenschlager 2008;

Parkinson Study Group 2000). Hence, while DA agonists

give less dyskinesias than L-Dopa, they prime the basal

ganglia for LID and this long-term adaptation observed in

PD patients is modeled well in MPTP-lesioned NHPs. This

could be because most DA agonists used in the clinic are

D2/D3 receptor agonists, whereas L-Dopa has a wider

range of activities such as stimulating all five DA recep-

tors, metabolized into noradrenaline, displace 5-HT from

serotoninergic neurons, and altering glutamate release.

Catechol-O-methyl transferase (COMT) inhibitor Inhi-

bition of metabolism of L-Dopa with COMT inhibitors is

used to extend the half-life of L-Dopa and to deliver L-Dopa

more continuously. For example, administration of enta-

capone with L-Dopa enhanced intensity and duration of the

locomotor response in MPTP-lesioned marmosets (Smith

et al. 1997) and in PD patients (Ruottinen and Rinne 1996).

Extensive clinical studies confirm the NHP findings,

showing that entacapone added to L-Dopa enhances motor

control in PD patients (Parkinson Study Group 1997) and

(Rinne et al. 1998b) but with increased L-Dopa plasma

concentrations LID occur (Smith et al. 2003). The COMT

inhibitors tolcapone was also shown to potentiate the

actions of L-DOPA (see, e.g., (Smith et al. 1997)).

Monoamine oxidase (MAO) inhibitor MAO-B is an

enzyme metabolizing DA. Its inhibition conserves the

depleted synaptic levels of DA, as shown with the MAO–B

irreversible inhibitors rasagiline and selegiline in MPTP

NHPs (Kupsch et al. 2001). They thus can be used to delay

LD treatment in patients with early-stage PD. MAO-B

inhibition can also potentiate and prolong the effect of L-

Dopa thus allowing to use a lower dose (Riederer and Laux

2011). The reversible MAO-B inhibitor, safinamide, was

found efficacious used alone or with L-Dopa to treat PD

(Riederer and Laux 2011) and its efficacy was demon-

strated in MPTP-lesioned NHPs (Gregoire et al. 2013).

Hence, parkinsonian NHPs also show good translational

value for MAO-B inhibitors.

Monoamine uptake inhibitor The non-specific inhibitors

of monoamine reuptake brasofensine, tesofensine, and BTS

74–398 were reported to be effective in reversing motor

disability in MPTP-treated marmosets (Hansard et al.

2002a, b, 2004; Pearce et al. 2002) but to be inactive in PD

patients (Bara-Jimenez et al. 2004; Hauser et al. 2007;

Rascol 2008). The lack of specificity for DA neurons of

these drugs may possibly explain these discrepancies.

Differences between the model and PD in the loss of brain

noradrenergic and serotoninergic neurons could be impli-

cated. These monoamine reuptake blockers could activate

limbic or cortical neurons that could lead to the increased

motor activity observed.

Aromatic Amino Acid Decarboxylase As described

above, LID in PD patients could be caused by a pulsatile

activation of striatal DA receptors, since more sustained

delivery of DA prevents the development of dyskinesias

(Cenci and Lundblad 2006; Jenner 2008c; Lang and

Lozano 1998; Olanow et al. 2006). Aromatic amino acid

decarboxylase (AADC) is an enzyme that converts L-Dopa

to DA (Daubner et al. 2011; Hadjiconstantinou and Neff

2008). As disease progresses, PD patients require increas-

ing doses of L-Dopa with the associated motor side effects.

AADC activity is postulated to be depleted in PD (Bank-

iewicz et al. 2000). Thus, increasing or restoring the

activity of AADC with a gene delivery system could pro-

vide a continuous ectopic production of DA in the striatum

for advanced PD patients thereby reducing the symptoms

and the effective dose of L-Dopa. Indeed, in MPTP hemi-

parkinsonian rhesus monkeys, injection of AAV2-AADC

vector in the caudate nucleus and putamen induced an

increase of AADC activity and immunostaining for AADC,

improvement in clinical rating scores, and in L-Dopa

responsiveness as well as a decrease of L-Dopa-associated

side effects (Bankiewicz et al. 2000, 2006; Daadi et al.

2006; Forsayeth et al. 2006). Interestingly, all of these

positive outcome persisted up to 8 years in hemiparkinso-

nian monkeys with no signs of adverse effects and post-

mortem analysis revealed no signs of neuroinflammation or

reactive gliosis (Hadaczek et al. 2010). In a phase I clinical

trial (Christine et al. 2009; Eberling et al. 2008), bilateral

intraputaminal injection of either a low or a high dose of

AAV2-AADC vector in moderately advanced PD patients

was shown to be safe and well tolerated and to produce

clinical improvements mainly characterized by increased

on time and reduced off time without increased ‘‘on’’ time

dyskinesias (Christine et al. 2009). Interestingly, a long-

term follow-up of these subjects showed that the PET scans

using the AADC tracer [18F]fluoro-L-m-tyrosine were

elevated in the first 12 months and persisted over 4 years in

both dose groups (Mittermeyer et al. 2012). In addition, the

off medication UPDRS score improved during the first

12 months in all patients and showed a slow deterioration

in subsequent years likely due to ongoing neurodegenera-

tion (Mittermeyer et al. 2012). The results of this clinical

study have showed promising outcomes, but higher doses

should be considered in the upcoming clinical studies to

reproduce behavioral improvements in L-Dopa response

seen in AAV2-AADC-injected monkeys. Another inde-

pendent clinical study conducted in Japan showed similar

results following intraputaminal injection of AAV-AADC

(Muramatsu et al. 2010).
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Tyrosine hydroxylase, Aromatic Amino Acid Decarboxy-

lase, guanosine 5-triphosphate cyclohydrolase 1 Another

strategy to achieve a sustained tonic activation of DA

receptors in the motor region of the striatum is to inject the

three enzymes required for biosynthesis of DA, namely,

tyrosine hydroxylase (TH), AADC, and guanosine

5-triphosphate cyclohydrolase-1 (GCH-1, a rate limiting

enzyme in the synthesis of a cofactor for TH called

tetrahydrobiopterin). Thus, mixtures of three separate AAV

vectors expressing human TH, human AADC, and human

GCH-1, respectively, were unilaterally injected into the

putamen of MPTP-treated rhesus monkeys (Muramatsu

et al. 2002). Co-expression of the enzymes in the unilateral

putamen resulted in restoration of motor functions and

increased DA levels in the injected putamen compared to

the control side (Muramatsu et al. 2002). A tricistronic

lentiviral vector derived from the equine infectious anemia

virus (EIAV) encoding human TH, human AADC, and

human GCH-1 in a single vector (Lenti-TH-AADC-CH1,

ProSavin) was generated and tested in MPTP-treated rhe-

sus monkeys (Jarraya et al. 2009). Bilateral injection of this

tricistronic lentiviral vector into the motor postcommis-

sural putamen safely restored extracellular concentrations

of DA and corrected the motor deficits for 12 months

without dyskinesias (Jarraya et al. 2009). The motor

improvements were associated with restoration of the firing

rate and pattern of neurons within the basal ganglia and

reduced metabolic activity within the subthalamic nucleus

(STN) (Jarraya et al. 2009). ProSavin was further evaluated

in an open label phase I/II clinical trials in patients with

moderate to severe PD that received a bilateral injection of

vector in the striatum (ClinicalTrials.gov Identifier:

