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Abstract Multiple biological processes throughout

development require intracellular vesicular trafficking,

where the SNARE (soluble N-ethylmaleimide-sensitive

factor (NSF) attachment protein (SNAP) receptors) com-

plex plays a major role. The core proteins forming the

SNARE complex are SNAP-25 (synaptosomal-associated

protein 25), VAMP (vesicle-associated membrane protein)

and Syntaxins, besides its regulatory proteins, such as

Synaptotagmin. Genes encoding these proteins (SNAP25,

VAMP1, VAMP2, STX1A, SYT1 and SYT2) have been

studied in relation to psychiatric disorders susceptibility.

Here, we review physiological aspects of SNARE complex

and genetic association results reported for attention deficit

hyperactivity disorder, both in children and adults, autism

spectrum disorders, major depressive disorder, bipolar

disorder and schizophrenia. Moreover, we included find-

ings from expression, pharmacogenetics and animal model

studies regarding these clinical phenotypes. The overall

scenario depicted here suggests that the SNARE complex

may exert distinct roles throughout development, with age-

specific effects of genetic variants in psychiatric disorders.

Such perspective should be considered in future studies

regarding SNARE complex genes.
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Introduction

SNARE (soluble N-ethylmaleimide-sensitive factor (NSF)

attachment protein receptors) complex is a large family of

proteins that plays a major role in intracellular vesicular

trafficking in eukaryotic cells. Such process is essential in

different biological events, such as cell division, mainte-

nance of subcellular compartments, protein and hormone

secretion and neurotransmitter release (Zylbersztejn and

Galli 2011). The SNARE complex is formed by members

of the SNAP-25 (Synaptosomal-Associated Protein 25),

VAMP (Vesicle-Associated Membrane Protein) and Syn-

taxins families. These proteins interact creating a four-he-

lix bundle, formed by two helices of SNAP-25, one

vesicle-transmembrane VAMP and one presynaptic plasma

membrane Syntaxin that approximates the vesicle and

plasmatic membranes (Sutton et al. 1998; Brunger 2000)

(Fig. 1). Other proteins interact with the SNARE complex

and regulate it, such as Munc-18, Complexin, Synapto-

physin and the better studied Syt (Synaptotagmin) (Südhof

2013).

According to cell tissue and developmental stage, distinct

family members of SNARE complex present different

expression profiles. SNAP-25 family members are charac-

terized by the presence of two SNARE domains, which are

the binding sites betweenSNAP-25 andVAMPandSyntaxin

SNAREdomains, in order to form the core SNAREcomplex.

Themost studiedmember of this protein family is SNAP-25,

which is expressed in neurons and directly involved in neu-

rotransmitter release. It is anchored to the presynaptic

plasma membrane through palmitoylation of cysteine
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residues. SNAP-25 paralogs, such as SNAP-23, -29, -47,

present slightly different properties, and although they may

also be expressed in the brain in a distinct distribution

(Ravichandran et al. 1996; Steegmaier et al. 1998; Holt et al.

2006; Yamamori et al. 2011), their genetic variants are far

less studied. The VAMP family is comprised by 7 proteins

that are involved in vesicle fusion (VAMP-1/Synaptobrevin

1, VAMP-2/Synaptobrevin 2, VAMP-3/Cellubrevin,

VAMP-4, VAMP-5/Myobrevin, VAMP-7/Ti-VAMP,

VAMP-8/Endobrevin) (Larra and Khan 2014). They are

characterized by one SNARE domain and one C-terminal

transmembrane domain.VAMP-1 and -2 are expressed in the

synaptic vesicles of neurons and secretory granules of

endocrine and exocrine cells (Trimble 1993). In humans, the

Syntaxins family is composed by 16members (Syntaxin-1A,

-1B, -2, -3, -4, -5, -6, -7, -8, -10, -11, -12, -16, -17, -18 and -

19). Among them, Syntaxin-1A, -1B and -3 are expressed at

presynaptic nerve terminals and involved in synchronous

neurotransmitter release, possibly acting on vesicle docking

(Ullrich et al. 2015). While Syntaxin-1A and 1B are the

major Syntaxin isoforms in brain, Syntaxin 3, for example, is

most important for retinal exocytosis (Curtis et al. 2010).

They are characterized by a single SNARE domain, a

C-terminal transmembrane domain and an N-terminal reg-

ulatory domain (Teng et al. 2001). Furthermore, an important

family of proteins that interacts with the SNARE complex is

the Syt family, which consists of 17 members (SytI to

SytXVII), characterized by an N-terminal intravesicular

domain, a transmembrane domain and two C-terminal cal-

cium-binding C2-domains (Ullrich et al. 1994; Südhof

2002). It has been shown that SytI, -II and -IX play a critical

role in fast Ca2? triggered exocytosis, which is essential for

appropriate neurotransmission (Geppert et al. 1994; Sun

et al. 2007; Xu et al. 2007). These three members of Syt

family are differentially expressed in the brain, which confer

distinct release properties. It has been described that SytII

promotes the fastest synapse (Xu et al. 2007), which is

consistent with its major localization in neurons mediating

auditory circuits (Xiao et al. 2010), while SytIX is the

slowest and it is located predominantly in the striatum and

limbic system, mediating emotional responses. SytI is

slightly slower that SytII and it is equally distributed in all

forebrain regions (Xu et al. 2007).

