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Abstract Tinnitus is the perception of a sound in the

absence of a corresponding external sound source.

Research has suggested that functional abnormalities in

tinnitus patients involve auditory as well as non-auditory

brain areas. Transcranial electrical stimulation (tES), such

as transcranial direct current stimulation (tDCS) to the

dorsolateral prefrontal cortex and transcranial random

noise stimulation (tRNS) to the auditory cortex, has

demonstrated modulation of brain activity to transiently

suppress tinnitus symptoms. Targeting two core regions of

the tinnitus network by tES might establish a promising

strategy to enhance treatment effects. This proof-of-con-

cept study aims to investigate the effect of a multisite tES

treatment protocol on tinnitus intensity and distress. A total

of 40 tinnitus patients were enrolled in this study and

received either bifrontal tDCS or the multisite treatment of

bifrontal tDCS before bilateral auditory cortex tRNS. Both

groups were treated on eight sessions (two times a week for

4 weeks). Our results show that a multisite treatment pro-

tocol resulted in more pronounced effects when compared

with the bifrontal tDCS protocol or the waiting list group,

suggesting an added value of auditory cortex tRNS to the

bifrontal tDCS protocol for tinnitus patients. These findings

support the involvement of the auditory as well as non-

auditory brain areas in the pathophysiology of tinnitus and

demonstrate the idea of the efficacy of network stimulation

in the treatment of neurological disorders. This multisite

tES treatment protocol proved to be save and feasible for

clinical routine in tinnitus patients.

Keywords Non-invasive � Neuromodulation � Transcranial
direct current stimulation � Transcranial random noise

stimulation � Tinnitus

Introduction

Tinnitus is considered to be an auditory phantom phe-

nomenon characterized by an ongoing sound perception

(e.g., a tone, hissing, or buzzing sound) in the absence of

any objective corresponding physical sound source (Jas-

treboff 1990). About 5–15 % of the population in western

societies has chronic tinnitus and many sufferers seek

medical care (Axelsson and Ringdahl 1989; Heller 2003).

The constant awareness of the phantom sound frequently

causes a considerable amount of distress. About 6–25 % of

the tinnitus patients report symptoms that are severely

debilitating (Baguley 2002; Eggermont and Roberts 2004)

with 2–4 % of the total population suffering in the worst

degree (Axelsson and Ringdahl 1989). Problems that have

been attributed to tinnitus include lifestyle detriment,

emotional difficulties, sleep deprivation, difficulties con-

centrating at work, interference with social interactions,

and decreased overall health (Scott and Lindberg 2000).

Based on functional brain imaging studies, it is gener-

ally accepted that tinnitus is related to auditory

& Wing Ting To

wingting.to@utdallas.edu

1 Center for Brain Health, School of Behavioral and Brain

Sciences, The University of Texas at Dallas, 2200 W

Mockingbird Lane, Dallas, TX, USA

2 Brai2n Clinic, St. Augustinus, Antwerp, Belgium

3 Department of Surgical Sciences, Section of Neurosurgery,

Dunedin School of Medicine, University of Otago, Dunedin,

New Zealand

4 Lab for Clinical and Integrative Neuroscience, School of

Behavioral and Brain Sciences, The University of Texas at

Dallas, Dallas, TX, USA

123

J Neural Transm (2017) 124:79–88

DOI 10.1007/s00702-016-1634-2

http://orcid.org/0000-0002-0570-503X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00702-016-1634-2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00702-016-1634-2&amp;domain=pdf


hyperactivity or maladaptive plasticity of the auditory

system (Muhlnickel et al. 1998; Lockwood et al. 1999;

Langguth et al. 2006; Smits et al. 2007; Weisz et al. 2007;

van der Loo et al. 2009b; Vanneste et al. 2010a). However,

new insights into the neurobiology of tinnitus suggest that

neuronal changes are not limited to the auditory cortex. Co-

activation of non-auditory brain areas such as the dorso-

lateral prefrontal cortex (Schlee et al. 2009; Vanneste et al.