NCT00627588 and NCT01856439). Injection of the len-

tiviral vector in humans was safe and modest improve-

ments in motor responses as assessed with UPDRS part III

(off medication) scores were observed 6 months after

vector administration (Palfi et al. 2014). Low levels of

transgene expression may explain the lack of clear and

robust effects observed in these studies.

Glutamic acid decarboxylase Glutamic acid decarboxy-

lase (GAD) is the rate-limiting enzyme that catalyzes the

decarboxylation of glutamate to the inhibitory neurotrans-

mitter GABA (Erlander et al. 1991). It is now well known

that PD is associated with pathological hyperactivity of the

STN mainly caused by a reduced GABAergic input from

the globus pallidus (Bergman et al. 1990; Hamani et al.

2004; Rodriguez et al. 1998). In PD patients, subthalamo-

tomy, high-frequency stimulation, or topical administration

of GABAergic agonists has been shown to alleviate signs

of advanced PD (Hamani et al. 2004; Obeso et al. 2000). A

novel strategy to reduce overexcitation of the basal ganglia

output neurons is to inject an AAV2-GAD vector into the

STN to promote local production and release of GABA

with glutamate in the internal globus pallidus (GPi). Using

hemiparkinsonian MPTP-treated rhesus monkey, Emborg

et al. (2007) showed that injection of AAV2-GAD vector in

the ipsilateral STN produced a significant improvement of

the clinical rating scores and an increase in glucose uti-

lization in the ipsilateral motor cortex compared to AAV2-

GFP controls over 56 weeks after AAV2-GAD injection

(Emborg et al. 2007). Based on preclinical results in

rodents and rhesus monkeys and positive outcome from an

open phase I trial (ClinicalTrials.gov: NCT00195143)

(Kaplitt et al. 2007), a phase II double-blind, randomized,

sham-controlled trial was conducted to assess the safety

and efficacy of bilateral surgical infusion of AAV2-

GAD65/67 into the STN in advanced PD patients (Clini-

calTrials.gov: NCT00643890) (LeWitt et al. 2011). A

significant improvement in the UPDRS-III score in the off

state (the primary endpoint) was observed 6 month post

procedure for the AAV2-GAD65/67-treated group com-

pared with the sham group (LeWitt et al. 2011). Despite

modest but positive outcomes from this study, the subse-

quent long-term follow-up study was terminated. Com-

pared to DBS, the most favored approach to date, the

injection of AAV-GAD shows an advantage, it does not

require a permanent implantation of electrodes in the brain,

and can restore neuronal activity of the basal ganglia in a

more physiological way.

Non-dopaminergic therapies The MPTP-lesioned NHP

has also been used to examine the potential of non-

dopaminergic therapies to treat motor symptoms of PD and

LID (reviewed in Brotchie 2005; Fox et al. 2006, 2008).

Since other neurotransmitters other than DA are implicated

in PD pathology, a strategy receiving much research

attention has been to combine non-dopaminergic com-

pounds with L-Dopa to reduce dyskinesias while main-

taining its antiparkinsonian activity. Numerous targets such

as glutamate, serotonin, nicotine, and cannabinoid have

been investigated with tests in MPTP-lesioned NHPs of

agonists and antagonists at specific receptor subtypes as

well as positive and negative allosteric modulators leading

to new and emerging therapies (Lotia and Jankovic 2016).

Amantadine, a non-competitive antagonist at N-methyl-

D-aspartate (NMDA) receptors, to a lesser extent clozap-

ine, is the only pharmacological therapies available to treat

LID (Fox et al. 2011). The antidyskinetic effect of aman-

tadine has been modeled in the MPTP-lesioned macaque

(Blanchet et al. 1998; Gregoire et al. 2013; Rylander et al.

2010b). However, in PD, the beneficial effect of aman-

tadine for dyskinesias is often transient and high doses may

cause cognitive impairment (Fox et al. 2011); a new long-

acting extended-release formulation of amantadine HCl is

also hampered with side effects (Pahwa et al. 2015). More
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recently, selective metabotropic glutamate receptor drugs

are being evaluated (see section below on translational

values of primate models).

Acetylcholine (ACh) is a neurotransmitter playing a

pivotal role in neurotransmission in the central nervous

system. Cholinergic degeneration is a major feature of

PD and may contribute to gait and cognitive impair-

ments, psychosis, and REM-sleep disturbances observed

in this disease (reviewed in (Perez-Lloret et al. 2016).

Antagonists of the muscarinic acetylcholine receptors,

derived from Atropa belladonna, were used to treat

akinetorigid disorders before the use of dopaminergic

drugs to treat PD (Katzenschlager et al. 2003). Presently,

anticholinergic drugs are recognized as clinically useful

for the treatment of motor symptoms in monotherapy or

in conjunction with L-Dopa (Fox et al. 2011). They have

shown efficacy for motor symptoms such as gait and

tremor. Nevertheless, their clinical efficacy is mild-to-

moderate and tolerability is often poor. MPTP-lesioned

NHPs also respond to muscarinic drugs such as tri-

hexyphenidyl and benztropine (Close et al. 1990;

Fukuzaki et al. 2000; Jenner 2003a, 2008b) and reviewed

in (Duty and Jenner 2011).

The largest area of potential use for non-dopaminergic

drugs is as add-on therapy for motor fluctuations. Numer-

ous drug classes have been tested in NHP such as adeno-

sine A2A receptor antagonists, antiepileptic agents, b-
adrenergic antagonists, 5-HT2A antagonists, antidepressant

such as mirtazapine, and 5-HT1A agonists (reviewed in Fox

2013). The translational value of NHP pakrinsonian model

is discussed in a latter section.