On the following sections we will focus on functional

characteristics of specific members of the core SNARE

complex (SNAP-25, VAMP-1/-2 and Syntaxin 1A) that

mediate neuronal exocytosis (e.g. neurotransmitter release

and growth of neuronal membranes), as well as on the most

studied regulatory protein (Syt) occurring on neuronal

surfaces. We also review the role of their genetic variants

on the susceptibility to five major psychiatric disorders:

Attention Deficit Hyperactivity Disorder (ADHD), Autism

Spectrum Disorders (ASD), Major Depressive Disorder,

Bipolar Disorder and Schizophrenia. The role of other

Fig. 1 SNARE complex assembly at the presynaptic terminal

allowing neurotransmitter release. a Components of the core SNARE

complex—SNAP-25 (green), Syntaxin 1A (orange) and VAMP (-1 or

-2) (purple) -, as well as the regulatory protein Synaptotagmin (I or II)

(red), are shown individually. b Assembly of the core SNARE

complex, approximating plasma and vesicle membranes; the cyto-

plasmic SNAP-25 forms a heterodimer with Syntaxin 1A through the

binding of SNARE domains (represented by the rectangles). Next,

VAMP (-1 or -2) binds to the second SNARE domain of SNAP-25

forming a parallel four-helix bundle. Squares represent plasma (for

Syntaxin-1A) and vesicle (for VAMP and Synaptotagmin) trans-

membrane domains. The SNARE complex is completely assembled.

c Upon Calcium (Ca2?) influx, plasma and vesicle membranes are

joined and fusion pore is opened through the binding of Ca2? to the

two calcium-binding domains (red balloons) of Synaptotagmin,

allowing neurotransmitter release (blue dots). Other regulatory

proteins involved in the process are not shown

868 R. B. Cupertino et al.

123



regulatory and/or less studied SNARE proteins will not be

discussed.

SNARE proteins and its multiple biological

functions

SNARE proteins are involved in biological processes

throughout several stages of the development, from fertil-

ization to neural development and synaptic plasticity, and

even during adulthood and aging (Hepp and Langley

2001). The first stage of the development could be con-

sidered the fertilization process itself, where SNARE pro-

teins participate in the main membrane fusion events:

acrosomal exocytosis (De Blas et al. 2005) and fusion of

male and female gametes (Gadella and Evans 2011).

Additionally, following gametes fusion, the SNARE com-

plex acts on cortical reaction (granules exocytosis), an

essential process in order to avoid polyspermic fertilization

(Gadella and Evans 2011). Moreover, studies focusing on

the Syntaxins family have demonstrated that it also medi-

ates essential cell fusion and division events during early

embryogenesis in Drosophila (Burgess et al. 1997), in the

two-cell stage of sea urchin (Conner and Wessel 1999) and

in plants (Touihri et al. 2011). Supporting an essential role

of Syntaxins in embryogenesis, knockout mice of Stx1a

showed that most of Stx1a(-/-) die in utero having a reduced

body size and abnormal development (McRory et al. 2008).

Furthermore, a recent study has also suggested that Syn-

taxin-1A influences the sexual maturity and egg size in

Locusta migratoria (Chen et al. 2015).

The nervous system development also requires SNARE

proteins. It has been suggested that SNAP-25 may be

involved in neurite sprouting (Shirasu et al. 2000; Kimura

et al. 2003) and elongation (Osen-Sand et al. 1993),

whereas VAMP-2 might promote neurite elongation (Shi-

rasu et al. 2000; Kimura et al. 2003) and Syntaxin-1A

could be related to axonal growth (Igarashi et al. 1996) and

neurite sprouting as well (Yamaguchi et al. 1996). SNARE-

regulatory proteins also seem to participate in the neural

development, as demonstrated by the involvement of Syt1

and Syt2 in promoting neurite outgrowth in in vitro studies

conducted with rat adrenal pheochromocytoma PC12 cell

line, a well-established cellular model used in studies of

neuronal function and development (Fukuda et al. 2002).

Furthermore, Syt1 might also be involved in axon

branching, as reported by a study with cultured chicken

forebrain neurons (Greif et al. 2013). Moreover, the

expression of SNARE proteins changes throughout life

stages suggesting a different role of these proteins during

development. For example, experiments with rats demon-

strated that Vamp has very low expression levels in the

prenatal period, increasing after birth until adulthood;

while Syntaxins are highly expressed in the prenatal period

and in a short period after birth, decreasing rapidly and

then maintaining a constant baseline level (Shimohama

et al. 1998). SNAP-25 seems to have an important role in

synaptogenesis, since animal studies have shown that

Snap-25 is highly expressed in early postnatal maturing rat

brains and it shifts its subcellular localization from axons

and cell bodies to presynaptic terminals in adults (Oyler

et al. 1991).

Moreover, to evaluate the SNAP-25 function, Hess et al.