2010a), anterior cingulate cortex (Muhlau et al. 2006;

Plewnia et al. 2007; Rauschecker et al. 2010; Vanneste

et al. 2010a, 2011), insula (Smits et al. 2007; Vanneste

et al. 2010a), and parahippocampus (Carpenter-Thompson

et al. 2014; Vanneste and De Ridder 2016) have been

described and could explain the potential underlying

pathophysiological mechanism for tinnitus (Rauschecker

et al. 2010; De Ridder et al. 2011a).

Over the past decade, different non-invasive neuro-

modulation techniques have been used targeting different

tinnitus sites in an attempt to modify local and distant

neuroplasticity as to reduce tinnitus symptoms. Transcra-

nial direct current stimulation (tDCS) and transcranial

random noise stimulation (tRNS) are two forms of low-

intensity transcranial electrical stimulation (tES) applied on

the cortical surface using two surface electrodes. TDCS

uses continuous electrical current flowing from one elec-

trode serving as the anode to another electrode serving as

the cathode to modulate the area of interest. Depending on

the polarity of the stimulation, tDCS can increase (anodal

stimulation) or decrease (cathodal stimulation) cortical

excitability to the targeted brain region (Nitsche and Paulus

2000; Miranda et al. 2006). TRNS is a modification of

transcranial alternating current stimulation (tACS) which

uses random oscillations with a white structure (i.e., equal

amplitude for all frequencies between 0.1 and 640 Hz) in a

Gaussian distribution for amplitude, which is no longer

sensitive to the direction of the current flow or the polarity

(Van Doren et al. 2014).

Joos and her colleagues (2014) have demonstrated that

bilateral tDCS over the auditory cortex is able to suppress

tinnitus loudness (Joos et al. 2014). Moreover, research

demonstrated that tRNS bilaterally over the auditory cortex

has a superior effect compared to tDCS in suppressing

tinnitus intensity and distress (Vanneste et al. 2013a; Claes

et al. 2014), and multiple sessions of auditory cortex tRNS

are superior to single sessions (Claes et al. 2014). On the

other hand, tDCS was also applied to modulate tinnitus

perception targeting the dorsolateral prefrontal cortex

(DLPFC) (Vanneste et al. 2010b, 2013b; Vanneste and De

Ridder 2011; De Ridder and Vanneste 2012; Faber et al.

2012; Frank et al. 2012). Bifrontal tDCS placing the anodal

electrode overlying the right DLPFC and the cathodal

electrode overlying the left DLPFC has been demonstrated

to suppress tinnitus intensity and distress in multiple

studies (Vanneste et al. 2010b; Vanneste and De Ridder

2011; De Ridder and Vanneste 2012; Faber et al. 2012;

Frank et al. 2012).

Several studies using different functional imaging

modalities such as EEG (van der Loo et al. 2009a), MEG

(Weisz et al. 2007), PET scan (Eichhammer et al. 2007)

and fMRI (Smits et al. 2007) have shown that tinnitus is

associated with hyperactivity of the auditory cortex.

However, tinnitus distress and tinnitus loudness are also

associated with changes in the anterior cingulate cortex

and insula (Vanneste et al. 2010a; De Ridder et al.

2011b, 2015), suggesting that loudness and distress per-

ception are a network phenomenon, rather than hyperac-

tivity of a single area. Based on the principles of network

science, it has, therefore, been proposed that targeting

multiple hubs in a network may be superior in modulating

network activity than manipulating a single region (Albert

et al. 2000) and the same principle might be applicable

for tinnitus (Mohan et al. 2016a, b). Recent studies using

repetitive transcranial magnetic stimulation (rTMS) have

investigated the effect of a multisite approach obtained by

sequential excitatory stimulation (high-frequency rTMS)

of the prefrontal cortex and inhibitory stimulation (low-

frequency rTMS) of the auditory cortex, with mixed

results. However, it was suggested that a consecutive

treatment that consists of excitatory left dorsal lateral

prefrontal cortex stimulation before inhibitory left (and

right) auditory cortex stimulation leads to more pro-

nounced long-term effects compared to auditory cortex

stimulation (Kleinjung et al. 2008; Lehner et al. 2013). A

different study by Langguth and his colleagues in 2014

did not find a superior effect of this multisite approach

(Langguth et al. 2014).