Surgical treatments

It is now well accepted that abnormal oscillations in the

basal ganglia network are a key feature of PD (Bergman

et al. 1994; Dejean et al. 2008; Filion and Tremblay 1991;

Heimer et al. 2006; Mallet et al. 2008; Mitchell et al. 1987;

Nini et al. 1995; Raz et al. 2000). Thus, changes in synaptic

connectivity and disruption of normal synchronization in

motor networks observed in DA-depleted rodent and NHP

as well as in PD patients might be implicated in the motor

symptoms of the disease (reviewed in: Benazzouz et al.

2014). According to the classical model of the anatomo-

functional organization of the basal ganglia in PD, DA

depletion leads to increased activity of striatal neurons of

the indirect pathway, resulting in inhibition of the external

globus pallidus (GPe) and subsequent disinhibition of STN

and GPi/SN pars reticulata (Albin et al. 1989; DeLong

1990). This pathological neuronal activity in the basal

ganglia was reported to be corrected by lesions of the STN

that reversed PD symptoms in MPTP-lesioned NHPs (Aziz

et al. 1991).

While drugs are generally tested in rodent and NHP

models of PD to later move up to clinical trials, effec-

tiveness of deep brain stimulation (DBS) was first observed

in humans (Benabid et al. 2009). During a thalamotomy for

essential tremor, an electrical stimulation was used to

probe the site of the lesion and Benabid’s group observed

an acute and reversible modification of tremor (Benabid

et al. 1987). Moreover, high-frequency stimulation of the

STN, instead of lesioning, alleviated PD symptoms in

MPTP-lesioned NHPs (Benazzouz et al. 1993). The first

attempt of high-frequency stimulation of the STN in PD

patients was soon after performed successfully, bilateral

STN stimulation improved akinesia and rigidity in three

PD patients (Limousin et al. 1995).

Since then, several thousand PD patients worldwide

have benefited from this surgical method. The STN and the

GPi are the main structures of the basal ganglia targeted for

DBS (Miocinovic et al. 2013). STN or GPi DBS is reported

to be equally effective to improve rigidity, bradykinesia,

and tremor (Follett et al. 2010). Interestingly, a significant

reduction in dopaminergic medication in the post-operative

phase is usually observed with STN DBS but not with GPi

DBS (Follett et al. 2010). GPi DBS allows a direct

antidyskinetic effect and represents a better option in

patients who do not require medication reduction (Sankar

and Lozano 2011). Finally, when patients present cognitive

and psychiatric symptoms, the GPi is the favoured target

(Okun et al. 2009).

In advanced stages of PD, when medications no longer

adequately control motor symptoms, surgical treatments

offer therapeutic alternatives for patients including lesions

and more generally nowadays DBS (Hickey and Stacy

2016). NHP models of PD are also useful to study lesion

and DBS taking advantage of the larger size of their brain

compared to rodents and the more similar anatomy of their

basal ganglia compared to humans.

A study on the response to L-Dopa after subthalamic

lesion in MPTP-lesioned macaque monkeys (Jourdain et al.

2013) showed that subthalamotomy potentiated the

antiparkinsonian effects of L-Dopa; its doses could be

reduced by 40% after STN lesion to have the same bene-

ficial antiparkinsonian response as with an optimal L-Dopa

dose pre-surgery. These results closely resemble those

obtained in PD patients undergoing unilateral subthalam-

otomy (Alvarez et al. 2001, 2009). In L-Dopa-primed

MPTP marmosets, an unilateral lesion of the GPi gave a

lesion-size-dependency reduction of LID with better

improvement in dystonia compared to chorea (Iravani et al.

2005). Lesions in the ventrolateral pars oralis nucleus of

the thalamus were also shown to reduce L-Dopa-induced

chorea in MPTP-lesioned monkeys, where dystonia

remained unchanged (Page et al. 1993). These studies show

that stereotaxic lesions performed in humans can be
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replicated in monkeys and further support this model to

study PD and its treatments.

Publications up to now have reported the effect of DBS

in a limited number (one or two) intact or MPTP monkeys

in each study and show motor behavior effects as in

humans (Baker et al. 2011; Johnson et al. 2015; Rosen-

baum et al. 2014; Santaniello et al. 2010; Xu et al. 2011;

Zitella et al. 2015). To our knowledge, no studies using

DBS have been conducted in dyskinetic primates yet and

no study has compared pharmacological antiparkinsonian

drug response before and with DBS. Since DBS is cur-

rently offered in PD patients that previously received

antiparkinsonian dopaminergic treatments and many that

developed dyskinesias it will be important to model the

adaptations of the brain to these drug treatments in the

response to DBS in NHPs.

Disease-modifying treatments

PD is a complex disease with multiple neurotoxic pathways

that contribute to its aetiology and finally, death of DA, and

other neurons (Dickson et al. 2009; Kalia and Lang 2015;

Lang 2007). To address this multiplicity in the pathologic

process, compounds targeting more than one pathological

event in cell-death cascades need to be designed and

investigated (Youdim et al. 2007). Compounds with neu-

roprotective, neurorestorative, and neurorescuing proper-

ties are investigated. A neuroprotective drug is defined as a

drug that prevents or slows down neuronal death; a neu-

rorestorative drug is a drug that replaces dying or dead

neuronal cells with viable cells and a neurorescuing drug is

a drug that rescues cell where neuronal cell death has

already started (Youdim et al. 2007). Alternatively, there

are compounds with ‘disease modifying’ activity implying

a modification of the clinical course of the disease without

implicating mechanism (Lang 2010). Some active com-

pounds were discovered through serendipity, while others

were the products of active drug design projects. Hence,

numerous compounds of various chemical classes were

reported with neuroprotective-neurorescue properties such

as rasagiline (n-propargyl-1R-aminoindan) and selegiline

MAO-B inhibitors, adenosine A2A receptor antagonists,

NMDA antagonism by calcium channel blockers, green tea

polyphenols, docosahexaenoic acid (DHA), and estrogens

(Bourque et al. 2009; Bousquet et al. 2008; Youdim et al.