(1992) used mutant mice with a deletion on the distal

portion of chromosome 2, which encompasses the Snap25

gene. This animal model is known as Coloboma mouse and

was described for the first time in 1964 by Dr. Margaret

Dickie in the Jackson Laboratory (Theiler et al. 1978). The

homozygous deletion was shown to be lethal, leading to the

animal’s death during the embryonary period. Experiments

with heterozygous Coloboma mice demonstrated that they

had a 50 % decrease on the Snap25 mRNA and protein

levels, without affecting its normal tissue distribution

profile. These mice also presented small eyes due to a

failure in separating cornea and lens epithelium during eye

development. Additionally, they displayed head bobbing

and locomotor hyperactivity (Hess et al. 1992). It has been

strongly suggested that the lack of Snap25 in Coloboma

mice is implicated on this hyperactive phenotype since a

Snap25 transgene insertion normalizes locomotor activity

levels (Hess et al. 1996). Further studies with Coloboma

mice reported delayed achievement of neurodevelopmental

milestones, such as righting reflex and motor coordination

(Heyser et al. 1995) and an abnormal presynaptic cate-

cholamine regulation (Jones et al. 2001).

SNARE proteins are also essential for neuronal main-

tenance. It has been demonstrated that SNAP-25 and

Syntaxin-1 are directly required for neuronal survival as

they are responsible for the recycling of proteins on plasma

membrane surface (Peng et al. 2013). Further Syntaxin-1

studies with animal model indicated that Stx1b seems to be

the most involved in neuronal survival and development

(Kofuji et al. 2014; Wu et al. 2015). SNARE proteins seem

also to participate in the Brain-Derived Neurotrophic

Factor (BDNF) secretion, which is a hormone that regu-

lates neuronal development and plasticity (Shimojo et al.

2015).

The SNARE complex might also have a function on

behavioral response. For example, Stx1a is involved in

abnormal behavioral response in mice possibly due to

dysregulation in the hypothalamic-pituitary adrenal axis

response (Fujiwara et al. 2011), reinforcing the role of

Stx1a in the hormone regulation during life events. This

system plays a central role in modulating response to

stimuli and has been implicated with abnormal develop-

ment and psychiatric disorders (Caspi et al. 2003; Jiang

et al. 2009; Bortoluzzi et al. 2015; Roberts et al. 2015).

SNARE complex in developmental psychiatry: neurotransmitter exocytosis and beyond 869

123



Additionally, a rare human variant in SYT1 gene (I368T)

has been recently described in a case-report as implicated

with severe behavioral impairments and cognitive deficits

(Baker et al. 2015).

Concerning the role of SNARE proteins during aging,

studies have demonstrated that SNAP-25 is necessary for

cognitive functioning (Gosso et al. 2006) and long-term

memory consolidation (Hou et al. 2004; 2006). A non-

pathological age-dependent cognitive decline is observed

in humans, yet little is known about the neurobiological

processes underlying such decline. Observing hippocampal

protein expression levels from rats at different ages, Van-

guilder et al. (2010) demonstrated a significant decrease in

a large subset of proteins involved with neurotransmitter

release between adulthood and advanced-age stage,

including Snap-25, Vamp-2, Syntaxin-1, Syt1 and Synap-

tophysin. The hippocampus is responsible for learning and

memory consolidation, therefore both functions could be

impaired by the reduced expression of proteins involved in

neurotransmitter release. In fact, there is evidence that

reduced Synaptophysin expression in hippocampus is

related to impaired spatial learning (Smith et al. 2000) and

memory decline (Bennett et al. 2006) with aging.

Post-translational modifications of SNARE proteins

Palmitoylation is an important post-translational modifi-

cation in SNARE proteins that is essential to regulation and

their correct attachment in the membrane (el-Husseini Ael-

D and Bredt 2002; Greaves and Chamberlain 2007). Most

of SNARE proteins are palmitoylated in adult brain (Veit

et al. 1996, 2000; Lane and Liu 1997; Vogel and Roche

1999; Kang et al. 2004). For example, SNAP-25 has a rich-

cysteine domain wherein one or more cysteines are

palmitoylated and this is essential for the plasma mem-

brane targeting (Veit et al. 1996; Gonelle-Gispert et al.

2000). Studies with embryonic rat brains showed that in

this early stage Syt1 and Vamp-2 lack this post-transla-

tional modification. This different palmitoylation profile in

embryonic cells indicates that it could be developmentally

regulated, influencing SNARE function across life stages

(Veit et al. 2000). For example, it has been suggested that

SytI palmitoylation might affect its interaction with other

proteins and specific microdomains of the presynaptic

membrane (Prescott et al. 2009). Moreover, dysregulated

palmitoylation has been implicated in a number of psy-

chiatric phenotypes, such as Schizophrenia and Intellectual

Disability (Young et al. 2012).

