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Abstract In small, selected samples, an approach com-

bining resting-state functional connectivity MRI and

multivariate pattern analysis has been able to successfully

classify patients diagnosed with unipolar depression.

Purposes of this investigation were to assess the gener-

alizability of this approach to a large clinically more

realistic sample and secondarily to assess the replicability

of previously reported methodological feasibility in a

more homogeneous subgroup with pronounced depressive

symptoms. Two independent subsets were drawn from the

depression and control cohorts of the BiDirect study, each

with 180 patients with and 180 controls without depres-

sion. Functional connectivity either among regions cov-

ering the gray matter or selected regions with known

alterations in depression was assessed by resting-state

fMRI. Support vector machines with and without auto-

mated feature selection were used to train classifiers dif-

ferentiating between individual patients and controls in

the entire first subset as well as in the subgroup. Model

parameters were explored systematically. The second

independent subset was used for validation of successful

models. Classification accuracies in the large, heteroge-

neous sample ranged from 45.0 to 56.1% (chance level

50.0%). In the subgroup with higher depression severity,

three out of 90 models performed significantly above

chance (60.8–61.7% at independent validation). In con-

clusion, common classification methods previously suc-

cessful in small homogenous depression samples do not

immediately translate to a more realistic population.

Future research to develop diagnostic classification

approaches in depression should focus on more specific

clinical questions and consider heterogeneity, including

symptom severity as an important factor.

Keywords fMRI � Functional connectivity �
Classification � MVPA � Depression

Introduction

There are currently ambitious but still preclinical efforts to

complement the diagnostic spectrum for individual patients

with unipolar depression, particularly the clinical entity

major depressive disorder (MDD), by imaging biomarkers.

These neurobiological markers are aimed at amending

therapeutic decision making by capturing biological

information which cannot be assessed by clinical inter-

views (Atluri et al. 2013; Phillips et al. 2015; Schneider

and Prvulovic 2013). Particularly, diagnostic models based

on multivariate pattern analyses (MVPA) of functional

magnetic resonance imaging (fMRI) have been proposed as

potentially powerful clinical tools for mental disorders

(Arbabshirani et al. 2017; Castellanos et al. 2013; Haller

et al. 2014; Klöppel et al. 2012; Lui et al. 2016; Orru et al.

2012; Patel et al. 2016; Sundermann et al. 2014a; Wolfers

et al. 2015).
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FMRI data acquisition at rest has attracted particular

interest of clinical researchers, because it seems to promise

robust information on functionally relevant neural net-

works with simple setups and little demand for patient

cooperation (Barkhof et al. 2014; Castellanos et al. 2013;

Smith et al. 2009; Sundermann et al. 2014a; Zhang and

Raichle 2010). Most approaches to analyze data obtained

by this so-called resting-state fMRI (rs-fMRI) are based on

analyses of functional connectivity (FC), the correlation of

spontaneous activity in remote brain areas (Margulies et al.

2010; van den Heuvel and Hulshoff Pol 2010). Rs-fMRI

has been used to characterize abnormal FC (rs-fcMRI) or

spontaneous local activity in MDD. Major findings are

increased spontaneous activity in cortical midline struc-

tures related to self-referential cognition and altered

interactions of these regions with lateral cortical areas

(Hamilton et al. 2015; Kaiser et al. 2015; Sundermann et al.

2014b). They have been interpreted as a correlate of a

reduced top–down inhibition of cortical midline and limbic

regions reflecting increased ruminative brooding (Hamilton

et al. 2015; Marchetti et al. 2012; Nejad et al. 2013). Rs-

fMRI, therefore, seems to provide information on impor-

tant aspects of MDD etiopathogenesis and symptomatology

(Kupfer et al. 2012).

MVPA conceptually overlaps with multivariate classi-

fication, pattern recognition, or predictive analyses. Here,

mainly, instances of supervised learning (a subfield of

machine learning) are summarized as MVPA. They facil-

itate the automated generation of decision rules based on

previous experience, i.e., labeled training data (Alpaydin

2010; James et al. 2013). MVPA integrates information

from multiple sources (for example, brain regions) with the

aim to increase discriminative power compared to con-

ventional univariate analyses of intrinsically noisy fMRI

data. MVPA, particularly nonlinear techniques, addition-

ally exploits complex relationships among individual fea-

tures. Information captured by MVPA, therefore, exceeds

and fundamentally differs from that assessed by standard

univariate analyses (Arbabshirani et al. 2017; Pereira et al.

2009; Sundermann et al. 2014a). Popular and powerful

classification tools for such analyses are support vector

machines (SVM). In SVMs, subjects/imaging data sets are

represented as points in a multidimensional feature space

and the diagnostic problem can be operationalized as

defining a hyperplane (i.e., a decision boundary) which best

distinguishes between two groups of subjects. The classi-

fier is trained using the ‘kernel trick’ by maximizing the

margin of separation between groups based on the exam-

ples closest to this hyperplane (Alpaydin 2010; James et al.

2013; Orru et al. 2012; Pereira et al. 2009; Vapnik 2000).

Different kernels and model parameters (such as C in

SVMs) can be chosen to influence model complexity.

These properties determine a model’s complexity and thus

its performance given a tradeoff between over- and

underfitting. If a model is overfitted it perfectly conforms

to the training samples while losing generalization ability

for new samples. On the other hand, if a model is under-

fitted, it is too simple to capture the information essential

for the diagnostic decision of interest. Consequently,

parameters have to be optimized to generate successful

diagnostic models that generalize to new clinical data

(Alpaydin 2010; Arbabshirani et al. 2017; James et al.

2013; Orru et al. 2012; Vapnik 2000). The actual classifi-

cation algorithm can be combined with different methods

for dimensionality reduction and feature selection (FS) to

prepare input data with the aim to improve diagnostic

accuracy (Mwangi et al. 2014; Pereira et al. 2009; Sun-

dermann et al. 2014a).

Groundbreaking work in the field of diagnostic MVPA

in depression has been reported by Craddock et al. in 2009:

The authors used FS and linear SVMs based on pairwise

FC. They reached diagnostic accuracies of 83.33% (hold-

out validation) (Craddock et al. 2009). Usually, MVPA

models to differentiate patients from controls were trained

on rs-fcMRI data of small, selected MDD samples and

explicitly healthy subjects under ideal research conditions:

these subjects were mostly young and had high levels of

current depressive symptoms. However, other factors of

clinical heterogeneity (e.g., antidepressant medication or

any clinical comorbidity) were either excluded or not

explicitly reported (Cao et al. 2014; Guo et al. 2014; Lord

et al. 2012; Ma et al. 2013; Qin et al. 2015; Ramasubbu

et al. 2016; Zeng et al. 2012; Zeng et al. 2014). One recent

study reported successful diagnostic performance even for

medication-free remitted MDD patients while even more

strictly constraining sources of heterogeneity (Bhaumik

et al. 2016). In contrast to that, Ramasubbu et al. observed

above-change accuracies in a subgroup with the highest

symptom severity only and still being in a range not

deemed clinically meaningful (Ramasubbu et al. 2016).

Another study included patients with schizophrenia as a

second control group (Yu et al. 2013). For a detailed

overview of sample characteristics and classification

methods in previous studies on diagnostic MVPA of rs-

fMRI data in depression, see Table 1.

Small samples as well as a high diversity of tested

computational models in the field carry an inherent bias to

a publication of false-positive results (Button et al. 2013).

Diagnostic classification studies typically use cross vali-

dation (CV) to partially alleviate problems coming along

with small samples. CV is an established method to assess

the generalizability of classifiers to new data. It makes

efficient use of data sets by repartitioning them into test-

and training sets multiple times (Pereira et al. 2009).

Nevertheless, rigorous confirmation of findings with inde-

pendent data (Ioannidis 2005; Sundermann et al. 2014a)

590 B. Sundermann et al.

123



T
a
b
le

1
S
am

p
le

ch
ar
ac
te
ri
st
ic
s,
m
et
h
o
d
s,
an
d
m
ai
n
cl
as
si
fi
ca
ti
o
n
re
su
lt
s
o
f
th
e
p
re
v
io
u
s
st
u
d
ie
s
re
p
o
rt
in
g
d
ia
g
n
o
st
ic

ap
p
li
ca
ti
o
n
s
o
f
rs
-f
cM

R
I
an
d
M
V
P
A

in
u
n
ip
o
la
r
d
ep
re
ss
io
n

A
u
th
o
r
an
d
y
ea
r

D
ep
re
ss
ed

p
at
ie
n
ts
*

C
o
n
tr
o
ls
*

M
et
h
o
d
s

R
es
u
lt
s

C
ra
d
d
o
ck

et
al
.
(2
0
0
9
)a

n
=

2
0
,
4
3
.2

±
1
0
.8

y
ea
rs
,
6
0
%

fe
m
al
e

D
ia
g
n
o
si
s
cu
rr
en
t
m
aj
o
r
d
ep
re
ss
iv
e
ep
is
o
d
e

(D
S
M
-I
V
)