It has been shown that dorsolateral prefrontal cortex

stimulation with tDCS can modulate tinnitus-related ante-

rior cingulate activity (Vanneste and De Ridder 2011)

improving both tinnitus loudness and tinnitus-related dis-

tress (Vanneste and De Ridder 2011), and that tRNS is

superior to tDCS and tACS of the auditory cortex (Van-

neste et al. 2013a). Therefore, a combined stimulation

paradigm that inhibits auditory cortex activity by means of

tRNS and facilitates prefrontal cortex output by tDCS may

provide stronger relief (Pal et al. 2015).

In this proof-of-concept study, we aim to explore the

effectiveness of a multisite consecutive treatment approach

using transcranial electrical stimulation, more specifically

tDCS and tRNS. We hypothesize that a multisite consec-

utive treatment protocol consisting of bilateral DLPFC

tDCS followed by bilateral auditory cortex tRNS will result

in an immediate and superior effect compared to bilateral

DLPFC tDCS.
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Materials and methods

Participants

Forty subjects (22 males and 18 females) with chronic

tinnitus ([1 year) participated in this study, with a mean

age of 48.33 years (SD 10.74). The mean tinnitus duration

was 10.82 years (SD 14.35). See descriptions of the tin-

nitus characteristics in Table 1. To obtain a homogeneous

sample and exclude potential variables that would interfere

with response to tES, we excluded subjects based on the

following criteria: individuals with pulsatile tinnitus, a

history of epileptic insults, severe organic co-morbidity, a

pacemaker or defibrillator, current pregnancy, neurological

disorders such as brain tumors, and individuals being

treated for mental disorders. All prospective subjects

underwent a complete ENT and neurological examination

to rule out possible treatable causes for their tinnitus.

Transcranial direct current stimulation (tDCS)

Direct current was transmitted by a saline-soaked pair of

surface sponges (35 cm2) and delivered by a battery-

driven, constant current stimulator with a maximum

output of 10 mA (NeuroConn; http://www.neuroconn.de/

). For each subject, we used a bilateral montage over the

left and right DLPFC. For all subjects, an anodal elec-

trode was placed over the right dorsolateral prefrontal

cortex and the cathodal electrode or return electrode over

the left dorsolateral prefrontal cortex. The site for

stimulation was determined by the International 10/20

Electroencephalogram System corresponding to F3 and

F4, respectively. The direct current was initially

increased in a ramp-like fashion over several seconds

(10 s) until reaching 1.5 mA. TDCS stimulation was

maintained for a total of 20 min.

Transcranial random noise stimulation (tRNS)

The tRNS consisted of an alternating current of 2.0 mA

intensity with a 0 mA offset applied at random frequencies.

The frequencies ranged from 0.1 to 100 Hz, i.e., low-fre-

quency tRNS. Similar to tDCS, the current was transmitted

by a saline-soaked pair of surface sponges (35 cm2) and

delivered by specially developed, battery-driven, constant

current stimulator with a maximum output of 10 mA

(NeuroConn; http://www.neuroconn.de/). For each patient

receiving tRNS, one electrode was placed on the T3 and

one was placed on T4 as determined by the International

10/20 Electroencephalogram System. The alternating cur-

rent was initially increased in a ramp-like fashion over

several seconds (10 s) until reaching 2.0 mA. In tRNS,

stimulation was maintained for a total of 20 min.

Experimental design

The study was in accordance with the ethical standards of

the Helsinki declaration (1964) and was approved by the

institutional ethics committee. Informed consent was

obtained from all individuals included in the study. Patients

Table 1 Tinnitus characteristics for each group separately and the grand total

Waiting list tDCS Multisite Total p values

Gender M: 8/F: 6 M: 8/F: 4 M: 6/F: 8 M: 22/F: 18 .47

Age (mean) 48.64 (SD: 10.49) 49.17 (SD: 13.32) 47.29 (SD: 9.15) 48.33 (SD: 10.74) .90

Duration (mean) 10.31 (SD: 16.71) 10.83 (SD: 8.81) 11.33 (SD: 16.51) 10.83 (SD: 14.35) .98