Protein phosphorylation is another important post-

translational mechanism for regulating synaptic activity. It

has been shown that Cyclic AMP-dependent Protein

Kinase A and Casein Kinase II can phosphorylate SNAP-

25 and Syntaxin-1A, respectively (Risinger and Bennett

1999). Although phosphorylation itself has minimal effects

on the in vitro assembly of the SNARE complex, it was

demonstrated that it enhances the interaction between

Syntaxin-1A and SytI (Risinger and Bennett 1999). SNAP-

25 is also phosphorylated by Protein Kinase C (Nagy et al.

2002) and such mechanism might affect the modulation of

neuronal voltage-gated calcium channels (Pozzi et al.

2008) and seems to improve fast exocytosis triggering by

recruiting secretory vesicles to the plasma membrane

(Nagy et al. 2002). Furthermore, Snap-25 phosphorylation

is dynamically regulated by stress in stress-related regions

in mouse brain, such as cerebral cortex, hippocampus and

amygdala (Yamamori et al. 2014). Mice with sleep depri-

vation, for example, which are animal models of mania,

exhibited increased levels of phosphorylated Snap-25 in

the hippocampus and prefrontal cortex (Abrial et al. 2015).

Another study with animal models demonstrated that when

Snap-25 could not be correctly phosphorylated due to a

homozygous mutation, mice showed strong anxiety-related

behavior, convulsive seizures and lower serotonin and

dopamine levels in the amygdala (Kataoka et al. 2011).

Additionally, another post-translational modification that

has recently been described is the SUMOylation in Syn-

taxin-1A. It is essential to appropriate temporal and spatial

regulation of neurotransmitter release and synaptic func-

tion, where the SUMOylation leads to a decreased affinity

of Syntaxin-1A to other SNARE proteins and influence the

balance of synaptic vesicle endo/exocytosis, increasing the

endocytosis (vesicle recycle) (Craig et al. 2015).

Distinct expression profiles among isoforms

and family members

Distinct isoforms of SNARE proteins have been shown to

display temporal differences in expression profiles. SNAP-

25 has two main isoforms, SNAP-25a and SNAP-25b,

which are generated by alternative splicing of the mutually

exclusive duplicated exon 5 (5a and 5b) and differ by only

9 of the 39 amino acids from this exon (Bark 1993). Such

duplication of exon 5 occurred more than 400 million years

ago, during early bony fish development, in which sensory

and motor systems were well developed (Johansson et al.

2008). Different from what was initially thought, the

functional difference between SNAP-25a and SNAP-25b

seems to be due to two nonconservative substitutions at the

first SNAP-25 SNARE domain, and not due to the different

localization of one palmitoylated cysteine (Nagy et al.

2005).

The relative expression levels of the two isoforms in rat

brain drastically changes between embryogenesis and

postnatal period; Snap-25a is the main isoform expressed

in mouse brain in embrionary stage but 2 weeks after birth,

Snap-25b becomes the major splice variant and later in
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adulthood this isoform represents more than 90 % of total

Snap-25 expressed in the brain (Bark et al. 1995; Boschert

et al. 1996). This switch between major isoforms

throughout development suggests that SNAP-25a may

participate mainly in axonal growth, while SNAP-25b

could be primarily associated with fast neurotransmitter

release. Snap-25b seems to be better than Snap-25a in

priming synaptic vesicles, a key step for efficient exocy-

tosis (Sørensen et al. 2003), thus supporting a more

prominent role of Snap-25b in neurotransmission.

There are also spatial differences between the isoforms

expression profiles during adulthood. Although most brain

regions express mainly Snap-25b, in the pituitary gland the

Snap-25a remains as the major isoform (Bark et al. 1995;

Prescott and Chamberlain 2011). In humans, a post-mortem

study showed similar pattern of results, in which SNAP-

25b was the most expressed isoform in almost all adult

brain areas (Prescott and Chamberlain 2011). Experiments

with mutant mice demonstrated that animals without Snap-

25b showed developmental anomalies, spontaneous sei-

zures, and impaired short-term synaptic plasticity (Jo-

hansson et al. 2008). Moreover, adult mutants had

morphological changes in the hippocampus with a severe

impairment of spatial learning, supporting the importance

of this duplication to enhanced functional plasticity in

higher eukaryotes (Johansson et al. 2008).

What leads to this expression switch between the SNAP-

25 isoforms remains unclear. It has been suggested that

electrical activity could be responsible for such isoform

expression profile changes, based on evidences that chronic

depolarization induces the Snap-25b expression on PC12

cells, which would be expressing Snap-25a under normal

culture conditions (Hepp et al. 2001). Other factors might

also influence this process since in adult brain regions

involved with more plasticity (olfactory bulb, hippocam-

pus, pineal gland, substantia nigra/pars compacta), Snap-

25a and Snap-25b are almost equally expressed in rat brain

(Boschert et al. 1996). In this sense, it has been suggested

that growth factors, such as Nerve Growth Factor (NGF) or

Glial Derived Neurotrophic Factor (GDNF), or other

molecules may also regulate the relative levels of SNAP-25

isoforms (Hepp et al. 2001).