D
ep
re
ss
io
n
se
ve
ri
ty

H
A
M
-D

-1
7
:
2
3
.7

±
1
.6

D
ep
re
ss
io
n
d
u
ra
ti
o
n
n
o
t
re
p
o
rt
ed

C
o
m
o
rb
id
it
ie
s
n
o
n
e
re
p
o
rt
ed
,
ex
cl
u
si
o
n
o
f

co
m
o
rb
id

p
sy
ch
ia
tr
ic

d
is
o
rd
er
s

M
ed
ic
a
ti
o
n
n
o
n
e

S
tr
u
ct
u
ra
l
M
R
I
fi
n
d
in
g
s
n
o
t
re
p
o
rt
ed

H
ea
lt
h
y
su
b
je
ct
s

n
=

2
0
,
2
8
.9

±
7
.2

y
ea
rs
,
6
0
%

fe
m
al
e

D
efi
n
it
io
n
w
it
h
o
u
t

n
eu
ro
lo
g
ic
al
/p
sy
ch
ia
tr
ic

co
n
d
it
io
n

C
o
m
o
rb
id
it
ie
s
n
o
n
e
re
p
o
rt
ed

M
ed
ic
a
ti
o
n
n
o
n
e

S
tr
u
ct
u
ra
l
M
R
I
fi
n
d
in
g
s
n
o
t

re
p
o
rt
ed

F
ea
tu
re
s
fu
n
ct
io
n
al

co
n
n
ec
ti
v
it
y
o
f
p
re
sp
ec
ifi
ed

R
O
Is

F
ea
tu
re

se
le
ct
io
n
d
if
fe
re
n
t

m
et
h
o
d
s

C
la
ss
ifi
er

li
n
ea
r
S
V
M

O
ve
ra
ll
a
cc
u
ra
cy

(C
V
)

6
2
.5
–
9
5
.0
%

S
en
si
ti
vi
ty

(C
V
)
n
o
t
re
p
o
rt
ed

S
p
ec
ifi
ci
ty

(C
V
)
n
o
t
re
p
o
rt
ed

O
ve
ra
ll
a
cc
u
ra
cy

(I
V
)

1
6
.7
–
8
3
.3
%

S
en
si
ti
vi
ty

(I
V
)
n
o
t
re
p
o
rt
ed

S
p
ec
ifi
ci
ty

(I
V
)
n
o
t
re
p
o
rt
ed

L
o
rd

et
al
.
(2
0
1
2
)

n
=

2
1
,
3
7
.9

±
1
1
.4

y
ea
rs
,
3
8
%

fe
m
al
e

D
ia
g
n
o
si
s
ac
u
te

ep
is
o
d
e
o
f
M
D
D

(I
C
D
-1
0
)

D
ep
re
ss
io
n
se
ve
ri
ty

H
A
M
-D

-1
7
:
1
5
.8

±
4
.8

D
ep
re
ss
io
n
d
u
ra
ti
o
n
m
ea
n
d
is
ea
se

o
n
se
t

ap
p
ro
x
im

at
el
y
6
y
ea
rs

p
ri
o
r
to

th
e
st
u
d
y
,
ex
ac
t

n
u
m
b
er

o
f
d
ep
re
ss
iv
e
ep
is
o
d
es

is
n
o
t
av
ai
la
b
le

fo
r
al
l
su
b
je
ct
s,
d
u
ra
ti
o
n
o
f
ep
is
o
d
es

b
et
w
ee
n

o
n
e
an
d
tw
el
v
e
m
o
n
th

(m
ea
n
4
.8
)

C
o
m
o
rb
id
it
ie
s
n
o
n
e
re
p
o
rt
ed
,
ex
cl
u
si
o
n
o
f

at
y
p
ic
al
fo
rm

s
o
f
d
ep
re
ss
io
n
an
d
an
y
ad
d
it
io
n
al

p
sy
ch
ia
tr
ic

d
is
o
rd
er
s

M
ed
ic
a
ti
o
n
n
o
n
e

S
tr
u
ct
u
ra
l
M
R
I
fi
n
d
in
g
s
n
o
t
re
p
o
rt
ed

H
ea
lt
h
y
su
b
je
ct
s

n
=

2
2
,
3
4
.6

±
6
.2

y
ea
rs
,
4
1
%

fe
m
al
e

D
efi
n
it
io
n
w
it
h
o
u
t

n
eu
ro
lo
g
ic
al
/p
sy
ch
ia
tr
ic

co
n
d
it
io
n

C
o
m
o
rb
id
it
ie
s
n
o
n
e
re
p
o
rt
ed

M
ed
ic
a
ti
o
n
n
o
n
e

S
tr
u
ct
u
ra
l
M
R
I
fi
n
d
in
g
s
n
o
t

re
p
o
rt
ed

F
ea
tu
re
s
g
ra
p
h
-t
h
eo
re
ti
ca
l

m
ea
su
re
s
(w

h
o
le

b
ra
in
)

F
ea
tu
re

se
le
ct
io
n
M
R
M
R

C
la
ss
ifi
er

li
n
ea
r
S
V
M

O
ve
ra
ll
a
cc
u
ra
cy

(C
V
)
u
p
to

9
9
.3
%

S
en
si
ti
vi
ty

(C
V
)
u
p
to

9
9
.3
%

S
p
ec
ifi
ci
ty

(C
V
)
u
p
to

9
9
.3
%

O
ve
ra
ll
a
cc
u
ra
cy

(I
V
)
n
o
t

re
p
o
rt
ed

S
en
si
ti
vi
ty

(I
V
)
n
o
t
re
p
o
rt
ed

S
p
ec
ifi
ci
ty

(I
V
)
n
o
t
re
p
o
rt
ed

Z
en
g
et

al
.
(2
0
1
2
),
M
a

et
al
.
(2
0
1
3
),
Z
en
g

et
al
.
(2
0
1
4
)
an
d
Q
in

et
al
.
(2
0
1
5
)b

n
=

2
4
,
3
1
.8

±
1
1
.0

y
ea
rs
,
6
7
%

fe
m
al
e

D
ia
g
n
o
si
s
ac
u
te

ep
is
o
d
e
o
f
M
D
D

(D
S
M
-I
V
)

D
ep
re
ss
io
n
se
ve
ri
ty

H
A
M
-D

-1
7
:
2
6
.4

±
5
.2

D
ep
re
ss
io
n
d
u
ra
ti
o
n
ag
e
o
f
il
ln
es
s
o
n
se
t
(y
ea
rs
)

2
8
.7

±
1
0
.9
,
n
u
m
b
er

o
f
p
re
v
io
u
s
ep
is
o
d
es

1
.6

±
0
.8
,
d
u
ra
ti
o
n
o
f
cu
rr
en
t
ep
is
o
d
e

(m
o
n
th
s)

5
.3

±
6
.3

C
o
m
o
rb
id
it
ie
s
ex
cl
u
si
o
n
o
f
m
aj
o
r
p
sy
ch
ia
tr
ic

o
r

n
eu
ro
lo
g
ic
al

il
ln
es
se
s
o
th
er

th
an

d
ep
re
ss
io
n

M
ed
ic
a
ti
o
n
n
o
n
e

S
tr
u
ct
u
ra
l
M
R
I
fi
n
d
in
g
s
n
o
t
re
p
o
rt
ed

H
ea
lt
h
y
su
b
je
ct
s

n
=

2
9
,
3
3
.6

±
1
0
.3

y
ea
rs
,

6
9
%

fe
m
al
e

D
efi
n
it
io
n
w
it
h
o
u
t

n
eu
ro
lo
g
ic
al
/p
sy
ch
ia
tr
ic

co
n
d
it
io
n

C
o
m
o
rb
id
it
ie
s
n
o
n
e
re
p
o
rt
ed

M
ed
ic
a
ti
o
n
n
o
n
e

S
tr
u
ct
u
ra
l
M
R
I
fi
n
d
in
g
s
n
o
t

re
p
o
rt
ed

F
ea
tu
re
s
d
if
fe
re
n
t
m
et
h
o
d
s

F
ea
tu
re

se
le
ct
io
n
d
if
fe
re
n
t

m
et
h
o
d
s

C
la
ss
ifi
er

d
if
fe
re
n
t
m
et
h
o
d
s

O
ve
ra
ll
a
cc
u
ra
cy

(C
V
)

6
9
.8
–
9
6
.2
%

S
en
si
ti
vi
ty

(C
V
)
n
o
t
re
p
o
rt
ed

S
p
ec
ifi
ci
ty

(C
V
)
n
o
t
re
p
o
rt
ed

O
ve
ra
ll
a
cc
u
ra
cy

(I
V
)
n
o
t

re
p
o
rt
ed

S
en
si
ti
vi
ty

(I
V
)
n
o
t
re
p
o
rt
ed

S
p
ec
ifi
ci
ty

(I
V
)
n
o
t
re
p
o
rt
ed

Diagnostic classification of unipolar depression based on resting-state functional… 591