Type PT: 6/NBN: 8 PT: 2/NBN: 10 PT: 8/NBN: 6 PT: 16/NBN: 24 .11

Laterality UNI: 5/BIL: 9 UNI: 5/BIL: 7 UNI: 5/BIL: 9 UNI: 15/BIL: 25 .94

NRS loudness (mean) 74.61 (SD: 19.41) 80.00 (SD: 17.96) 75.38 (SD: 13.46) 76.58 (SD: 16.81) .70

TQ (mean) 43.77 (SD: 8.41) 55.67 (SD: 12.56) 47.69 (SD: 10.24) 49.52 (SD: 11.46) .07

THI (mean) 49.86 (SD: 17.39) 55.58 (SD: 19.63) 55.21 (SD: 13.90) 53.45 (SD: 16.76) .45

HADS depression (mean) 9.23 (SD: 3.98) 8.92 (SD: 4.42) 10.46 (SD: 3.15) 9.55 (SD: 3.83) .57

HADS anxiety (mean) 7.77 (SD: 2.31) 9.25 (SD: 4.01) 8.54 (SD: 2.33) 8.50 (SD: 2.94) .46

BDI (mean) 14.69 (SD: 7.57) 15.75 (SD: 10.18) 16.46 (SD: 6.75) 15.63 (SD: 8.04) .86

DS14 Neg. Affect. (mean) 14.08 (SD: 6.41) 12.42 (SD: 7.23) 15.54 (SD: 5.58) 14.05 (SD: 6.37) .49

DS14 Soc. Inh. (mean) 12.23 (SD: 3.11) 12.00 (SD: 3.64) 12.23 (SD: 3.27) 12.16 (SD: 3.25) .98

M male, F female, SD standard deviation, PT pure tone, NBN narrow band noise, UNI unilateral, BIL bilateral, NRS numeric rating scale, TQ

tinnitus questionnaire, THI tinnitus handicap inventory, HADS Hospital Anxiety and Depression Scale, BDI Beck Depression Inventory, DS14

Type-D personality, Neg. Affect negative affect; Soc. Inh. social inhibition
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were randomly assigned to one of the three groups, namely

waiting list, tDCS or multisite (tDCS–tRNS). Both the

tDCS and multisite group received eight sessions (two

times a week for 4 weeks) of treatment, while the waiting

list group did not receive treatment for one month. The

multisite group first received tDCS for 20 min followed by

20 min of tRNS. The three groups did not differ signifi-

cantly in age, tinnitus duration, tinnitus type, laterality, and

other questionnaires that measure the emotional and loud-

ness component of tinnitus. See descriptions of the tinnitus

characteristics per group in Table 1.

Evaluation

Before and after the experimental procedures, the subjects

completed a set of validated self-report inventories used

before in our studies. Primary outcome of treatment was

evaluated for the changes of tinnitus loudness using a

Numeric Rating Scale for Loudness (NRS), the Tinnitus

Questionnaire (TQ), and the Tinnitus Handicap Inventory

(THI).

NRS

A visual analog scale for tinnitus loudness (‘How loud is

your tinnitus? 0 = no tinnitus and 100 = as loud as

imaginable’) was used.

TQ

Patients were also given the Tinnitus Questionnaire (Meeus

et al. 2007). The TQ is a global index of tinnitus distress

based on the total score on the TQ, participants were

assigned to a distress category: slight (0–30 points; grade

1), moderate (31–46; grade 2), severe (47–59; grade 3), and

very severe (60–84; grade 4) distress. Furthermore, Goebel

and Hiller (1994) stated that grade 4 tinnitus patients are

psychologically decompensated, indicating that patients

categorized into this group cannot cope with their tinnitus.

In contrast, patients that have a score lower than 60 on the

TQ can cope with their tinnitus.

THI

The Tinnitus Handicap Inventory was included because it

is a brief and easy-to-administer questionnaire that is

suitable for use in busy clinical settings (Newman et al.

1996). The THI is a 25-item self-administered question-

naire that aims to quantify the impact of tinnitus on daily

life. Respondents are asked to answer the questions with

‘Yes’ (4 points), ‘Sometimes’ (2 points) or ‘No’ (0 points).

A higher THI score (maximum 100) is indicative of a

greater tinnitus handicap.