Different expression patterns between proteins of the

same family have also been shown. Vamp-1 and -2, for

example, are differentially expressed in the mature rat

brain; while Vamp-2 is widely expressed and more abun-

dant in most brain areas, Vamp-1 predominates in a few

particular brain areas (Raptis et al. 2005). This could

indicate that distinct family members could exert different

functions, which is supported by the fact that Vamp-2

crucial activity in neuroexocytosis at early stages of brain

development cannot be replaced by Vamp-1 (Schoch et al.

2001). Additionally, a wider range of Synaptotagmin

members is expressed in the first postnatal period (days

3–6) than in postnatal days 12–15 in neurons of rat models

(Xiao et al. 2010). This different expression profile of

Synaptotagmin proteins during development (higher vs.

lower diversity) could indicate distinct roles of these pro-

teins on neural development (Xiao et al. 2010).

SNARE proteins in glial cells

In addition to their role as supportive cells, glial cells can

modulate neuronal activity levels, release chemical trans-

mitters (gliotransmitters) and may also contribute to the

maintenance of extracellular ion levels (Fellin 2009; Rossi

and Volterra 2009). Gliotransmitters are able to activate

neuronal receptors and consequently modify neuronal

excitability and synaptic transmission (Rossi and Volterra

2009). Several SNARE proteins are expressed in astrocytes

(Parpura et al. 1995; Zhang et al. 2004a), the most abun-

dant glial cells in the central nervous system, and are

essential to exocytosis of glutamate, D-Serine, BDNF and

ATP; all of them stored in VAMP-2-containing vesicles

(Araque et al. 2000; Zhang et al. 2004b; Mothet et al. 2005;

Parpura et al. 2010; Parpura and Zorec 2010).

Apart from astrocytes, microglia are also important

constituents of glia that play a role in neuron surveillance

and maintenance in the brain (Hanisch and Kettenmann

2007; Graeber 2010). Moreover, there is evidence that they

might be involved in synapse maturation and/or elimina-

tion (synapse pruning) (Graeber 2010; Paolicelli et al.

2011). SNARE proteins SNAP-25, SNAP-23, SytI and

VAMP-2 are expressed in microglial cells (Hepp et al.

1999; Paolicelli et al. 2011). Myelin is formed by another

type of glial cells in the central nervous system, the

oligodendrocytes, and it is important to protect and

increase the electrical impulses speed along the neuronal

fiber (Sherman and Brophy 2005). Evidence of SNARE

proteins expression in these glial cells suggests its

involvement in the trafficking machinery that is essential in

myelinating cells to allow temporal and spatial control by

environmental cues (Feldmann et al. 2009; Baron and

Hoekstra 2010).

SNARE complex and psychiatric disorders

The core SNARE complex proteins involved in neuro-

transmission are SNAP-25, VAMP (-1 or -2) and Syntaxin-

1A. Cytoplasmic SNAP-25 forms a heterodimer with

Syntaxin-1A, a plasma transmembrane protein, at the

presynaptic terminal. Next, the vesicle transmembrane

protein VAMP binds to this heterodimer forming the

SNARE complex, joining plasmatic and vesicle mem-

branes. An important regulatory protein to such membrane

fusion event is Syt (I or II) that, upon calcium inflowing,

SNARE complex in developmental psychiatry: neurotransmitter exocytosis and beyond 871
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interacts with the SNARE complex, inducing fusion and

allowing neurotransmitter release (Südhof 2013) (Fig. 1).

Due to its central role on neurotransmitter release, genes

related to the SNARE complex and its regulatory proteins

have been investigated in psychiatric disorders. Here, we

review the overall findings regarding SNAP25, VAMP1,

VAMP2, STX1A, SYT1 and SYT2 genes in relation to

Attention Deficit Hyperactivity Disorder (ADHD), Autism

Spectrum Disorders (ASD), Major Depressive Disorder,

Bipolar Disorder and Schizophrenia susceptibilities, as

well as animal model and expression studies. Given the

aforementioned central role of SNARE complex on neu-

rodevelopment, results for children and adult samples are

presented separately whenever possible (summarized in

Table 1) and distinct age-related effects are highlighted

and discussed throughout the manuscript. Although gen-

ome-wide association studies have not yet implicated the

reviewed genes on these disorders, several SNARE poly-

morphisms have been associated with such phenotypes in

candidate gene studies, some of which being supported by

meta-analytic studies (Supplementary Table S1).

Synaptosomal-associated protein 25 (SNAP25)

As mentioned above, the first evidence of a possible effect

of SNAP-25 on abnormal neuropsychiatric development

came from the Coloboma mouse, which was then consid-

ered an animal model for ADHD due to their hyperactive

behavior. Based on this preliminary observation, the role of

SNAP25 gene variants (Chr.20p12.2) has been extensively

investigated in relation to different psychiatric disorders

(Table 1 and Supplementary Table S1). Studies on child-

hood ADHD have found multiple polymorphisms associ-

ated with the disorder (Feng et al. 2005; Kim et al. 2007;

Guan et al. 2009; Zhang et al. 2011; Sarkar et al. 2012;

Hawi et al. 2013) most of which, however, were not con-

sistently replicated by independent studies (Sánchez-Mora

et al. 2013; Gao et al. 2015).