123



T
a
b
le

1
co
n
ti
n
u
ed

A
u
th
o
r
an
d
y
ea
r

D
ep
re
ss
ed

p
at
ie
n
ts
*

C
o
n
tr
o
ls
*

M
et
h
o
d
s

R
es
u
lt
s

Y
u
et

al
.
(2
0
1
3
)

n
=

1
9
,
2
6
.7

±
7
.6

y
ea
rs
,
4
2
%

fe
m
al
e

D
ia
g
n
o
si
s
ac
u
te

M
D
D

(D
S
M
-I
V
)

D
ep
re
ss
io
n
se
ve
ri
ty

H
A
M
-D

-1
7
:
2
5
.4

±
6
.3

D
ep
re
ss
io
n
d
u
ra
ti
o
n
n
o
t
re
p
o
rt
ed

C
o
m
o
rb
id
it
ie
s
ex
cl
u
si
o
n
o
f
p
sy
ch
ia
tr
ic

o
r

n
eu
ro
lo
g
ic
al

il
ln
es
se
s
o
th
er

th
an

d
ep
re
ss
io
n
o
r

sc
h
iz
o
p
h
re
n
ia

M
ed
ic
a
ti
o
n
n
o
t
re
p
o
rt
ed

S
tr
u
ct
u
ra
l
M
R
I
fi
n
d
in
g
s
n
o
t
re
p
o
rt
ed

H
ea
lt
h
y
su
b
je
ct
s

n
=

3
8
,
2
4
.4

±
4
.5

y
ea
rs
,
2
9
%

fe
m
al
e

D
efi
n
it
io
n
w
it
h
o
u
t

n
eu
ro
lo
g
ic
al
/p
sy
ch
ia
tr
ic

co
n
d
it
io
n

C
o
m
o
rb
id
it
ie
s
n
o
n
e
re
p
o
rt
ed

M
ed
ic
a
ti
o
n
n
o
t
re
p
o
rt
ed

S
tr
u
ct
u
ra
l
M
R
I
fi
n
d
in
g
s
n
o
t

re
p
o
rt
ed

S
ch
iz
o
p
h
re
n
ia

n
=

3
2
,
2
4
.0

±
5
.7

y
ea
rs
,
2
2
%

fe
m
al
e

D
ia
g
n
o
si
s
D
S
M
-I
V

C
o
m
o
rb
id
it
ie
s
ex
cl
u
si
o
n
o
f

o
th
er

p
sy
ch
ia
tr
ic

o
r

n
eu
ro
lo
g
ic
al

il
ln
es
se
s

M
ed
ic
a
ti
o
n
n
o
t
re
p
o
rt
ed

S
tr
u
ct
u
ra
l
M
R
I
fi
n
d
in
g
s
n
o
t

re
p
o
rt
ed

F
ea
tu
re
s
fu
n
ct
io
n
al

co
n
n
ec
ti
v
it
y
o
f
R
O
Is

(w
h
o
le

b
ra
in
)

F
ea
tu
re

se
le
ct
io
n
in
tr
in
si
c

d
is
cr
im

in
at
iv
e
an
al
y
si
s
o
r

p
ri
n
ci
p
al

co
m
p
o
n
en
t
an
al
y
si
s

C
la
ss
ifi
er

li
n
ea
r
S
V
M

(m
u
lt
ic
la
ss
)

O
ve
ra
ll
a
cc
u
ra
cy

(C
V
)
u
p
to

8
0
.9
%

S
en
si
ti
vi
ty

(C
V
)
n
o
t
re
p
o
rt
ed

S
p
ec
ifi
ci
ty

(C
V
)
n
o
t
re
p
o
rt
ed

O
ve
ra
ll
a
cc
u
ra
cy

(I
V
)
n
o
t

re
p
o
rt
ed

S
en
si
ti
vi
ty

(I
V
)
n
o
t
re
p
o
rt
ed

S
p
ec
ifi
ci
ty

(I
V
)
n
o
t
re
p
o
rt
ed

G
u
o
et

al
.
(2
0
1
4
)

n
=

3
6
,
2
8
.4

±
9
.7

y
ea
rs
,
6
1
%

fe
m
al
e

D
ia
g
n
o
si
s
fi
rs
t
o
n
se
t
o
f
ac
u
te

M
D
D

(D
S
M
-I
V
)

D
ep
re
ss
io
n
se
ve
ri
ty

H
A
M
-D

-2
4
:
2
3
.1

±
1
3
.4

D
ep
re
ss
io
n
d
u
ra
ti
o
n
n
o
t
re
p
o
rt
ed

C
o
m
o
rb
id
it
ie
s
n
o
n
e
re
p
o
rt
ed
,
ex
cl
u
si
o
n
o
f

p
sy
ch
ia
tr
ic

o
r
n
eu
ro
lo
g
ic
al

d
is
o
rd
er
s

M
ed
ic
a
ti
o
n
n
o
n
e

S
tr
u
ct
u
ra
l
M
R
I
fi
n
d
in
g
s
n
o
t
re
p
o
rt
ed

H
ea
lt
h
y
su
b
je
ct
s

n
=

2
7
,
2
6
.8

±
9
.6

y
ea
rs
,
5
6
%

fe
m
al
e

D
efi
n
it
io
n
w
it
h
o
u
t

n
eu
ro
lo
g
ic
al
/p
sy
ch
ia
tr
ic

co
n
d
it
io
n

C
o
m
o
rb
id
it
ie
s
n
o
n
e
re
p
o
rt
ed

M
ed
ic
a
ti
o
n
n
o
n
e

S
tr
u
ct
u
ra
l
M
R
I
fi
n
d
in
g
s
n
o
t

re
p
o
rt
ed

F
ea
tu
re
s
g
ra
p
h
-t
h
eo
re
ti
ca
l

m
ea
su
re
s
(w

h
o
le

b
ra
in
)

F
ea
tu
re

se
le
ct
io
n
u
n
iv
ar
ia
te

fi
lt
er

C
la
ss
ifi
er

n
eu
ra
l
n
et
w
o
rk

O
ve
ra
ll
a
cc
u
ra
cy

(C
V
):
u
p
to

9
0
.5
%

S
en
si
ti
vi
ty

(C
V
)
n
o
t
re
p
o
rt
ed

S
p
ec
ifi
ci
ty

(C
V
)
n
o
t
re
p
o
rt
ed

O
ve
ra
ll
a
cc
u
ra
cy

(I
V
)
n
o
t

re
p
o
rt
ed

S
en
si
ti
vi
ty

(I
V
):

n
o
t
re
p
o
rt
ed

S
p
ec
ifi
ci
ty

(I
V
)
n
o
t
re
p
o
rt
ed

C
ao

et
al
.
(2
0
1
4
)

n
=

3
9
,
2
8
.0

±
7
.5

y
ea
rs
,
5
9
%

fe
m
al
e

D
ia
g
n
o
si
s
M
D
D

p
at
ie
n
ts

D
ep
re
ss
io
n
se
ve
ri
ty

H
A
M
-D

-1
7
:
2
5
.0

±
5
.0

D
ep
re
ss
io
n
d
u
ra
ti
o
n
2
3
.3

±
3
7
.8

m
o
n
th
s

C
o
m
o
rb
id
it
ie
s
ex
cl
u
si
o
n
o
f
n
eu
ro
lo
g
ic
al
/s
er
io
u
s

p
h
y
si
ca
l
il
ln
es
s

M
ed
ic
a
ti
o
n
n
o
t
re
p
o
rt
ed

S
tr
u
ct
u
ra
l
M
R
I
fi
n
d
in
g
s
n
o
t
re
p
o
rt
ed

H
ea
lt
h
y
su
b
je
ct
s

n
=

3
7
,
2
8
.2

±
6
.5

y
ea
rs
,
6
9
%

fe
m
al
e

D
efi
n
it
io
n
w
it
h
o
u
t

n
eu
ro
lo
g
ic
al
/p
sy
ch
ia
tr
ic

co
n
d
it
io
n

C
o
m
o
rb
id
it
ie
s
n
o
n
e
re
p
o
rt
ed

M
ed
ic
a
ti
o
n
n
o
n
e

S
tr
u
ct
u
ra
l
M
R
I
fi
n
d
in
g
s
n
o
t

re
p
o
rt
ed

F
ea
tu
re
s
fu
n
ct
io
n
al

co
n
n
ec
ti
v
it
y
o
f
R
O
Is

(w
h
o
le

b
ra
in
)