Secondary outcome of treatment was measured using

the DS14 (i.e., standard assessment of negative affectivity,

social inhibition), the Beck Depression Inventory (BDI)

and the Hospital Anxiety and Depression Scale (HADS).

DS14

The DS14 is a 14-item questionnaire that assesses the

presence of a Type-D personality. Half the items refer to

negative affectivity and the other half refer to social inhi-

bition. A score 10 or above (range 0–28) on both scales

classifies a person as a Type-D personality (Denollet 2005).

BDI

The Beck Depression Inventory is a questionnaire to

evaluate the severity of depressive mood states. It scores

components like hopelessness and feelings of guilt, as well

as fatigue and other physical symptoms. It consists of 21

questions rated between 0 (no symptom impact) and 3

(maximum symptom impact) with a maximum score of 63

(Richter et al. 1998).

HADS

The Hospital Anxiety and Depression Scale is designed as

a simple yet reliable tool for use in medical practice

(Zigmond and Snaith 1983) and considered to be a measure

of general distress (Grulke et al. 2005; McCue et al. 2006;

Robjant et al. 2009). This scale consists of 14 questions,

seven measuring anxiety (score from 0 to 21) and seven

measuring depression (score from 0 to 21). Each question

is rated on a four-point scale.

Statistical analyses

A repeated measures MANOVA with pre- and post-mea-

sure as within-subjects variable and group (waiting list,

tDCS, multisite) as between-subjects variable for the pri-

mary outcome measures (NRS loudness, TQ, THI) was

used. Based on these findings, a univariate repeated mea-

sures ANOVA was conducted pre- and post-measure as

within-subjects variable and group (waiting list, tDCS,

multisite) for the specific primary outcome measure. To

further explore the data, the individual percentage of

improvement for NRS loudness, TQ, and THI was calcu-

lated. These scores were used as the dependent measures

using an ANOVA with the group variable (waiting list,

tDCS, multisite) as independent measurement. For the

secondary outcome measures, we used a similar method

and applied this method for the DS14 (negative affectivity

and social inhibition) and mood questionnaires (BDI,

HADS depression, HADS anxiety), respectively.
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Results

Primary outcome measures

A repeated measures MANOVA including the pre- and

post-measure as within-subjects variable and group (wait-

ing list, tDCS, multisite) as between-subjects variable for

the NRS loudness, TQ and THI showed a significant effect

for the pre–post-measurement (F = 6.11, p = .002) as

well as an interaction effect for the pre–post-measurement

and group (F = 3.92, p = .002). No significant main effect

was obtained for group (F = 1.57, p = .17).

A univariate repeated measures ANOVA indicated that

for NRS loudness there was a significant effect for the pre–

post-measurement (F = 6.93, p = .001) as well as a sig-

nificant interaction effect (F = 3.98, p = .002). The main

effect for the pre–post-measurement (F = 7.63, p = .002)

showed a reduction in the post-measurement (M = 68.10,

SD = 10.85) in comparison to the pre-measurement

(M = 76.58, SD = 16.81). This effect was moderated by

the group the patient was assigned to; that is, the interac-

tion effect revealed for the tDCS group a significant

reduction of 14.20 % when comparing pre- versus post-

measurement for NRS loudness (F = 5.69, p = .022). For

the sequential stimulation of bifrontal tDCS followed by

auditory cortex tRNS, results showed a significant sup-

pression of 21.26 % when comparing pre- versus post-

treatment (F = 10.14, p = .003). No significant effect was

obtained when comparing pre versus post for the waiting

list group (F = .71, p = .40). A comparison between the

groups showed that the suppression effect obtained by the

multisite protocol (tDCS–tRNS) was larger than those

obtained for tDCS and the waiting list group (F = 5.09,

p = .011). In addition, the group that received only tDCS

also had a larger effect than the waiting list group

(F = 1.52, p = .030) (see Fig. 1).