Evidence implicating a functional role of some SNAP25

variants may give additional support to these association

findings. This is the case of rs362990 and rs6108461 SNPs,

associated with childhood ADHD and for which a geno-

type-dependent SNAP25 mRNA expression profile was

observed (Hawi et al. 2013). The study reported a dose-

dependent effect, where the increased presence of ADHD

implicated alleles (A-rs362990 and A-rs6108461) were

associated with decreased SNAP25 transcript levels in the

brain (Hawi et al. 2013). For other SNPs, apart from their

association with childhood ADHD, a broader effect on

psychiatric phenotypes has been suggested. For example, it

was demonstrated that rs3787283 was nominally associated

with ADHD in children and with comorbid Major

Depressive Disorder in the same sample, thus affecting the

clinical heterogeneity of childhood ADHD (Kim et al.

2007). Furthermore, a subsequent study found that the

same SNP was also associated with Major Depressive

Disorder itself in adults (Wang et al. 2015).

Moreover, there are two meta-analyses indicating a

significant association between the rs3746544 SNP and

childhood ADHD (Forero et al. 2009; Gizer et al. 2009),

which was further replicated by a subsequent study (Sarkar

et al. 2012). Although others have failed in retrieving such

result (Hawi et al. 2013; Gálvez et al. 2014; Gao et al.

2015), among the multiple SNAP25 associations reported,

this is indubitably the most robust finding on childhood

ADHD susceptibility and, as depicted by meta-analytic

studies, the T-allele can be considered as a risk-allele for

ADHD in children (Supplementary Table S1).

Contrasting with this finding and the overall multiple-

SNP implications scenario of SNAP25 on childhood

ADHD and despite having several SNPs tested, there is an

almost absolute lack of significant findings regarding

ADHD in adults (Sánchez-Mora et al. 2013; Olgiati et al.

2014). Such distinct effects of SNAP25 variation on chil-

dren and adults might be related to its developmentally

dependent pattern of expression as discussed on the Dis-

tinct expression profiles among isoforms and family mem-

bers topic. In fact, the only association of a SNAP25 SNP

with ADHD in adults was found precisely with rs3746544

(Herken et al. 2014); however, the observed effects of these

SNP alleles for adults were in the opposite direction of

what was observed for children samples (G for adults,

while T for children as risk-allele). Such effect of the

G-allele on adulthood ADHD is consistent with findings

reported for other psychiatric disorders in adults, where it

was also implicated on the susceptibility to Schizophrenia

in two meta-analyses (Dai et al. 2014; Wang et al. 2015)

and to Major Depressive Disorder (Wang et al. 2015).

Other SNPs spanning the SNAP25 gene have also been

associated with Schizophrenia (Carroll et al. 2009; Loch-

man et al. 2013), as well as with a broader construct of

Schizophrenia-related phenotypes (Fanous et al. 2010).

Furthermore, evidence of SNAP-25 expression studies in

post-mortem brain support its relationship with

Schizophrenia. SNAP-25 expression was demonstrated to

be increased in a segment of the frontal cortex (Broad-

mann’s Area 9) (Thompson et al. 1998—not replicated in

Scarr et al. 2006), cingulate cortex (Gabriel et al. 1997) and

orbitofrontal cortex (Ramos-Miguel et al. 2014). On the

other hand, expression was decreased in cerebellum

(Mukaetova-Ladinska et al. 2002), olfactory bulb (Egbujo

et al. 2015), hippocampus (Fatemi et al. 2001), and seg-

ments of the temporal cortex (Broadmann’s Area 20) and

anterior prefrontal cortex (Broadmann’s Area 10)

(Thompson et al. 1998—not replicated by Gray et al. 2010)

of Schizophrenia patients compared to controls. Moreover,
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Table 1 SNAP25, VAMP1, VAMP2, STX1A, SYT1 and SYT2 genes overall findings regarding the five major psychiatric disorders

Attention deficit

hyperactivity disorder

(ADHD) children

Attention deficit

hyperactivity disorder

(ADHD) adults

Autism

spectrum

disorders (ASD)

Major depressive

disorder

Bipolar

disorder

Schizophrenia

SNAP25 (?) Mill et al. (2002) (-) Sánchez-Mora et al.

(2013)

(-) Guerini et al.

(2011)

(?) Kim et al. (2007)

(in children with

ADHD)

(?) Etain

et al.

(2010)

(-) Tachikawa

et al. (2001)

(?) Mill et al. (2005) (-) Olgiati et al. (2014) (-) Braida et al.

(2015)

(?) Wang et al. (2015) (-) Kawashima

et al. (2008)

(?) Feng et al. (2005) (?) Herken et al. (2014) (?) Carroll

et al. (2009)

(-) Brookes et al. (2005) (?) Fanous

et al. (2010)

(-) Brookes et al. (2006) (?) Lochman

et al. (2013)

(?) Gizer et al. (2009) (?) Dai et al.

(2014)

(n) Guan et al. (2009) (?) Wang et al.

(2015)

(?) Forero et al. (2009)

(?) Zhang et al. (2011)

(?) Sarkar et al. (2012)

(-) Sánchez-Mora et al.