F
ea
tu
re

se
le
ct
io
n
p
ro
b
ab
il
is
ti
c

d
en
si
ty

fu
n
ct
io
n
o
r
u
n
iv
ar
ia
te

fi
lt
er

C
la
ss
ifi
er

n
o
n
li
n
ea
r
S
V
M

O
ve
ra
ll
a
cc
u
ra
cy

(C
V
)
u
p
to

8
4
.2
%

S
en
si
ti
vi
ty

(C
V
)
n
o
t
re
p
o
rt
ed

S
p
ec
ifi
ci
ty

(C
V
)
n
o
t
re
p
o
rt
ed

O
ve
ra
ll
a
cc
u
ra
cy

(I
V
)
n
o
t

re
p
o
rt
ed

S
en
si
ti
vi
ty

(I
V
)
n
o
t
re
p
o
rt
ed

S
p
ec
ifi
ci
ty

(I
V
)
n
o
t
re
p
o
rt
ed

592 B. Sundermann et al.

123



T
a
b
le

1
co
n
ti
n
u
ed

A
u
th
o
r
an
d
y
ea
r

D
ep
re
ss
ed

p
at
ie
n
ts
*

C
o
n
tr
o
ls
*

M
et
h
o
d
s

R
es
u
lt
s

B
h
au
m
ik

et
al
.
(2
0
1
6
)

n
=

3
8
,
2
1
.0

±
1
.5

y
ea
rs
,
7
6
%

fe
m
al
e

D
ia
g
n
o
si
s
re
m
it
te
d
M
D
D

p
at
ie
n
ts

D
ep
re
ss
io
n
se
ve
ri
ty

H
A
M
-D

-1
7
:
2
.4

±
3
.0

D
ep
re
ss
io
n
d
u
ra
ti
o
n
1
.2

±
1
.3

ep
is
o
d
es

C
o
m
o
rb
id
it
ie
s
ex
cl
u
si
o
n
o
f
n
eu
ro
lo
g
ic
al
/s
er
io
u
s

p
h
y
si
ca
l
il
ln
es
s

M
ed
ic
a
ti
o
n
n
o
n
e

S
tr
u
ct
u
ra
l
M
R
I
fi
n
d
in
g
s
n
o
t
re
p
o
rt
ed

H
ea
lt
h
y
su
b
je
ct
s

n
=

2
9
,
2
1
.0

±
1
.6

y
ea
rs
,
5
5
%

fe
m
al
e

D
efi
n
it
io
n
su
b
je
ct
s
an
d
th
ei
r

fi
rs
t
d
eg
re
e
re
la
ti
v
es

w
it
h
o
u
t

ax
is

I
o
r
II

p
sy
ch
ia
tr
ic

d
is
o
rd
er
s

C
o
m
o
rb
id
it
ie
s
n
o
n
e
re
p
o
rt
ed

M
ed
ic
a
ti
o
n
n
o
n
e

S
tr
u
ct
u
ra
l
M
R
I
fi
n
d
in
g
s
n
o
t

re
p
o
rt
ed

F
ea
tu
re
s
fu
n
ct
io
n
al

co
n
n
ec
ti
v
it
y
o
f
p
re
sp
ec
ifi
ed

R
O
Is

F
ea
tu
re

se
le
ct
io
n
d
if
fe
re
n
t

m
et
h
o
d
s

C
la
ss
ifi
er

li
n
ea
r
S
V
M

O
ve
ra
ll
a
cc
u
ra
cy

(C
V
)
u
p
to

7
6
.1
%

S
en
si
ti
vi
ty

(C
V
)
u
p
to

8
1
.5
%

S
p
ec
ifi
ci
ty

(C
V
)
u
p
to

6
8
.9
%

O
ve
ra
ll
a
cc
u
ra
cy

(I
V
)
u
p
to

7
7
.8
%

S
en
si
ti
vi
ty

(I
V
)
u
p
to

8
0
.0
%

S
p
ec
ifi
ci
ty

(I
V
)
u
p
to

7
5
.0
%

R
am

as
u
b
b
u
et
al
.
(2
0
1
6
)

n
=

4
5
,
3
7
±

1
1
y
ea
rs
,
6
4
%

fe
m
al
e
(s
u
b
d
iv
id
ed

in
to

g
ro
u
p
s
ac
co
rd
in
g
to

sy
m
p
to
m

se
v
er
it
y
)

D
ia
g
n
o
si
s
ac
u
te

ep
is
o
d
e
o
f
M
D
D

(D
S
M
-I
V
)

D
ep
re
ss
io
n
se
ve
ri
ty

H
A
M
-D

-1
7
:
2
2
±

4

D
ep
re
ss
io
n
d
u
ra
ti
o
n
1
2
±

8
y
ea
rs

o
v
er
al
l

d
is
ea
se

d
u
ra
ti
o
n
,
5
9
±

6
6
m
o
n
th
s
d
u
ra
ti
o
n
o
f

cu
rr
en
t
ep
is
o
d
e

C
o
m
o
rb
id
it
ie
s
ex
cl
u
si
o
n
o
f
m
aj
o
r
p
sy
ch
ia
tr
ic

d
is
o
rd
er
s
o
th
er

th
an

d
ep
re
ss
io
n
;
ex
cl
u
si
o
n

n
eu
ro
lo
g
ic
al

o
r
m
ed
ic
al

d
is
o
rd
er
s;
ex
cl
u
si
o
n
o
f

tr
ea
tm

en
t-
re
si
st
an
t
M
D
D

p
at
ie
n
ts

M
ed
ic
a
ti
o
n
n
o
n
e

S
tr
u
ct
u
ra
l
M
R
I
fi
n
d
in
g
s
n
o
t
re
p
o
rt
ed

H
ea
lt
h
y
su
b
je
ct
s

n
=

1
9
,
3
3
±

1
0
y
ea
rs
,
5
8
%

fe
m
al
e

D
efi
n
it
io
n
su
b
je
ct
s
an
d
fa
m
il
y

h
is
to
ry

w
it
h
o
u
t
ax
is

I

p
sy
ch
ia
tr
ic

d
is
o
rd
er
s

C
o
m
o
rb
id
it
ie
s
n
o
t
re
p
o
rt
ed

M
ed
ic
a
ti
o
n
n
o
t
re
p
o
rt
ed

S
tr
u
ct
u
ra
l
M
R
I
fi
n
d
in
g
s
n
o
t

re
p
o
rt
ed

F
ea
tu
re
s
d
if
fe
re
n
t

re
p
re
se
n
ta
ti
o
n
s
o
f
fu
n
ct
io
n
al

co
n
n
ec
ti
v
it
y

F
ea
tu
re

se
le
ct
io
n
d
if
fe
re
n
t

m
et
h
o
d
s

C
la
ss
ifi
er

li
n
ea
r
S
V
M

O
ve
ra
ll
a
cc
u
ra
cy

(C
V
)

4
9
–
6
6
%

(o
n
ly

si
g
n
ifi
ca
n
t
in

g
ro
u
p
w
it
h
m
o
st

se
v
er
e

sy
m
p
to
m
s)

S
en
si
ti
vi
ty

(C
V
)
8
–
5
9
%

S
p
ec
ifi
ci
ty

(C
V
)
5
9
–
8
9
%

O
ve
ra
ll
a
cc
u
ra
cy

(I
V
)
n
o
t

re
p
o
rt
ed

S
en
si
ti
vi
ty

(I
V
)
n
o
t
re
p
o
rt
ed

S
p
ec
ifi
ci
ty

(I
V
)
n
o
t
re
p
o
rt
ed

C
V
cr
o
ss

v
al
id
at
io
n
,
H
A
M
-D

-1
7
H
am

il
to
n
R
at
in
g
S
ca
le

fo
r
D
ep
re
ss
io
n
,
IV

in
d
ep
en
d
en
t
v
al
id
at
io
n
,
M
R
M
R
m
ax
im

u
m

re
d
u
n
d
an
cy

m
in
im

u
m

re
le
v
an
ce

fe
at
u
re

se
le
ct
io
n
,
R
O
I
re
g
io
n
o
f
in
te
re
st
,

S
V
M

su
p
p
o
rt
v
ec
to
r
m
ac
h
in
e

*
M
ea
su
re
s
re
p
re
se
n
t
m
ea
n
±

S
D

if
n
o
t
st
at
ed

d
if
fe
re
n
tl
y

a
T
ra
in
in
g
sa
m
p
le

ch
ar
ac
te
ri
st
ic
s.
T
h
is

st
u
d
y
in
v
o
lv
ed

a
se
co
n
d
v
al
id
at
io
n
sa
m
p
le

b
G
ro
u
p
ed

b
ec
au
se

o
f
id
en
ti
ca
l
sa
m
p
le

ch
ar
ac
te
ri
st
ic
s
an
d
o
v
er
la
p
p
in
g
au
th
o
rs

Diagnostic classification of unipolar depression based on resting-state functional… 593

123



and sufficiently large samples (Arbabshirani et al. 2017) is

crucial to assess whether these desirable methods can be

translated from well-controlled research environments to

routine clinical diagnostic applications in more heteroge-

neous patient populations.

The purposes of this multi-step investigation were repli-

cation, clinical translation, andmodel optimization: Themain

goalwas to clarify if the approach to combine rs-fcMRIwith a

common MVPA approach to diagnose MDD is feasible in a

diverse population as a prerequisite for generalization to

routine depression care. Thereby, we wanted to identify

suitable modelling parameters and FS techniques. SVMs, a

well-established classification method, were applied to rs-

fcMRI data from a large cohort acquired under clinically

realistic conditions. The MDD sample was heterogeneous

regarding symptom severity, comorbidity, and therapy status.