2007). There are many studies reporting beneficial neuro-

protective effects in rodent models of PD, whereas in NHP,

they are much less abundant and clinical studies in this

respect have yet been inconclusive (Schapira 2009). Clin-

ical studies up to now have failed to report disease-modi-

fying activity of the compounds tested in phase III trials

including the use of co-enzyme Q10, creatine monohy-

drate, pioglitazone, and neurturin (reviewed in: Oertel and

Schulz 2016). A recent review of current disease modifying

approaches to treat PD lists examples of on-going clinical

trials showing a focus on trophic factors and compounds

with efficacy on DA neurons in preclinical animal models

(Lindholm et al. 2016). Nevertheless, NHP studies of dis-

ease-modifying therapies are still worthwhile and useful to

improve symptomatic therapy of motor and non-motor

symptoms especially in the later stages of the disease. For

example, serotoninergic and glutamatergic activity is

implicated in LID and drugs affecting these neurotrans-

mission can have antidyskinetic activity in addition to

disease-modifying activity.

In cynomolgus monkeys, the serotonin 5-HT1A agonists

BAY639044 and repinotan were shown to oppose MPTP-

induced excitotoxicity-mediated cell death (Bezard et al.

2006). Both compounds delayed the appearance of motor

symptoms. These treatments were initiated 8 days after

starting MPTP administration for 17 days to model early

symptomatic PD patients when they would possibly receive

such treatments. The delay in appearance of motor abnor-

malities in the MPTP-treated monkeys treated with

BAY639044 was a consequence of partial neuroprotection

of nigrostriatal DA neurons both at neuronal and terminal

levels as shown with, respectively, TH-immunohisto-

chemistry and DAT binding.

MPTP-lesioned monkeys chronically treated with the

metabotropic receptor 5 negative allosteric modulator

MTEP were shown to have a decrease of MPTP-induced

toxicity towards DA in the SNpc and ventral tegmental

area and noradrenergic neurons in the locus coeruleus and

the adjoining A5 and A7 noradrenaline cell groups

(Masilamoni et al. 2011). This neuroprotection of DA

neurons could be because of a reduction of glutamate

overactivity observed in the parkinsonian state.

In marmosets, the antiglutamatergic compound riluzole

treatment started 1 week before MPTP and pursued during

2 weeks of MPTP administration and for 1 week after was

used to model early stages of PD (Verhave et al. 2012).

This treatment led to a relatively mild decline of 50% of

DA neurons in the SN. Riluzole improved clinical scores

but not abnormal involuntary movements (AIMs). It

improved hand–eye coordination, turning ability, sleep

architecture, and rapid eye movement (REM) behavioral

disorder and increased the number of surviving DA neu-

rons. This is in agreement with an other study in marmosets

(Obinu et al. 2002), where riluzole was administered

starting 1 h after the first of two MPTP injections for 4

weeks and preserved a better motor function and spared

TH-stained nigral neurons and terminals in the striatum.

Moreover, this agrees with an earlier pilot study in two

rhesus monkeys, where parkinsonian motor symptoms

were prevented with a treatment with riluzole started

before MPTP administration (Benazzouz et al. 1995).
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However, in PD patients, clinical trials with riluzole

showed no beneficial effect (Bensimon 2009; Jankovic and

Hunter 2002) perhaps because of the multiplicity of

pathologic processes in PD and the need for treatment at

earlier non-symptomatic stages of the disease. Moreover,

there is disease heterogeneity in PD causing difficulty in

designing trials of disease-modifying therapy particularly

at an early stage of disease when intervention is likely to be

most effective but when there is less diagnostic confidence.

However, as prodromal PD markers improve (Postuma and

Berg 2016), testing of disease-modifying therapies will

improve.

Considering the implication of mitochondrial and

inflammatory processes in PD leading to oxidative injury, a

logical approach would be to test compounds with

antioxidant activity. In this respect, the fullrene compound

C3 was tested in MPTP-treated macaques starting 1 week

after MPTP for 2 months (Dugan et al. 2014). After

2 months, C3- treated monkeys had improved motor rat-

ings and higher striatal DA levels.

Photobiomodulation is a novel approach for PD recently

reviewed (Hamblin 2016). Various mechanisms of action

have been reported including increased adenosine triphos-

phate (ATP) content, decreased of oxidative stress,

increased blood flow, activation of neuroprotective sig-

nalling mediators, and transcription factors (Hamblin

2016). Near-infrared light (NIR) was used for neuropro-

tection against MPTP toxicity in macaques with light on

during the 57 day period of MPTP injections and for the

following 3 weeks (Darlot et al. 2016). MPTP monkeys

treated with NIR light had less motor behavior impairment

and less TH? nigral cell and striatal terminal loss. Motor

symptoms in these MPTP monkeys were improved at low

compared to high doses of light (Moro et al. 2016).

Moreover, these investigators just reported in MPTP

monkeys that NIR treatment reduced markedly astrogliosis

in the SNpc and striatum (El Massri et al. 2016); NIR

reduced dramatically by about 75% glial fibrillary acidic

protein levels (to label astrocytes; GFAP). A more limited

impact was observed on ionised calcium-binding adaptor

molecule 1 (to label microglia; IBA1) in both nuclei; they

were no change in the number of microglia, although they

were reduced in size. No clinical study has yet been pub-

lished on the use of NIR for PD except an abstract (Mal-

oney et al. 2010), discussed in (Hamblin 2016; Johnstone

et al. 2015) reporting an improvement of gait, freezing,

difficulty of speech, and cognitive function. The main zone

of pathology in PD is deep in the brain and more invasive

intracranial NIR light delivery systems will be required

(Johnstone et al. 2015). Nevertheless, this would be com-

patible for PD patients selected for DBS that could have an

NIR optical fiber implanted surgically at the same time to

possibly protect remaining DA neurons (Johnstone et al.

2015).

Neurotrophic factors: Glial-derived neurotrophic factors

and neurturin The glial cell line-derived neurotrophic

factor (GDNF) and neurturin (NTRN) are a member of the

transforming growth factor (TGF)-b superfamily known to

promote with high efficiency and specificity survival of DA

neurons in vitro and in vivo in animal and cellular models

of PD (Salvatore et al. 2004; Staudt et al. 2016; Tomac

et al. 1995; Yang et al. 2009). Indeed, intracerebroven-

tricular (ICV) infusion of GDNF into MPTP-treated and

aged rhesus monkeys as well as in MPTP-treated marmoset

showed significant improvement of motor disabilities and

nigral DA neurons regeneration associated with a reduced

occurrence of LID (Costa et al. 2001; Gash et al. 1996;

Gerhardt et al. 1999; Grondin et al. 2002, 2003; Miyoshi

et al. 1997). However, in a phase I–II, randomized, double-

blinded clinical trial, monthly injections of GDNF via an

implanted ICV catheter in PD patients did not improve

their conditions and many developed strong adverse effects

(Nutt et al. 2003). The negative outcomes of this study

have been attributed to a limited diffusion of GDNF in

target tissues from the injection catheters into the brain

parenchyma (Gash et al. 2005; Lang et al. 2006).