(2013)

(?) Hawi et al. (2013)

(?) Gálvez et al. (2014)

(-) Gao et al. (2015)

VAMP1 (-) Sánchez-Mora et al.

(2013)

(-) Sánchez-Mora et al.

(2013)

VAMP2 (-) Brookes et al. (2005) (-) Sánchez-Mora et al.

(2013)

(-) Jamra

et al.

(2008)

(-) Kawashima

et al. (2008)

(-) Brookes et al. (2006) (?) Kenar et al. (2014)

(-) Sánchez-Mora et al.

(2013)

(-) Gao et al. (2015)

STX1A (-) Brookes et al. (2005) (?) Sánchez-Mora et al.

(2013)

(n) Nakamura

et al. (2008)

(?) Wong et al.

(2004)

(-) Brookes et al. (2006) (?) Kenar et al. (2014) (?) Durdiaková

et al. (2014)

(-) Kawashima

et al. (2008)

(-) Guan et al. (2009) (n) Olgiati et al. (2014) (n) Nakamura

et al. (2011)

(?) Mulle et al.

(2014)

(-) Sánchez-Mora et al.

(2013)

(n) Malenfant

et al. (2012)

(n) Gao et al. (2015) (?) Tordjman

et al. (2013)

(?) Roberts et al.

(2014)

SYT1 (-) Brookes et al. (2005) (n) Sánchez-Mora et al.

(2013)

(?) Szatmari

et al. (2007)

(-) Brookes et al. (2006)

(n) Lasky-Su et al. (2008)

(n) Guan et al. (2009)

(n) Sánchez-Mora et al. (2013)

SYT2 (?) Sánchez-Mora et al.

(2013)

(-) Sánchez-Mora et al.

(2013)

Positive associations (?) with at least one polymorphism evaluated; (n) for nominal associations; and negative results (-) when no polymor-

phism was found associated
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Duric et al. (2013) showed that subjects with Major

Depressive Disorder had reduced expression levels of

SNAP-25 in the hippocampus. However, when antide-

pressant usage and cause of death were considered, the

results did not remain significant, suggesting that the

expression pattern could be related to these factors. The

same study demonstrated that rats with chronic unpre-

dictable stress (a rat model for depression) presented a

trend for decreased levels of Snap-25 in hippocampus.

Furthermore, no association was found with any

SNAP25 SNP tested with ASD (Guerini et al. 2011; Braida

et al. 2015), although associations with hyperactivity

(Guerini et al. 2011) and with cognitive function (Braida

et al. 2015) within ASD samples have been reported; and

only one study assessed the role of SNAP25 variants on

Bipolar Disorder (Etain et al. 2010). This later study found

an association of rs6039769 with early-onset Bipolar

Disorder; this same SNP was tested for childhood and

adulthood ADHD and Schizophrenia with no significant

results (Renner et al. 2008; Carroll et al. 2009; Sánchez-

Mora et al. 2013) (Supplementary Table S1).

Apart from psychiatric disorder diagnoses, neurocognitive

measures were also evaluated regarding SNAP25 genotypes.

The rs363039 SNP was associated with working memory in

childhood ADHD samples (Gao et al. 2015), and also in

samples of healthy children and adults (Söderqvist et al.

2010). This SNP, along with other SNAP25 polymorphisms,

was also associated with intelligence quotient (IQ) (Gosso

et al. 2006, 2008) but with none of the psychiatric disorders

reviewed here (Supplementary Table S1). Thus, it could be

suggested that this SNP might influence neurocognitive

measures across psychiatric and cognitive phenotypes.

It is noteworthy that most SNPs associated with a wide

array of psychiatric disorders are located on the same

genetic region, the 30 end of the gene, that was shown to be

implicated in miRNA binding and expression control

(Németh et al. 2013). It has been demonstrated that the T–T

haplotype for rs3746544-rs1051312 forms a perfect bind-

ing site for miR-641, which increases mRNA degradation

regulating SNAP-25 expression (Németh et al. 2013). Such

T–T haplotype was previously associated with ADHD in

children (Mill et al. 2004). Taking into account the known

SNAP-25 role on axonal growth and synaptic plasticity, it

seems plausible that lower SNAP-25 expression caused by

the T–T haplotype might be related to ADHD susceptibility

during childhood, a developmental stage where such neu-

ronal processes are remarkably important. Interestingly, the

same effect was not observed in adults; in fact, as noted

above, the opposite rs3746544 allele (G) seems to confer

risk to psychiatric disorders during adulthood, as it has

been implicated in ADHD (Herken et al. 2014), Major

Depressive Disorder (Wang et al. 2015) and Schizophrenia

(Wang et al. 2015) in adults.

Altogether, SNAP25 findings show an interesting

pleiotropic scenario pinpointing variants associated to the

susceptibility to several psychiatric disorders at distinct

developmental stages and suggest that fine control of

SNAP-25 expression plays a central role on normal

development.