A non-depressed population sample served as control group.

In addition, we aimed to corroborate the feasibility of this

approach in a more homogeneous subgroup of patients with

more distinct depressive symptoms.

Methods

First, we give a brief overview of our data analysis strategy:

For the main analysis, two sub-samples—both comprising

patients with MDD and controls—were drawn from partic-

ipants in a cohort study. Estimates of functional connectivity

derived from rs-fMRI data were used as features to train

computational models to identify individual MDD patients.

All this modelling was accomplished in the form of planned

exploratory analyses with widely varying technical param-

eters in the first sub-sample. The second sub-sample was

reserved to validate potentially successful models identified

at that exploratory stage. In additional analyses, we evalu-

atedmodelling performance in amore selected subgroup and

explored the univariate information content of the features

used.

Subjects: the BiDirect study sample

This investigation is based on baseline data from the

BiDirect study (Hermesdorf et al. 2016; Teismann et al.

2014; Teuber et al. 2017). BiDirect primarily aims to dis-

entangle the bidirectional relationship between depression

and subclinical arteriosclerosis. The particular analysis

reported here uses data from the depression cohort (current

or recent episode) and the population control cohort (in-

vited via population register). The acquired data comprised

clinical, psychological, and neuropsychometric testing.

Structural and functional [wakeful rest, emotional faces

paradigm (Dannlowski et al. 2009)] imaging was also

performed. Psychometric assessment included the Center

for Epidemiological Studies Depression Scale (CES-D)

(Radloff 1977), Hamilton Rating Scale for Depression

(HAM-D-17) (Hamilton 1960), and the Mini International

Neuropsychiatric Interview (MINI) (Ackenheil et al. 1999).

Clinical data included information on medical history and

current medication. These drugs were classified according

to the Anatomical Therapeutical Classification Systems

(ATC, http://www.whocc.no/atc_ddd_index/). A compre-

hensive study protocol detailing recruitment and data

acquisition of BiDirect has been published (Teismann et al.

2014). Sub-sample selection for this methodological work,

including demographical and clinical characteristics, will

be detailed in the following.

Resting-state fMRI data acquisition and feature

extraction

MRI data were acquired in a setting equivalent to clinical

appointments: The same 3 Tesla scanner is also used for

clinical examinations, and data acquisition was accomplished

by clinical personnel. Rs-fMRI data were acquired using T2*-

weighted echo planar imaging at the end of the MRI protocol

[see the methods supplement (Online Resource 1) for further

details on the rs-fMRI protocol]. 1378 technically complete

rs-fMRI data sets were obtained. Structural scans were sub-

jected to neuroradiological reporting.

We followed a standard approach for preprocessing and

analysis of individual rs-fMRI data sets implemented in the

Data Processing Assistant for Resting-State fMRI

(DPARSF 2.3) (Chao-Gan and Yu-Feng 2010), REST 1.8

(Song et al. 2011) and SPM8 (http://www.fil.ion.ucl.ac.uk/

spm/) [see the methods supplement (Online Resource 1) for

further details].

Signal time courses were extracted from two sets of

ROIs: (1) peak coordinates (n = 38) derived from a meta-

analysis on rs-fMRI in depression (Sundermann et al.

2014b) as center coordinates for spherical ROIs (5 mm

radius). They represent prior knowledge on altered spon-

taneous activity in MDD, a common approach in MVPA of

MRI data (Chu et al. 2012; Schrouff et al. 2013). (2)

Another set consisted of 200 ROIs spanning the whole gray

matter. They were derived using spatially constrained

spectral clustering of rs-fMRI data with the aim to better

comprehend the functional architecture of the human brain

compared to conventional atlases based on surface anat-

omy (Craddock et al. 2012). They are distributed with

DPARSF (Chao-Gan and Yu-Feng 2010). FC was deter-

mined by calculating pairwise correlation (Pearson’s r) for

all ROIs within each of the two sets separately. Subse-

quently, correlation coefficients were z-transformed. FC

analyses resulted in 703 unique features for the meta-ana-

lytically defined ROIs and 19,900 unique features for the

whole-brain parcellation.
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Table 2 Demographical and medical characteristics of subjects in subset 1 used for exploratory model comparison

MDD (n = 180) Controls

(n = 180)

Statistical

significancea

General demographical characteristics

Age (mean ± SD) 50.8 ± 7.1 years 51.2 ± 7.6 years

Sex (female:male) 86:94 86:94

Depression-related characteristics

ICD F32 (n) 90 (50.0%)

ICD F33 (n) 90 (50.0%)

Disease durationb (median) 49.5 months

Current HAM-D-17 score (mean ± SD) 13.2 ± 6.4

Current CES-D score (mean ± SD) 26.0 ± 12.0

Current antidepressant medication (n) 149 (82.8%)

ATC N06AA—non-selective monoamine reuptake inhibitors (n) 20 (11.1%)

ATC N06AB—selective serotonin reuptake inhibitors (n) 40 (22.2%)

ATC N06AF—monoamine oxidase inhibitors, non-selective (n) 1 (0.6%)

ATC N06AG—monoamine oxidase A inhibitors (n) 0 (0.0%)

ATC N06AX—other antidepressants (n) 111 (61.7%)

History of anxiety (n) 57 (31.7%)

History of psychotic symptoms (n) 3 (1.7%)

History of addiction (n) 10 (5.6%)

History of anorexia (n) 3 (1.7%)

Physical (Co-)morbidityc

History of cardiovascular disease (n) 85 (47.2%) 44 (24.4%) p\ 0.001e

History of respiratory disease (n) 28 (15.6%) 20 (11.1%)

History of endocrine and metabolic disorders (n) 46 (25.6%) 30 (16.7%) p = 0.039e

History of history of cancer (n) 15 (8.3%) 9 (5.0%)

History of movement disorders (n) 4 (2.2%) 1 (0.6%)

History of rheumatism or chronic pain (n) 44 (24.4%) 20 (11.1%) p = 0.001e

Medication other than antidepressive

ATC A—alimentary tract and metabolism (n) 41 (22.8%) 14 (7.8%) p\ 0.001e

ATC B—blood and blood forming organs (n) 6 (3.3%) 7 (3.9%)

ATC C—cardiovascular system (n) 73 (40.6%) 43 (23.9%) p\ 0.001e

ATC D—dermatologicals (n) 4 (2.2%) 2 (1.1%)

ATC G—genito-urinary system and sex hormones (n) 13 (7.2%) 14 (7.8%)

ATC H—systemic hormonal preparations, excluding sex hormones and insulins (n) 28 (15.6%) 25 (13.9%)

ATC J—antiinfectives for systemic use (n) 1 (0.6%) 1 (0.6%)

ATC L—antineoplastic and immunomodulating agents (n) 0 (0.0%) 1 (0.6%)

ATC M—musculo-skeletal system (n) 21 (11.7%) 15 (8.3%)

ATC N01—anesthetics (n) 0 (0.0%) 0 (0.0%)

ATC N02—analgesics (n) 21 (11.7%) 15 (8.3%)

ATC N03—antiepileptics (n) 9 (5.0%) 0 (0.0%)

ATC N04—anti-Parkinson drugs (n) 2 (1.1%) 0 (0.0%)

ATC N05—psycholepticsd (n) 98 (54.4%) 0 (0.0%) p\ 0.001e

ATC N06—psychoanaleptics excl. antidepressants (see above) (n) 1 (0.6%) 0 (0.0%)

ATC N07—other nervous system drugs (n) 0 (0.0%) 0 (0.0%)

ATC P—antiparasitic products, insecticides and repellents (n) 0 (0.0%) 0 (0.0%)

ATC R—respiratory system (n) 7 (3.9%) 16 (8.9%)

ATC S—sensory organs (n) 5 (2.8%) 8 (4.4%)

ATC V—various (n) 0 (0.0%) 0 (0.0%)

a Only significant results are reported, only tested for significance in cases when more than ten subjects were in any group
b Since initial medical diagnosis
c Self-report data (summary of prespecified items)
d Including anxiolytic and antipsychotic medication
e Chi2-test
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Definition of balanced sub-samples for model

generation and validation

To attain unbiased estimates of the generalizability ofMVPA

to diagnose the clinical entity MDD, we chose to draw bal-

anced sub-samples from the whole BiDirect sample. This

three-step procedure applied here is an important character-

istic of this investigation. It has been specifically chosen to

fulfill the goals of parameter optimization/model identifica-

tion and model validation in this investigation:

1. We excluded data sets bearing particular risks of

potential bias through imaging artefacts, brain lesions,

and clinical characteristics.

2. The complete BiDirect sample exhibited some demo-

graphical and cohort size imbalances. In contrast to the

conventional statistical modelling, these imbalances

cannot directly be taken into account when training

and assessing MVPA models. We, therefore, adopted a

pairwise-matching procedure to draw a balanced sub-

sample from both the MDD and control cohorts.