It is now well documented that neurotrophic factors are

released by target tissues and transported retrogradely to

cell bodies to achieve their survival promoting activities

(Harrington and Ginty 2013; Ito and Enomoto 2016;

Zweifel et al. 2005). In PD, axonal degeneration is

observed before death of neurons and some remaining

nerve endings are required for effective treatment with

neurotrophic factors (Cheng et al. 2010; Grosch et al. 2016;

Kurowska et al. 2016; Lingor et al. 2012; Tagliaferro and

Burke 2016). Therefore, infusion of GDNF or NTRN

directly into the putamen of MPTP-treated or aged mon-

keys induced major improvements of motor performance

and nigral DA neurons regeneration (Ai et al. 2003; Gar-

bayo et al. 2016; Grondin et al. 2008; Maswood et al. 2002;

Oiwa et al. 2006). Although this route of administration of

GDNF demonstrated beneficial neuroprotective effects in

simian models, results of subsequent clinical studies have

been inconclusive (Gill et al. 2003; Lang et al. 2006; Love

et al. 2005; Patel et al. 2005; Slevin et al. 2005).

The negative outcomes from clinical studies have

prompted use of a new delivery approach consisting of

in vivo viral vector gene delivery to improve the safety and

the therapeutic efficacy of GDNF or NTRN treatments

(Bartus and Johnson 2016a, b). Controlled release of

GDNF and NRTN has been carried out with striatal and/or

nigral injection of AAV2-GDNF and AAV2-NTRN

(CERE-120) vectors, respectively, in aged monkeys or in

6-OHDA- and MPTP-lesioned monkeys. The results of
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these studies showed a robust and long-lasting dopamin-

ergic neuroprotective effect of viral vector delivery of

GDNF or NRTN in NHP (Bartus et al. 2011; Eberling et al.

2009; Eslamboli et al. 2003b, 2005; Herzog et al.

2007, 2008, 2009; Johnston et al. 2009; Kells et al. 2010;

Kordower et al. 2000, 2006; Su et al. 2009). Interestingly,

the presence of GDNF in the SN of rhesus monkeys with

extensive DA depletion suggests anterograde transport of

AAV2-GDNF vector particles via striatonigral connections

and anticipates a possible use of this treatment in the more

advanced stages of the disease (Kells et al. 2010). In this

context, a phase I open label study is ongoing in a dose

escalation safety study to test the safety and effectiveness

of AAV2-GDNF gene transfer for advanced PD (Clini-

calTrials.gov Identifier: NCT01621581). In addition, given

the efficiency, safety, and tolerability of CERE-120 in

rhesus monkeys, clinical trials have been designed to assess

the feasibility, safety, tolerability, biologic activity, and

therapeutic efficacy of intraputaminal (ClinicalTrials.gov

Identifiers:NCT00252850 and NCT00400634) or combined

intraputaminal with intranigral (ClinicalTrials.gov Identi-

fier: NCT00985517) injections of CERE-120 in idiopathic

PD subjects. Unfortunately, no significant therapeutic

efficacy of CERE-120 delivery was observed (Bartus et al.

2011; Marks et al. 2010, 2008; Olanow et al. 2015). This

lack of therapeutic efficacy of CERE-120 in these clinical

studies has been attributed to the recruitment of PD patients

in advanced stage of the disease that could impair the

anterograde transport of the NRTN (Bartus and Johnson

2016a, b; Bartus et al. 2015; Hickey and Stacy 2013; Kirik

et al. 2016; Olanow et al. 2015).

Parkin Gene mutations in PARK2, which encodes par-

kin, are the most common causes of autosomal recessive

juvenile PD (Kitada et al. 1998; Puschmann 2013).

Experiments using human brains suggest a possible inter-

action between parkin and a-synuclein, where parkin mit-

igates a-synuclein-induced neuronal cell death in vivo and

in vitro (Choi et al. 2001; Hasegawa et al. 2002; Imaizumi

et al. 2012; Lo Bianco et al. 2004; Schlossmacher et al.

2002; Yamada et al. 2005). In this context, injection of a

rAAV1-a-synuclein vector unilaterally in the striatum of

rhesus monkeys was shown to decrease striatal TH-positive

terminals compared with the contralateral side injected

with a combination of rAAV1-a-synuclein and rAAV1-

parkin vectors (Yasuda et al. 2007). In addition, overex-

pression of parkin in striatonigral GABAergic neurons

reduced accumulation of a-synuclein and phosphorylated

a-synuclein at Serine 129 (Yasuda et al. 2007). Although

the small number of animals used represents a significant

limitation of this study, these results support a new neu-

roprotective therapeutic option for PARK2 linked as well

as for idiopathic PD.

Stem cells transplantation PD being characterized by loss

of DA neurons, a cell replacement therapy could be an

effective treatment option. Since the first attempts of

intracerebral transplants in humans performed by the team

of Backlund et al. (1985) who grafted adrenal medullary

tissue into the caudate nucleus or putamen of PD patients,

tremendous progress has been made in this research field

(Backlund et al. 1985) (reviewed in: Barker et al. 2015).

However, the use of foetal ventral mesencephalic DA cells

or other types of embryonic stem cells (ESC) raises ethical

issues and several immunological drawbacks such as

rejection of specific cells derived from allogenic human

ESCs after transplantation (Shen et al. 2016). In 2006,

Yamanaka’s group reported that the combination of tran-

scription factors, OCT4, SOX2, KLF4, and c-Myc, could

generate ES-like pluripotent stem cells from somatic

fibroblasts, called induced pluripotent stem cells (iPSCs)

(Takahashi and Yamanaka 2006). Since this discovery,

iPSCs were generated from a wide variety of tissues

sources, including skin, liver, and stomach cells, neural

stem cells, and adipose and peripheral blood cells; these

cells have the capacity to differentiate into any tissue in the

body (Aasen and Izpisua Belmonte 2010; Haase et al.

2009; Loh et al. 2009; Utikal et al. 2009; Xiao et al. 2016;

Xu et al. 2016). These great innovations in the field of stem

cells are very attractive for possible cell replacement

therapy in PD, since iPSCs are able to differentiate to DA

neurons (Xiao et al. 2016).