A univariate repeated measures ANOVA showed that

for the TQ there was an effect for the pre–post-measure-

ment (F = 17.01, p\ .001) and an interaction effect

(F = 10.19, p\ .001). The main effect showed that post-

measurement (M = 43.88, SD = 13.45) had a reduced

score on the TQ in comparison to the pre-measurement

(M = 49.52, SD = 11.46). A closer look at the data

revealed that this effect was moderated by the group the

patient was assigned to. No significant effect was obtained

when comparing pre versus post for the waiting list group

(F = .85, p = .36). However, for the tDCS group, a sig-

nificant reduction of 13.03 % was obtained when com-

paring pre- versus post-measurements for the TQ

(F = 6.86, p = .013). In addition, the sequential stimula-

tion of bifrontal tDCS followed by auditory cortex tRNS

showed a significant suppression of 25.90 % when

comparing pre- versus post-treatment (F = 29.85,

p\ .001). A comparison between the groups specified that

the suppression effect obtained by the multisite protocol

Fig. 1 Primary outcome measures showing an effect for both tDCS

and the combination tDCS–tRNS for the Numeric Rating Scale, the

Tinnitus Questionnaire and the Tinnitus Handicap Inventory. The

combination tDCS–tRNS shows a larger suppression effect in

comparison to baseline and tDCS

The added value of auditory cortex transcranial random noise stimulation (tRNS) after… 83
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was larger than for the tDCS and waiting list group

(F = 12.12, p\ .001) (see Fig. 1).

A univariate repeated measures ANOVA showed for the

THI a main effect for the pre–post-measurement

(F = 11.72, p = .002) indicating a reduction in the post-

measurement (M = 46.50, SD = 17.52) in comparison to

the pre-measurement (M = 53.45, SD = 16.76). This

effect was moderated by group showing an interaction

effect (F = 6.02, p = .005) for the THI. For the waiting

list group as well as for the tDCS group, no effect was

obtained when comparing the pre- and post-measurement

(waiting list: F = .002, p = .97; tDCS: F = 1.37,

p = .002). However, for the sequential stimulation of

bifrontal tDCS followed by auditory cortex tRNS, a sig-

nificant effect was obtained (F = 22.90, p\ .001)

demonstrating a suppression of 27.79 %. A comparison

between the groups indicated that the effect obtained for

the multisite treatment was larger than for the TDCS and

the waiting list group (F = 5.61, p = .007) (see Fig. 1).

Secondary outcome measures

For the DS14, a repeated measures MANOVA including

the pre- and post-measure, as within-subjects variable, and

group (waiting list, tDCS, multisite), as between-subjects

variable, for both the negative affect and social inhibition

showed only an effect for the pre–post-measurement

(F = 5.83, p = .006). No effect was obtained for group

(F = .47, p = .76) or for the interaction effect (F = 1.06,

p = .39). A univariate repeated measures ANOVA

revealed a significant main effect for the pre–post-mea-

surement of negative affect (F = 6.98, p = .012), but not

for the pre–post-measurement of social inhibition

(F = .13, p = .72). For negative affect, we found a

decrease in negative affect for the post-measurement

(M = 11.63, SD = 5.96) in comparison to the pre-mea-

surement (M = 14.05, SD = 6.37) (see Fig. 2).

For the BDI and both subscales of the HADS, a repeated

measures MANOVA including the pre- and post-measure

as within-subjects variable and group (waiting list, tDCS,

multisite) as between-subjects variable indicated only an

effect for the pre–post-measurement (F = 3.63, p = .023).

No effect was obtained for group (F = .11, p = .99) or for

the interaction effect (F = 1.50, p = .19). A univariate

repeated measures ANOVA showed a significant main

effect for the pre–post-measurement of BDI (F = 4.88,

p = .03), HADS depression (F = 7.80, p = .008) and

HADS anxiety (F = 6.83, p = .013). For BDI, we found a

decrease in depressive feelings for the post-measurement

(M = 13.50, SD = 7.79) in comparison to the pre-mea-

surement (M = 15.63, SD = 8.04). For HADS depression,

we saw a similar effect with a decrease in depressive

feelings for the post-measurement (M = 8.00, SD = 3.42)

in comparison to the pre-measurement (M = 9.55,

SD = 3.83). For HADS anxiety, we demonstrated a

decrease in anxiety levels for the post-measurement

(M = 7.18, SD = 3.17) in comparison to the pre-mea-

surement (M = 8.50, SD = 2.94) (see Fig. 2).