3. The resulting data set was randomly split into half.

This resulted in two highly comparable yet statistically

independent data sets: subset 1 (unipolar depression:

n = 180, controls: n = 180) was used for all subse-

quent explorative analyses to identify sufficiently

accurate diagnostic models. Demographical and

detailed clinical characteristics of both patients and

controls in this subset are shown in Table 2. Subset 2

(unipolar depression: n = 180, controls: n = 180) was

kept apart from subset 1 and remained as an

general exclusion criteria
-  severe head motion (n = 21)
-  major structural lesion (n = 34)
-  anxiolytic for structural scan (n = 9)

complete baseline rs-fMRI dataset
depression and control cohort (n = 1378)

suitable rs-fMRI datasets (n = 1314)

depression (n = 681) general population (n = 633)

specific exclusion criteria
-  ICD diagnosis of schizoaffective disorder,
 bipolar disorders, manic disorder, primary
 anxiety disorder (n = 42)
-  suspected hypomanic episode in MINI (n = 97)

specific exclusion criteria
- CES-D ≥ 12 (n = 190)
- suspected MDD or dysthymia in MINI (n = 46)
-  related diagnosis (anxiety, addiction, 
 psychosis) (n = 44)
-  antidepressant medication (n = 46)

depression (n = 567) controls (n = 385)

drawing pairs matched for sex, age 
and MRI protocol prior to rs-fMRI
inherent exclusion of subjects (n = 232) 

depression (n = 360)
controls (n = 360)

random partitioning

SUBSET 1 
depression (n = 180)
controls (n = 180)

SUBSET 2 
depression (n = 180)
controls (n = 180)

Fig. 1 Flow chart of steps leading from the initial data set to two balanced and independent subsets facilitating unbiased estimates of the

diagnostic performance regarding MDD. Figures do not necessarily add to 100% as some data sets fulfilled multiple exclusion criteria
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independent hold-out data set to validate potentially

successful models with a high level of evidence.

See Fig. 1 and the methods supplement (Online

Resource 1) for further details on sub-sample selection.

Training and performance estimation of diagnostic

MVPA models

Subsequent MVPA used the z-transformed correlation

coefficients as features to train diagnostic models for this

two-class problem (MDD vs. controls). Analyses were

implemented using RapidMiner (open source edition, ver-

sion 5.3.013, RapidMiner GmbH, Dortmund, North Rhine-

Westphalia, Germany, http://github.com/rapidminer/)

(Mierswa et al. 2006; Schowe 2011). Given the comparably

large data set available, we opted for a hierarchical

approach to identification and validation of potential

diagnostic models. In a first step, a wide range of models

was explored in subset 1. As pointed out previously, the

independent subset 2 was kept for validation and poten-

tially further refinement of models. An overview of the

MVPA approach is presented in Fig. 2. In-depth informa-

tion on our MVPA approach is presented in the methods

supplement (Online Resource 1).

We explored the diagnostic accuracy, sensitivity, and

specificity of soft-margin SVM models [C-SVC from

LIBSVM (Chang and Lin 2011)]. Linear kernels are the

preprocessing

fMRI raw data

fMRI data comparable between subjects
and with reduced confounders

raw time-series data raw time-series data

703 unique correlation
coefficients (z-transformed)

per subject

19’900 unique correlation
coefficients (z-transformed)

per subject

time-series 
extraction

correlation-
based

FC-analysis

parcellation of
gray matter (200 ROIs)

38 meta-analytically
defined ROIs

SUBSET 1                            10-fold CV �

C
LA

SS
IF

IE
R

model 
application

FS (optional)

SVM classifier
training

training 
subgroup

testing 
subgroup

SUBSET 1                            10-fold CV �

C
LA

SS
IF

IE
R

model 
application

FS (optional)

SVM classifier
training

training 
subgroup

testing 
subgroup

ESTIMATES OF 
DIAGNOSTIC ACCURACY

SUBSET 2 validation of successful classifiers in

Fig. 2 Overview of the general

data analysis pipeline for

generating FC-based classifiers
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preferential choice in diagnostic SVM models of neu-

roimaging data given the typically higher number of fea-

tures than patients (Orru et al. 2012), have been the most

common choice in MDD (see Table 1), and were conse-

quentially evaluated here. We additionally explored non-

linear radial basis function (RBF) kernels to facilitate a

higher model complexity. Model parameters were varied

systematically over a wide range spanning potential under-

and overfitting to identify optimal settings. Models were

tested either with one of four different FS techniques or

without any FS: a t test-based filter, a filter based on linear

SVM weights, recursive feature elimination (SVM-RFE)

(Guyon et al. 2002), and minimum redundancy maximum

relevance (MRMR) FS (Ding and Peng 2005). Classifica-

tion accuracies were estimated using cross validation (CV)

(Pereira et al. 2009).

In total, 210 different settings were assessed in the

exploratory analysis in subset 1.

Subgroup analysis in patients with more severe

current depressive symptoms

To further explore the technical feasibility of different

models as well as the potential influence of the severity of

depressive symptoms at the time of MR scanning and to

allow for comparison with pilot studies in severely

depressed patients, we investigated the diagnostic accura-

cies in a subgroup of subset 1. This subgroup comprised

one-third of MDD patients (n = 60) with the most severe

depressive symptoms according to HAM-D-17 and their

respective matched controls (n = 60). The mean HAM-D-

17-score in this MDD subgroup was 20.2 ± SD 2.9. For

further subject characteristics, see supplementary Table 3

(Online Resource 2). Exploratory analyses comprised the

same modelling and validation approaches as in the main

analysis. As an exception, only moderate C values were

tested as very low or very high C values in the main

analysis did either not change results or led to biased

classifiers with a high tendency towards a single diagnostic

label (see results). 90 different settings were assessed.

Parameter sets that achieved an overall cross-validated

accuracy of at least 60% were further validated in subset 2.

We, therefore, drew a comparable subgroup of the most

severely depressed MDD patients (n = 60, mean HAM-D-

17 score: 20.9 ± SD 3.3) and their controls (n = 60) from

the independent subset 2 (see supplementary Table 6 in

Online Resource 2). Parameters derived from successful

models in the cross-validated exploratory subgroup analy-

ses in subset 1 were used to train classifiers based on the

entire subgroup of subset 1. Generalizability of these

hypothetically most powerful models was assessed by

applying the resulting decision rules to subjects in the

subgroup of subset 2. These hypotheses about overall

accuracies generated in the more severely depressed sub-

group of subset 1 were tested using a one-tailed binomial

test and corrected for multiple comparisons by controlling

the false-discovery rate (FDR) (Benjamini and Hochberg

1995).

Post hoc estimation of feature set information

content by univariate analyses

As a final step, we retrospectively assessed how much

information about the clinical diagnosis of unipolar

depression the FC-based feature sets inhered by means of

more classical univariate analyses. We, therefore, con-

ducted two-sided two-sample t tests in the entire subset 1

and the subgroup of subset 1 with pronounced depressive

symptoms both for FC coefficients based on the meta-an-

alytical ROIs and the whole-brain parcellation. To assess

information content while controlling for multiple com-

parisons, we then estimated the proportion p1 of univariate
results that truly followed the alternative hypothesis of a

group difference of patients and controls using Matlab.

This method is based on the assumption of a uniform

distribution of p values that follow the null hypothesis

(Storey and Tibshirani 2003) and was introduced in the

framework of the positive false-discovery rate for high-

dimensional data sets (Storey and Tibshirani 2003; Storey

2002).

Results

Models based on features supported by a priori

knowledge

In the explorative model, identification step of the main

analysis, SVM models based on all pairwise connections of

38 meta-analytically defined ROIs, reached overall diag-

nostic accuracies from 47.5% (linear kernel, C = 0.1) to

53.6% (linear kernel, C = 0.001) in the explorative anal-

ysis in the entire subset 1. Sensitivities ranged from 45.0 to

97.2% and specificities from 1.7 to 53.9% as some models

assigned nearly all subjects to one single group. FS did not

improve performance with overall accuracies ranging from

47.0% (linear kernel, C = 0.1, FS based on SVM weights)

to 53.3% (linear kernel, C = {0.001, 0.01, 0.1}, FS based

on t tests) with sensitivities from 45.0 to 98.33% and

specificities from 3.3 to 51.7%. To summarize, results were

distributed closely around the chance level of 50% accu-

racy with a typical tradeoff of sensitivities and specificities.

For detailed results, see supplementary Table 1 (Online

Resource 2).
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Models based on whole-brain connectivity

Models based on the entire gray matter parcellation in the

model identification step of the main analysis reached

overall diagnostic accuracies from 45.0% (RBF kernel,

c = 0.01, C = {10, 100, 1000}) to 52.8% (linear kernel,

C = {0.01, 0.1, 1, 10, 100, 1000}) in the explorative

analysis in the entire subset 1. Sensitivities ranged from 0.0

to 88.3% and specificities from 9.4 to 100.0%. Some

instances of automated feature selection yielded slightly

better performance in this case with overall accuracies

ranging from 48.1% (RBF kernel, c = 1, C = {0.001,

0.01, 0.1}, MRMR FS) to 56.1% (linear kernel, C = 0.1,

MRMR FS) with sensitivities from 51.1 to 83.9% and

specificities from 12.8 to 55.0%. Thus, these exploratory

results were slightly shifted with regard to chance level.