Results of several studies in monkeys are so far very

promising. For instance, bilateral transplantation of DA

neurons, generated from monkey neural ESCs, into the

putamen of MPTP-treated cynomolgus monkeys improved

motor deficits and transplanted cells act as DA neurons

(Takagi et al. 2005). Behavioral recovery was also

observed in MPTP-treated African green monkeys that

received injections of human neural ESC (taken from the

ventricular germinal zone of a 13-week-old human foetal

cadaver) or foetal ventral mesencephalic tissue in the SN,

caudate nucleus, and/or putamen (Redmond et al.

2007, 2008). In MPTP-treated rhesus monkeys, injection of

DA cells derived from human or monkey iPSC-derived

neural pluripotent cells can efficiently survive and function

as DA neurons (Kikuchi et al. 2011; Kriks et al. 2011).

Furthermore, the primate iPSC-derived neural cells sur-

vived in the striatum of MPTP-treated cynomolgus maca-

que for at least 1 year after autologous transplantation

(Sundberg et al. 2013) and can differentiate into neurons,

astrocytes, and myelinating oligodendrocytes with a mini-

mal presence of inflammatory cells and reactive glia

(Emborg et al. 2013). Transplantation of cynomolgus

monkey iPSC-derived midbrain DA neurons in MPTP-le-

sioned cynomolgus monkeys can survive up to 2 years

following autologous transplantation; in one animal,
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unilateral engraftment of these iPSCs induced a gradual

onset of functional motor improvement contralateral to the

side of DA neuron transplantation without a need for

immunosuppression (Hallett et al. 2015). Finally, Morizane

et al. (2013) demonstrated that autologous transplantation

of iPSC-derived neurons in normal rhesus monkeys resul-

ted in a higher number of DA neurons that survived in the

autografts with a minimal immune response in the brain

compared to allografts that caused an acquired immune

response with the activation of microglia and infiltration of

leukocytes (Morizane et al. 2013).

Overall, results from these studies demonstrate the

utility of the NHP models of PD to evaluate safety and

efficacy of transplanted iPSCs and human ESC-derived DA

neurons. Furthermore, the possibility of studying the

immune system reactions involved in graft rejection makes

this model even more attractive (Morizane et al. 2013). The

NHP, mainly those of the New World monkey family,

represents the best models for transplantation studies with

iPSCs and human ESCs owing to neuroanatomical simi-

larities and the high degree of sequence similarity in the

major histocompatibility complex (MHC) with human.

Although results in NHP models of PD are extremely

promising, there is still much to do for the development

and validation of a reliable model for evaluating SC-based

therapies for PD (Grow et al. 2016).

NHP and non-motor symptom treatment

It is now well documented that non-motor symptoms are

present in most PD patients and that they are already

installed 20 years or even more before the appearance of

motor impairment and worsen with disease progression

(Sauerbier et al. 2016; Sveinbjornsdottir 2016). Some of

these symptoms are very detrimental and affect signifi-

cantly the quality of life of PD patients. Non-motor

symptoms in PD patients are numerous and diverse and

include olfactory deficits, pain, parasthesia, orthostatic

hypotension, gastrointestinal and bladder dysfunctions,

dysphagia, sexual dysfunctions, increased sweating,

depression, anxiety, apathy, psychosis, cognitive impair-

ments, excessive daytime somnolence, dementia, and REM

sleep behavior disorder (Jellinger 2015). It is obvious that

midbrain DA neuron degeneration is not the unique phys-

iological factor that would explain all of these symptoms,

but a generalized effect of the LB pathology in the brain

and the periphery is strongly suspected (Jellinger 2015;

Sauerbier et al. 2016; Todorova et al. 2014). In fact, a-
synuclein aggregation preceding LB formation has been

proposed to begin in enteric neurons, autonomic and

peripheral nervous system, lower brainstem nuclei, and in

olfactory bulb (Braak and Del Tredici 2008; Braak et al.

2003). A major route of disease progression may originate

in the enteric nervous system and retrogradly reach the

dorsal motor nucleus of the vagal nerve in the lower

brainstem (Del Tredici and Braak 2016). Interestingly,

several studies have shown that a-synuclein can be secre-

ted by neurons and transported to neighbouring target

neurons via endocytosis following its association with

exosomes (see reviews Longhena et al. 2017; Quek and

Hill 2016) which could explain the prion-like spreading of

pathological a-synuclein in the brain. This proposed

mechanism was supported by the detection of LB-like

inclusions in the grafted human embryonic DA neurons in

the post-mortem brains of PD patients (Kordower and

Brundin 2009; Li et al. 2008, 2010). In addition, a-synu-
clein expression in the peripheral and autonomic nervous

system progresses in the CNS where the progressive

degeneration of the dopaminergic nigrostriatal system goes

along with a widespread extranigral pathology affecting

different anatomical structures such as locus coeruleus,

nucleus basalis of Meynert, hypothalamus, amygdala, and

cerebral cortex (Jellinger 2015). It has been reported that

some non-dopaminergic neurons, such as cholinergic neu-

rons in the pedunculopontine nucleus and substance

P-containing neurons in the motor nucleus of the vagus,

can degenerate more extensively and more rapidly than

dopaminergic neurons (Halliday et al. 1990; Hirsch et al.

1987; Jellinger 1987, 2012). Likewise, strong evidence

from PD animal models revealed that LB pathology occurs

much earlier in the locus coerulus than in the SN, and

consequently, the loss of the norepinephrinergic projec-

tions in the SN could accelerate degeneration of the nigral

dopaminergic neurons and manifestation and severity of

motor deficits (see review (Vermeiren and De Deyn 2017))

Overall, these observations could explain the wide variety

of motor and non-motor symptoms in PD patients (Bor-

gonovo et al. 2017; Burke et al. 2008; Cerasa et al. 2016).

The mode of propagation of pathological a-synuclein in

the brain has recently been highlighted in an NHP model.