Discussion

This proof-of-concept study shows that a multisite treat-

ment protocol that consists of bifrontal tDCS followed by

auditory cortex tRNS results in more pronounced effects

when compared with the bifrontal tDCS protocol or a

waiting list group, suggesting an added value of auditory

cortex tRNS to the bifrontal tDCS protocol for tinnitus

patients. There were no adverse effects associated with this

new treatment protocol of eight sessions and using the same

transcranial electrical stimulator for performing the tDCS

and the tRNS consequently is feasible for clinical routine.

These results are, to our knowledge, the first to demon-

strate an immediate and superior improvement of a com-

bination of frontal and auditory transcranial electrical

stimulation. The study of Pal and his colleagues (2015) did

not show a beneficial effect on tinnitus with their tDCS

protocol. They simultaneously tried to stimulate the frontal

cortex and inhibit left and right auditory cortex by placing

the anode over F3–Fz–F4 for prefrontal cortex stimulation

and two cathodes at T3 and T4 corresponding to the left and

right auditory cortex. The stimulation protocol used by Pal

and his colleagues (2015) is different from our multisite

stimulation protocol as (1) our stimulations were conducted

sequentially instead of simultaneously, (2) anodal right

DLPFC was targeted in our protocol instead of a more

central prefrontal area and (3) tRNS was applied over the

auditory cortex instead of two cathodes of tDCS over the

auditory cortex, as tRNS has been found to be more effec-

tive than tDCS when targeting the auditory cortex. Com-

paring our results using transcranial electrical stimulation

(i.e., tDCS and tRNS) with the multisite rTMS studies, the

multisite rTMS studies only reported long-term superior

effects (after 3 months), but no immediate effects of com-

bining DLPFC rTMS followed by auditory cortex rTMS.

Different explanations may account for the more pro-

nounced effects of the multisite treatment protocol com-

pared to the bifrontal DLPFC tDCS. A possible explanation

of the improved results of the multisite treatment protocol

is the additive effect of combining two effective treatments

for tinnitus targeting two core regions of the tinnitus net-

work. If a network consisting of auditory and non-auditory

brain areas and altered connectivity between these areas

forms the neural basis for tinnitus, targeting the whole

network (Schlee et al. 2009) by stimulating multiple core

regions in the network might enhances the effect (Lehner
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et al. 2013). Bifrontal tDCS to the DLPFC (Vanneste et al.

2010b, 2013b; Vanneste and De Ridder 2011; De Ridder

and Vanneste 2012; Faber et al. 2012; Frank et al. 2012) as

well as tRNS to the auditory cortex (Vanneste et al. 2013a),

separately, has been found beneficial for suppressing tin-

nitus symptoms. Therefore, combining two effective tech-

niques sequentially would explain the enhanced or added

treatment effects.

Another hypothesis for the added effect can be

explained by the preconditioning phenomenon. This is the

potential of the stimulation to interact with the prior state

of the cortex. We can postulate that by preconditioning the

brain state with one stimulation protocol targeting a core

region of the tinnitus network, the effect of the second

stimulation protocol targeting another region of the tinnitus

network can be enhanced. Studies have mostly investigated

the preconditioning or priming effects of tDCS on the

aftereffects of rTMS targeting the same brain region (Lang

et al. 2004; Siebner et al. 2004). However, this has not been

explored for priming effects of tDCS on the aftereffects of

Fig. 2 Secondary outcome measures for the waiting list group, tDCS and the combination tDCS–tRNS for the DS14 (negative affect, social

inhibition), HADS (depression and Anxiety) and the BDI
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tRNS on different brain regions. It is of interest, however,

that frontal tDCS has been shown to change auditory cortex

activity (Vanneste and De Ridder 2011), in keeping with

this hypothesis.