For detailed results, see supplementary Table 2 (Online

Resource 2).

With the range of diagnostic performances observed, no

model generation technique tested in the entire subset 1

reached clinically relevant accuracies in the exploratory

analysis. We, therefore, refrained from further model val-

idation in subset 2 (Table 3a).

Subgroup analysis in patients with higher current

depressive symptoms

Models explored in the subgroup of most depressed

patients in subset 1 to assess the general feasibility of this

approach achieved diagnostic accuracies from 40.8 to

65.0%. 13 models reached cross-validated accuracies of at

least 60.0%. For detailed results, see supplementary

Tables 4 and 5 (Online Resource 2).

These 13 models were further assessed by validation in an

independent non-overlapping subgroup with the most

severely depressed patients from subset 2 (hypothesis tests).

Three of these modelling approaches performed significantly

above chance (p\ 0.05, FDR), and further six models

reached a formal trend to statistical significance (p\ 0.1,

FDR). Detailed validation results are presented in Table 3b.

Table 3 Models with cross-validated accuracies of at least 60.0% and corresponding results of model validation in the hold-out data set

(a) Main analysis

Yielded no positive results

(b) Subgroup analysis [most severely depressed patients (n = 60) and their corresponding controls (n = 60)]

CV in subset 1 Validation in subset 2

FS Features (n) C-SVC-classifier ACC (%) SENS (%) SPEC (%) ACC (%) SENS (%) SPEC (%) p(FDR) ACC

Models based on connectivity of meta-analytically defined regions

./. 703 RBF (c = 0.01), C = 10 60.0 60.0 60.0 55.0 46.7 63.3 0.171

t testa 141 lin, C = 0.1 65.0 63.3 66.7 57.5 45.0 70.0 0.087

t testa 141 RBF (c = 0.01), C = 10 61.7 60.0 63.3 55.8 45.0 66.7 0.140

SVMb 141 RBF (c = 0.01), C = 1 61.7 71.7 51.7 61.7 58.3 65.0 0.046*

MRMR 141 lin, C = 0.1 61.7 63.3 60.0 60.0 46.7 73.3 0.059

MRMR 141 RBF (c = 0.01), C = 10 60.8 61.7 60.0 56.7 41.7 71.7 0.111

SVM-

RFE

141 RBF (c = 0.01), C = 0.1 60.0 75.0 45.0 61.7 61.7 61.7 0.046*

SVM-

RFE

141 RBF (c = 0.01), C = 1 60.8 68.3 53.3 60.8 58.3 63.3 0.048*

Models based on whole gray matter connectivity

SVMb 3980 RBF (c = 0.01), C = 1 60.8 68.3 53.3 58.3 61.7 55.0 0.076

SVMb 3980 RBF (c = 0.01), C = 10 60.8 68.3 53.3 59.2 61.7 56.7 0.070

MRMR 141 lin, C = 0.1 60.0 60.0 60.0 54.2 46.7 61.7 0.206

SVM-

RFE

3980 RBF (c = 0.01), C = 1 60.0 66.7 53.3 57.5 61.7 53.3 0.087

SVM-

RFE

3980 RBF (c = 0.01), C = 10 60.0 66.7 53.3 58.3 63.3 53.3 0.076

CV cross validation, FDR false-discovery rate, FS feature selection, ACC overall accuracy, SENS sensitivity, SPEC specificity, SVC support

vector classification, MRMR maximum redundancy minimum relevance feature selection, SVM-RFE recursive feature elimination by support

vector machines, lin linear kernel, RBF radial basis function kernel

* Models with overall accuracies significantly above chance in the validation set, corrected (false-discovery rate)
a t test-based weighting with weight-based feature selection
b SVM-based weighting with weight-based feature selection
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Post hoc estimation of feature set information

content by univariate analyses

The following results calculated with a conventional

approach serve as a surrogate of the information content of

features. The estimated proportion p1 of pairwise connec-

tions between meta-analytically defined ROIs which con-

tain group information of diagnostic interest in the

univariate analyses was 9.05% in the entire subset 1 and

16.38% in the subgroup with more severely depressed

patients and matched controls. Corresponding p1 of fea-

tures based on the whole-brain analysis was 19.00% in the

entire subset 1 and 26.18% in the subgroup analysis.

p value histograms illustrating this deviation of univariate

effects from a uniform distribution under the null hypoth-

esis are shown in Online Resource 3.

Discussion

This study in a diverse unipolar depression and population

control sample fails to confirm reports (Cao et al. 2014;

Craddock et al. 2009; Guo et al. 2014; Lord et al. 2012; Ma

et al. 2013; Qin et al. 2015; Yu et al. 2013; Zeng et al.

2012; Zeng et al. 2014) that the combination of MVPA and

rs-fMRI facilitates the clinically reliable identification of

individual MDD patients. This is particularly noteworthy,

since the current investigation follows methodological

principles (combinations of correlation-based FC analyses

and SVMs) that have yielded particularly promising results

in pilot studies not only in depression but have been

commonly used in pilot studies in diverse mental disorders

in recent years (Arbabshirani et al. 2017; Orru et al. 2012;

Sundermann et al. 2014a).

Sample characteristics

Pilot studies on the combination of rs-fcMRI and MVPA

in MDD (Cao et al. 2014; Craddock et al. 2009; Guo

et al. 2014; Lord et al. 2012; Ma et al. 2013; Qin et al.

2015; Yu et al. 2013; Zeng et al. 2012; Zeng et al. 2014)

as well as most work on diagnostic MVPA of fMRI data

so far (Sundermann et al. 2014a) have adopted control

groups of mostly young explicitly healthy subjects. In

contrast, this analysis features controls from the general

population (Teismann et al. 2014). Some recruitment

bias can also be expected in general population samples

like this (Heun et al. 1997). Even though subjects with

signs of depression among controls as well as disorders

potentially mimicking MDD in the depression cohort

were excluded and data sets were balanced for potential

general confounders, we aimed at keeping sample

heterogeneity at its original level. Thus, compared to the

above-detailed previous work, there is substantial

heterogeneity in our data regarding age-related physical

and mental comorbidity, medication in both groups, and

levels of depressive symptoms as well as disease dura-

tion in the MDD group (Table 2). There is initial evi-

dence that in addition to increasing the level of

heterogeneity antidepressant medication may obscure

typical FC alterations in depression beyond correlates of

symptom reduction (McCabe and Mishor 2011). Thus,

current antidepressant medication may limit the diag-

nostic power of MVPA (Qin et al. 2015). Moreover, the

specific recruitment strategy for BiDirect (Teismann

et al. 2014) and the matching procedure essential for

unbiased estimates of classifier performance resulted in a

comparatively older sample lacking female predomi-

nance compared to typical disease-onset MDD popula-

tions (Andrade et al. 2003). There is evidence that

particularly age has a major effect on brain structure and

function (Douaud et al. 2014) including measures typi-

cally derived from rs-fcMRI (Damoiseaux et al. 2008;

Dosenbach et al. 2010). In addition, effects of cardio-

vascular disorders on depression pathogenesis and vice

versa are expected to be more prevalent than in younger

depression samples. This reflects the core objective of

the underlying BiDirect study (Teismann et al. 2014).

Despite its inherent limitations we believe that the data

set used here represents clinical populations far better than

homogenous MDD samples and explicitly healthy control

groups in the previous studies and is, therefore, beneficial

to rigorously assess the transferability of current MVPA

approaches to routine care.

Significant positive results in the subgroup analysis with

more severely depressed patients further support the

assumption that sample heterogeneity is an important

determinant of the ineffectiveness of this approach in this

sample. Moreover, this indicates that these rs-fcMRI

models in depression may be particularly sensitive to the

current depressive state. This finding is in line with a

recently reported failure to achieve above-change diag-

nostic accuracies in subgroups other than one comprising

patients with the highest current symptom severity (Ra-

masubbu et al. 2016). That study is, however, limited by its

small sample size.

It remains unclear if these models are also capable of

sufficiently representing longer term traits (Bhaumik et al.

2016; Graham et al. 2013; Qin et al. 2015), which may be

more important for clinical decision making in this popu-

lation. Nevertheless, results from the subgroup analysis

confirm the general feasibility of this computational

approach based on rs-fcMRI. However, even most suc-

cessful models in the subgroup analysis did not reach

sufficient diagnostic accuracies for clinical use.
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Methodological aspects

We used two conceptually different approaches to extract

relevant features from the original data. Compared to

voxel-based FC analyses, our ROI-based approaches limit

redundancy. Avoiding excessive numbers of features is

supposed to improve the power of MVPA (Mwangi et al.

2014; Pereira et al. 2009). We have compared two different

sets of ROIs: One set of regions optimized specificity by

relying on prior knowledge about the effects of diagnostic

interest (Sundermann et al. 2014b). Despite the potential

advantage of a strictly hypothesis-driven approach,

important discriminative features may be missed. We,

therefore, additionally extracted features based on the

entire gray matter (Craddock et al. 2012). The univariate

post hoc analysis of information content confirms that both

ROI definitions lead to informative feature sets.