Intracerebral injection of synthetic a-synuclein fibrils into

adult wild-type marmoset caudate nucleus and/or putamen

was shown to result in development of abundant phos-

phorylated a-synuclein pathologies similar to those

observed in PD/Dementia with LB, in various brain

regions, as early as 3 months after injection (Shimozawa

et al. 2017). In addition, strong LB-like inclusions were

formed in TH-positive neurons suggesting retrograde

spreading of abnormal a-synuclein from striatum to SN

(Shimozawa et al. 2017). This was also associated with a

significant decrease in the numbers of TH-positive neurons

in the injection side of the brain. Furthermore, these

inclusions were positive for fluorescent b-sheet ligands

thioflavin-S and 1-fluoro-2,5-bis (3-carboxy-4-hydrox-

ystyryl) benzene (FSB) suggesting amyloid fibril forma-

tion. Interestingly, neurons with abnormal a-synuclein
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inclusions are reported to be phagocytosed by microglial

cells likely to reduce inflammation in the brain (Shi-

mozawa et al. 2017). No apparent symptoms or motor

deficits were observed 3 months after a-synuclein injection

probably because of the low levels of dopaminergic den-

ervation in these marmosets (20–40% decrease) (Shi-

mozawa et al. 2017). This is the first NHP model that

replicates the prion-like propagation of a-synuclein and it

will likely be useful to decipher the mechanisms involved

in the spreading of a-synuclein and to develop new dis-

ease-modifying treatments for a-synucleopathies and PD.

Unfortunately, no behavioral assessment was performed in

these animals. Therefore, additional studies should be

undertaken to indentify and evaluate the non-motor

symptoms, if there is, in this marmoset model of PD.

The progression of pathological a-synuclein in periph-

eral and CNS emphasizes the clinical heterogeneity of PD

both in the prodromal phase as well as during the course of

the disease. Accordingly, the International Parkinson and

Movement Disorder Society (MDS) has included a range of

non-motor symptoms to be included in the PD diagnosis

(Postuma et al. 2015). In this context, the existence of

several subtypes of PD was highlighted in cluster analysis

studies that evaluated non-motor and motor symptoms in

newly diagnosed untreated patients (Erro et al. 2013;

Marras and Chaudhuri 2016; Pont-Sunyer et al. 2015;

Reijnders et al. 2009; Todorova et al. 2014; Zis et al. 2015;

2014). Incorporation of non-motor symptoms as an obli-

gatory clinical assessment could help to develop subtype-

directed treatment strategies (personalized therapies) to

avoid suboptimal care (Sauerbier et al. 2016). In addition,

recruitment of non-motor symptoms subtype-based PD

patients might help design clinical studies primarily

focused on non-motor symptoms outcomes (Klingelhoefer

and Reichmann 2017; Sauerbier et al. 2016).

The preclinical and prodromal stages of PD provide a

window of opportunity to initiate disease-modifying or

neuroprotective therapies. The search for specific clinical,

genetic, biochemical, and imaging biomarkers of PD in the

prodromal stage becomes a major challenge to identify

individuals with high risk of developing the disease (Noyce

et al. 2012; Postuma and Berg 2016). Based on results from

prospective studies, clinical markers that have been iden-

tified as being highly predictive of PD include REM sleep

behavior disorder, olfactory loss, constipation, depression,

and anxiety (Postuma and Berg 2016).

Given that the majority of non-motor symptoms in the

prodromal phase and in early stages of PD are at least

partially independent of DA, it is difficult to develop an

animal model associated with these symptoms. For

instance, systemic administration of MPTP to rhesus

monkeys did not mimic a full range of changes in

peripheral catecholamine systems that characterize the

human disease (Chaumette et al. 2009; Goldstein et al.

2003). However, rhesus monkeys chronically treated with

6-OHDA have been shown to develop cardiac sympathetic

neurodegeneration and loss of catecholaminergic enzymes

in the adrenal medulla, suggesting that these monkeys can

be used to evaluate disease-modifying strategies for

peripheral neuroprotection (Joers et al. 2014).

Several studies have shown that non-motor symptoms

can be induced in MPTP-intoxicated NHP PD model. In

fact, deficits in maintenance of a response set and shifting

attentional sets as well as impaired ability to sustain

spatial attention or to focus attention deficit in motor

readiness and planning and impaired time estimation were

observed in MPTP-treated rhesus monkeys (Decamp and

Schneider 2004; Pessiglione et al. 2004). As seen in

human, L-Dopa treatment does not reverse cognitive

impairment and, under certain conditions, can even wor-

sen these deficits (Decamp and Schneider 2009). In

addition, rhesus monkeys that received low doses of

MPTP during several days changed dramatically the

execution of visually guided saccades with small ampli-

tude and corrective saccades even at the presymptomatic

stage of the MPTP syndrome (Tereshchenko et al. 2015).

In addition, in rhesus monkeys that received chronic low-

doses of MPTP to obtain a slow onset of symptoms, a

rapid alteration (within 1 week) of rest-activity cycles and

cognitive deficits was observed, while parkinsonian motor

deficits were apparent 3–5 weeks after initiation of the

chronic MPTP treatment (Vezoli et al. 2011). The pres-

ence of both cognitive deficits and chronobiological

alterations persisted for several months and L-Dopa

treatment improved cognitive performance but did not

affect rest-activity rhythms (Vezoli et al. 2011).

Dramatic disruption of sleep-wake architecture was

observed in MPTP-treated rhesus monkeys characterized

by reduced sleep efficacy, increased daytime sleepiness,

fragmentation and reduction of sleep efficiency at night

time, reduced in REM sleep time, increased muscle tone

during REM and non-REM sleep episodes, and increased

number of awakenings and movements (Barraud et al.

2009; Belaid et al. 2014). In addition, in mild parkinsonian

MPTP-treated marmosets, significant REM sleep-specific

changes were observed without alteration of wake motor

behaviors (Verhave et al. 2011). L-Dopa treatment of

MPTP-treated rhesus monkeys improved sleep disorders

induced by the lesion; a combined L-Dopa treatment with a

cholinergic pedunculopontine nucleus lesion induced a

transient sleep impairment followed by a significant

improvement of sleep quality (Belaid et al. 2014). These

authors suggest that improvement of sleep quality after

cholinergic pedunculopontine nucleus lesion could be a

consequence of a reduction in night-time bradykinesia

(Belaid et al. 2014).
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In MPTP-lesioned marmosets, treatment with L-Dopa

can induce psychotic-like behaviors and hyperactivity

that may be related to neuropsychiatric symptoms and

impulse control disorder often experienced by PD

patients after chronic L-Dopa treatment (Fox et al. 2010;

Verhave et al. 2011). The neuropsychiatric-like behav-

iors were reported to appear the first day following L-

Dopa treatment and their severity did not correlate with

duration of treatment (Fox et al. 2010). A neuropsychi-

atric-like behavior rating scale was developed by these

authors including four categories of neuropsychiatric

behaviors: hyperkinesia, repetitive grooming, response to

non-apparent stimuli, and stereotypies (Fox et al. 2010).

Interestingly, the neuropsychiatric-like behavior rating

scale demonstrated high inter-rater reliability between

three trained raters of differing professional background

(Fox et al. 2010).