Interestingly, the multisite treatment protocol was only

found superior for the primary outcome measures for tin-

nitus, which are the more general tinnitus assessments

measuring tinnitus intensity and tinnitus distress as a

transient aversive state (Joos et al. 2012), such as on the

Visual Analog Scale (‘‘how loud is your tinnitus?’’—

loudness), the Tinnitus Questionnaire (global index of

distress—distress), and the Tinnitus Handicap Inventory

(impact of tinnitus on daily life—handicap). This points to

an added value of auditory cortex tRNS to the bifrontal

DLFPC tDCS on more general tinnitus aspects. The

superior effect was not found for the secondary outcome

measures that are more related to emotional components of

tinnitus as a constant emotional state, namely the DS14,

BDI, and the HADS showing that auditory cortex tRNS

does not add value to the bifrontal DLFPC tDCS regarding

these measures. Bifrontal DLPFC tDCS has repeatedly

been found to modulate affective processing and to be

effective for depression (Fregni et al. 2006). For tinnitus,

bilateral tDCS of the DLPFC has been found to interfere

with the emotional processing of tinnitus (i.e., tinnitus-re-

lated distress) by modulating an alpha oscillatory network

consisting of the parahippocampus, subgenual anterior

cingulate cortex, dorsal lateral prefrontal cortex, amygdala,

and insula and associated with beta activity in the dorsal

anterior cingulate cortex (Vanneste et al. 2010a; Vanneste

and De Ridder 2011). Furthermore, DLPFC tDCS had been

shown to reduce tinnitus intensity by modulating gamma

band activity in the auditory cortex (van der Loo et al.

2009b; Vanneste and De Ridder 2011). Thus, it appears

that bifrontal tDCS, but not auditory cortex tRNS, is tar-

geting the tinnitus distress network (Schlee et al. 2009;

Vanneste et al. 2010a; Langguth et al. 2012). Therefore, it

is not surprising that for the secondary outcome measures,

the auditory cortex tRNS does not provide an added effect

on the emotional components of tinnitus.

This study has some limitations. First, the stimulation

duration was not equal over the compared treatment pro-

tocols. The patients receiving only tDCS were treated with

20 min of tDCS per day, whereas patients receiving the

multisite stimulation were treated with 40 min of stimu-

lation (20-min tDCS and 20-min tRNS) per day. It remains

unclear whether the superior effect of the multisite protocol

is due to the longer duration of stimulation (2 9 20 min) or

due to the fact that more stimulation sites were targeted.

However, there is no evidence, to our knowledge, for tin-

nitus, that the effect of transcranial electrical stimulation is

dose dependent with longer stimulation resulting in more

tinnitus reduction. Moreover, studies have found that

increasing the stimulation duration on one stimulation site

does not seem to be a successful approach to increase the

efficacy of tDCS (Batsikadze et al. 2013; Nitsche et al.

2015; To et al. 2016). Therefore, the superior effects of the

multisite stimulation protocol seem to be caused more by

the combination effect of tDCS on the DLPFC and tRNS

on the auditory cortex. Second, our study design did not

allow us to elucidate the mechanisms of effects in the

multisite protocol on the different components. Because we

only measured the effect of the multisite protocol after both

bifrontal tDCS and auditory cortex tRNS and not after each

separate intervention (i.e., measurement after tDCS and

measurement after tDCS and tRNS), we cannot disentangle

whether bifrontal tDCS acted on the emotional component

of tinnitus first and then the tinnitus loudness component or

vice versa or whether the emotional component mediated

the improvement in the tinnitus loudness component. More

research is needed to investigate the mechanisms of effect

in multisite treatment protocols and the mechanisms of

effect in bifrontal tDCS protocols as the emotional com-

ponent of diseases may have an important influence on the

disorder in general. This will help us to further understand

the mechanisms of tinnitus. Third, this study used a waiting

list group as a control condition and not a sham stimulation

not being able to fully control for a possible placebo

response in any active conditions. Fourth, the study did not

include a long-term follow-up of the tinnitus patients, not

being able to measure possible long-term effects of the

multisite stimulation protocol. Lastly, the sample used in

this study is relatively small. Therefore, the results need to

be interpreted with caution and further research is needed

before implementing this multisite treatment protocol as a

routine administration.

In conclusion, this multisite transcranial electrical

stimulation protocol showed superior and promising effects

for the suppression of tinnitus loudness and distress,

therefore, supporting the involvement of the prefrontal and

auditory cortex in the pathophysiology of tinnitus and

demonstrating the idea of a network stimulation. The

stimulation protocol is feasible for clinical routine and was

well tolerated by all participants. Further studies should

take the limitations of this study into account and analyze

the neurobiological effects of this new stimulation

paradigm.
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