First, SVM models were trained and tested based on the

whole feature set of pairwise connections. In addition, we

applied different automated FS methods to select most

discriminative features. Model parameters were systemat-

ically varied over a wide range at the exploratory stage of

analyses as such parameter optimization is mandatory to

avoid under- or overfitting and to improve the generaliz-

ability of our results to comparable, yet still versatile

MVPA approaches in MDD (Arbabshirani et al. 2017;

Pereira et al. 2009). Please also note that if no successful

model is identified in a wide search like this, poor classi-

fication performance can be assumed to be rather caused by

the fact the underlying data does not convey sufficient

information for the diagnostic question of interest to be

captured by this commonly used family of computational

models.

Successful modelling approaches in the subgroup anal-

ysis of patient with a preeminent depressive state were

dominated by nonlinear models. This indicates a high

complexity of the underlying information to be captured,

i.e., beyond a pure summation of univariate information.

As an observation—not directly amenable to statistical

analyses—the feature set based on the previous knowledge

about FC alterations in MDD led to superior models

compared to features representing whole gray matter con-

nectivity. However, in this setting, all successful SVM

models required further FS, preferably based on SVMs

themselves. In contrast to findings in the subgroup analysis,

whole-brain features with powerful FS (MRMR) yielded

slightly better diagnostic accuracies compared to whole-

brain models with other types of FS or literature-informed

features in the main analysis in the original more hetero-

geneous data set. However, as stated previously, the gen-

erality of this result is limited by its explorative nature as

no approach reached sufficient accuracies in this diverse

sample.

As there were no successful models in the first

exploratory stage of the main analysis, there was no model

to be validated in a second stage. The hold-out data set was,

therefore, only used in the subgroup analysis with most

severely depressed patients. While overall performance

was slightly poorer in the validation set of the subgroup

analysis, there was generally a good agreement and most

results were either significant or exhibited a formal trend

towards significance after correcting for multiple compar-

isons. These findings are in line with earlier work in this

field, for example, the seminal paper by Craddock et al.

(2009).

Potential limitations and future directions

Reliable estimates of FC can be obtained using relatively

short runs of data acquisition (Van Dijk et al. 2010).

According to recent evidence prolonged acquisitions—

even beyond clinically realistic timeframes—can, however,

improve reliability depending on analysis techniques (An-

derson et al. 2011, Birn et al. 2013). Determining the

optimal scan duration for these particular analysis methods

was not within the scope of this study. Therefore, it cannot

be excluded that prolonged scanning may help reach suf-

ficient diagnostic accuracies. All subjects were examined in

a single center with a single MRI scanner. In a clinical

context, it will be important that successful techniques can

be adapted to different hardware.

The resting period in most subjects of this study fol-

lowed an fMRI run with emotional faces, a popular para-

digm in MDD research (Stuhrmann et al. 2011). Preceding

tasks can influence quantitative estimates in rs-fcMRI

(Pyka et al. 2013; Waites et al. 2005). During preparation

of the training and validation sets, the percentage of sub-

jects with this preceding task was balanced across MDD

patients and controls by matching. This ensures that diag-

nostic decisions were not driven by the existence of this

protocol variation. Though these preceding stimuli mar-

ginally limit the generalizability to other integrations of the

resting period in imaging protocols, the expected diag-

nostic power has not been diminished.

FC analysis based on Pearson correlation is one of the

most common approaches in rs-fcMRI (Margulies et al.

2010). Recently, sparse connectivity models have been

proposed that were able to achieve higher diagnostic power

than conventional correlation-based approaches (Rosa et al.

2015). Partial correlation and independent component

analyses are further alternative strategies for extracting FC

features (Margulies et al. 2010). Such approaches may be

an important area of future research as long as computa-

tional expenses can be accommodated to clinical settings.

It has been proposed that clinically defined mental dis-

orders, such as MDD, may in fact represent a diverse
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spectrum of brain disorders with important differences in

underlying disease mechanisms (Krishnan 2014). This

potential neurobiological source of heterogeneity in clini-

cally defined samples can be subject to future work that

tries to optimize diagnostic strategies in mental disorders

(Atluri et al. 2013). However, this also points toward the

possibility that a clinical diagnosis of MDD is probably a

weak reference (Hickie et al. 2013) for assessing new

diagnostic tests. Yet, no other reference is currently

available. The weaknesses of clinical signs and scores as

diagnostic reference also apply to our group definition

approach: In particular, the adoption of a range of surrogate

parameters to achieve a high sensitivity for excluding

potentially depressed subjects from the original control

cohort reduces the spectrum of psychiatric comorbidity in

the final samples. Moreover, information about mental and

older age-related comorbidity is limited by the fact that

these in part rely upon self-report data. These facts limit

conclusions about the differential diagnostic ability of this

classification approach regarding other mental conditions

associated with depression.

The current investigation aims at distinguishing MDD

patients from non-depressed controls. Using this principal

diagnosis as the key diagnostic question is a straightfor-

ward approach to identify classification methods and

parameters viable in MDD. It has been followed in a

majority of such pilot studies (Patel et al. 2016; Sunder-

mann et al. 2014a). However, such tools have recently been

applied to more specific clinical questions, such as prog-

nostics or differential diagnoses (Fu et al. 2013; Hahn et al.

2015; Lener and Iosifescu 2015; Patel et al. 2016; Phillips

et al. 2015; Qin et al. 2015; Schmaal et al. 2014; Sunder-

mann et al. 2014a; van Waarde et al. 2015). Prediction of

therapy response in MDD by biomarkers, including fMRI,

is currently investigated as part of prospective trials

(Dunlop et al. 2012; Grieve et al. 2013; Kennedy et al.

2012; Trivedi et al. 2016; Williams et al. 2011). Beyond

the fact that such diagnostic problems presumably involve

more highly selected samples, they may in part rely on

different neurobiological bases (Fu et al. 2013; Kupfer

et al. 2012; Lener and Iosifescu 2015; Phillips et al. 2015).

The finding that the combination of rs-fcMRI and MVPA

does not generalize to a clinically more realistic population

here does, therefore, not necessarily hold true for such

more specific clinical questions. Hence, we propose that

these treatment-related questions and adequate selection of

patients to be examined (with disease severity as a crucial

factor) are important lines of future research. Even if rs-

fcMRI alone does not serve as a clinically reliable diag-

nostic biomarker, it may be included in MRI biomarkers in

future studies which may rely on integrated multimodal

instead of unimodal information (Calhoun and Sui 2016;

Douaud et al. 2013; Wee et al. 2012). Another limitation is

that information about potential clinical confounders, such

as comorbidity or medication, cannot be reasonably dealt

with directly in diagnostic models using common tech-

niques, such as SVMs. We, therefore, believe that another

direction of future research should be the development of

more sophisticated computational models (Li et al. 2011)

which are to a lesser degree influenced by clinical

heterogeneity.

We would like to conclude by saying that we are aware

from extensive discussions with other scientists that these

sobering results may be very disappointing and even dis-

couraging for clinical and non-clinical scientists working in

this interdisciplinary field. However, we would like to

stress that this paper should not be considered as an

objection against the work people have and will put into

these kinds of methods. Rather, we would like this article

to be understood as a note of caution to prevent a premature

translation of ‘‘standard’’ methods in this emerging

research area into clinical practice or large-scale prospec-

tive clinical trials for derivative medical products. In the

context of this study, this statement particularly refers to

the SVM family of classifiers. As discussed above (where

directly related to our results), there are further new,

potentially more sophisticated methods currently being

tested, developed and to be developed. Further lines of

research cover the whole range from improved data

acquisition (Ugurbil et al. 2013) through improved pre-

processing strategies (Murphy et al. 2013; Salimi-Khor-

shidi et al. 2014) to new, more complex classes of

classification methods, including deep learning (Arbab-

shirani et al. 2017; Plis et al. 2014; Sarraf and Tofighi

2016) and elastic net approaches (Bowman et al. 2016;

Mwangi et al. 2014; Schouten et al. 2016; Zou and Hastie

2005). Therefore, our hope is that these results will moti-

vate researchers to improve such techniques for diagnostic

classification.

Conclusions

Straightforward combinations of classification methods

that are seemingly established based on the results of small

homogenous samples do not translate to a diverse sample

in a situation closer to daily life and thus a potential clinical

application. The sample size in this investigation limits the

risk of false-positive results compared to earlier work and

is, therefore, suitable to assess the reproducibility of such

findings. Results of a subgroup analysis show that this

methodological approach is feasible yet still not clinically

reliable even in patients with a preeminent depressive state.

This indicates that such MVPA approaches need to take the

heterogeneity of clinical populations (including symptom

severity) into account. Presumably, they also need to focus
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on more specific clinical questions, such as therapeutic

outcomes as well as improvement of data acquisition and

analysis techniques.
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