Translational values of primate models

The NHP models of PD reproduce well the response of

motor symptoms to effective DA medications in PD (Duty

and Jenner 2011). A good antidyskinetic drug in NHP

models is more difficult to translate for humans PD.

Indeed, antidyskinetic activity of a compound is sought

while maintaining antiparkinsonian activity; this has been

sought with non-dopaminergic adjunct treatments with L-

Dopa. Moreover, this requires from the animal models to

reproduce also the non-dopaminergic pathological changes

in PD thus adding complexity to the search.

Glutamate is an important neurotransmitter in PD and

LID and is, therefore, a primary target for antidyskinetic

drug development. Amantadine has antidyskinetic activity

in monkey models of PD (Blanchet et al. 1998; Gregoire

et al. 2013; Rylander et al. 2010a). These results in animal

models translate well in PD patients.

Compounds targeting metabotropic glutamate receptors

(mGlu receptors) are the objects of intense research for

dyskinesias. Several mGlu5 receptor negative allosteric

modulators are shown to reduce the severity of dyskinesias

in macaques (Johnston et al. 2010; Morin et al.

2010, 2013a; Rylander et al. 2010a). Clinical studies

investigating LID in PD patients with dipraglurant are on

going; for mavoglurant, the first clinical studies in PD

patients reported a reduction of LID (Berg et al. 2011) but

not the later studies.

Serotoninergic activity is another target to treat LID

under active investigation. For example, Sarizotan, a

serotonergic 5-HT1A agonist at low doses reduced LID in

MPTP primates, while at higher doses, it reduced the L-

Dopa-induced locomotor response (Gregoire et al. 2009).

Similarly, in PD patients, Sarizotan at low doses was

shown to reduce the duration and severity of dyskinesias,

while at higher doses, Sarizotan’s dopaminergic antagonist

property appears causing a deterioration of the

antiparkinsonian response. Dyskinesias are highly sensitive

to placebo effect, and in a large double-bind placebo

controlled clinical trial, all effects in the Sarizotan group

were statistically explained by the placebo-effect regres-

sion model (Goetz et al. 2008).

The adenosine A2A receptor is another target investi-

gated to treat motor complications. Istradefylline (KW-

6002), a selective adenosine A2A antagonist, has recently

been approved as an adjunct treatment in PD for the

management of L-Dopa-induced motor complications

(Dungo and Deeks 2013; Pinna 2014). It extends the

therapeutic action of L-Dopa while exacerbating the

expression of certain dyskinesias (Chen et al. 2013; Kondo

2015). Similarly, a recent study reported in MPTP NHP

that Istradefylline treatment alleviates postural deficits,

increases L-Dopa on time, but exacerbates dyskinesias (Ko

et al. 2016). By contrast, an earlier study in MPTP-lesioned

NHP reported that Istradefylline with L-DOPA or with

selective D1 or D2 DA agonists increases antiparkinsonian

activity but not dyskinesias (Kanda et al. 2000). Moreover,

Istradefylline was shown to improve cognition in L-DOPA-

treated MPTP-treated macaques (Ko et al. 2016). Parkin-

sonian NHP and human PD findings for sarizotan and

Istradefylline show that care should be taken in translating

NHP results to human PD. For example, dose–responses,

extent of the lesion to model early or later stage diseases,

should be carefully investigated for a better assessment of

non-dopaminergic treatments.

The present models in primate were designed to repro-

duce the nigrostriatal pathology and the main DA loss and

may not reproduce all pathological changes of PD. More-

over, MPTP monkeys with severe dyskinesias may alter

their pattern of movement to prevent their appearance such

as grasping bars of their cage to avoid bucco-lingual

dyskinesias or sit on their hand to avoid limb dyskinesias

(personal observations). In addition, pharmacological

agents can induce hypotension, muscle relaxation, or

sedation that reduces movement.

Limits of MPTP primate models for pharmacotherapy

testing

There are also experimental limitations of using MPTP

primates for translational studies. There is inter-animal

variability of PD symptoms and LID (Potts et al. 2014).

Parkinsonian symptoms as well as dystonic/choreic dysk-

inesias will differ for each animal, independently of the

dose of MPTP and L-Dopa received (Boyce et al. 1990a)

and some primates will not develop LID even with chronic

L-Dopa (Aubert et al. 2005; Guigoni et al. 2005). Never-

theless, this models the clinical situation, since not all
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patients will develop LID over time (Ahlskog and Muenter

2001).

Monophasic, or peak dose, dyskinesias are mainly

observed in MPTP-lesioned monkeys (Clarke et al. 1987;

Crossman et al. 1987). Peak dose dyskinesias are also

observed in PD patients treated with chronic L-Dopa but

dystonia and biphasic dyskinesias (at onset and end-of-

dose) also occur (Vidailhet et al. 1999). The latter are

seldom observed in parkinsonian primates (Boyce et al.

1990b). The development of LID in monkeys is faster than

in idiopathic PD appearing within days or weeks of

exposure to L-Dopa (Boyce et al. 1990a; Gregoire et al.

2008) and stabilizes at a given dose (Pearce et al. 1995).

Interestingly, LID also appeared rapidly in humans

exposed to MPTP that received L-Dopa treatment (Ballard

et al. 1985). By contrast in idiopathic PD patients, LIDs

generally develop after many years of L-Dopa administra-

tion (Ahlskog and Muenter 2001) and increase in severity

and duration (Fox and Brotchie 2010). Hence, the long-

term adaptation to DA loss and L-Dopa treatment bringing

fluctuating levels to the brain leading to LID may differ in

the primate model as compared to idiopathic PD.

While the MPTP-lesioned primate remains an excellent

model to assess compounds for their antiparkinsonian

activity as mono-therapy or as add-on to L-Dopa as well to

inhibit LID some have failed in clinical trials. Fox and

Brotchie (2010) proposed that it may be because of a lack of

equivalent endpoints employed in primate studies compared

to clinical trials (Fox and Brotchie 2010). They suggested to

measure ‘‘good’’ on time that is time when there is reversal

of PD symptoms with no or non-disabling dyskinesias

compared to ‘‘bad-on’’ time when animals have reversal of

PD symptoms but with disabling dyskinesias. Compounds

may be active in MPTP-lesioned NHPs to reduce parkin-

sonian signs and LID at higher doses than used for human

PD (Di Paolo et al. 2014; Rascol et al. 2014). Off target

activities of compounds tested in MPTP-lesioned NHPs may

limit their translation for human PD treatment.
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