Vesicle-associated membrane protein (VAMP1

and VAMP2)

VAMP-1 is involved in neurotransmitter exocytosis at the

presynaptic terminal (Bourassa et al. 2012). The associa-

tion of VAMP1 gene (Chr.12p13.31) polymorphisms has

been tested in regards to ADHD susceptibility, both in

children and adults (Sánchez-Mora et al. 2013); however,

none of the tested SNPs showed significant effects

(Table 1). Expression studies in post-mortem brains, on the

other hand, have indicated that VAMP1 mRNA levels are

increased on the temporal lobe of Schizophrenia patients

when compared to controls (Sokolov et al. 2000), and

mRNA levels of a VAMP1 orthologue in rats (Vamp1) were

decreased in hippocampus of animal models of depression

(Müller et al. 2011).

VAMP2 gene is located at Chr.17p13.1 region and is

highly similar to VAMP1 (McNew et al. 2000). The rela-

tionship between VAMP2 and psychiatric disorders and

related animal model phenotypes has been the focus of

several studies. Regarding ADHD in children, several

VAMP2 SNPs were evaluated but none of them revealed any

association (Brookes et al. 2005, 2006; Sánchez-Mora et al.

2013; Table 1). There was, however, a nominal association

between one of these polymorphisms (rs1150) with visual

working memory in a sample of children with ADHD, in

which homozygotes for the minor allele (A) had better per-

formance scores (Gao et al. 2015). On the other hand, only

two variants have been investigated in respect to ADHD in

adult samples; while Sánchez-Mora et al. (2013) did not

observe association with the single VAMP2 SNP addressed

(rs8067606), Kenar et al. (2014) described a significant

association with the 26 bp insertion/deletion (26pb Ins/Del)

polymorphism of VAMP2. The 26pb Ins/Del is located at

2 kb from30 region ofVAMP2, in an intergenic region (Falbo

et al. 2002), and the Ins-allele was significantly more fre-

quent in adults with ADHD (Kenar et al. 2014) (Table 1 and

Supplementary Table S1). Studies regarding other psychi-

atric disorders did not retrieve significant associations, such

as for Schizophrenia (Kawashima et al. 2008) or Bipolar

Disorder (Jamra et al. 2008). However, similarly to what was

observed forVAMP1, increasedVAMP2mRNA levels on the

temporal lobe of Schizophrenia patients were found when

compared to controls (Sokolov et al. 2000).

Mice models of depression induced by different types of

stress (endogenous stress or unpredictable chronic stress)
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showed reduced Vamp2 mRNA levels in hippocampus

(Malki et al. 2014) and Vamp2 mRNA and protein levels in

adrenal medulla (Santana et al. 2015). In rats, however,

chronic restraint stress induced an increase of Vamp2

mRNA levels in prefrontal cortex and in hippocampus, as

well as increased protein levels in prefrontal cortex (Müller

et al. 2011). In hippocampus, while Gao et al. (2006) also

reported an increase in Vamp-2 protein levels, Müller et al.

(2011) observed decreased Vamp-2. Such controversial

findings between Vamp2 mRNA (increased) and Vamp-2

protein levels (decreased) in rat hippocampus reported by

Müller et al. (2011) might be due to possible post-tran-

scriptional regulation of Vamp-2, as suggested by the

authors. However, more studies are necessary to elucidate

the opposite findings for Vamp-2 protein levels between

Gao et al. (2006) and Müller et al. (2011) studies. Elfving

et al. (2008) assessing a model of electroconvulsive ther-

apy, a known treatment for depression, in rats observed an

upregulation of Vamp2 in hippocampus after seizures.

Additionally, human studies with post-mortem brain tissue

of patients with Major Depressive Disorder revealed that

VAMP2 mRNA levels were decreased in the prefrontal

cortex compared to controls (Malki et al. 2014).

Syntaxin-1A (STX1A)

STX1A (Chr.7q11.23) polymorphisms have been investi-

gated in relation to ADHD susceptibility in both children

and adult samples. It is noteworthy that, although there are

more studies with children, most associations were found

with adult samples of ADHD. Of the five childhood ADHD

studies, only one of them found a significant result

(Table 1). The single associated STX1A SNP (rs875342)

was found by Gao et al. (2015) comparing Chinese children

with and without ADHD.

Regarding adults, the three studies that investigated the

relationship between STX1A and ADHD have found sig-

nificant associations (Sánchez-Mora et al. 2013; Kenar

et al. 2014; Olgiati et al. 2014); nevertheless the implicated

SNPs were not always the same across studies. Sánchez-

Mora et al. (2013) have evaluated several SNPs, both in

children and adult samples, and found four STX1A SNPs

associated with ADHD during adulthood (Supplementary

Table S1). The association of rs2228607 to ADHD

observed in adults (Sánchez-Mora et al. 2013) was also

found in an independent sample of adults, but in the

opposite direction (Olgiati et al. 2014). These results are

especially interesting since this polymorphism has been

shown to be functionally relevant, where the G-allele is

able to affect the mRNA splicing process, favoring the

inclusion of intron 3 and resulting in decreased mRNA

stability by enhancing nonsense-mediated mRNA decay

(von Känel et al. 2013). A third study has implicated a

different STX1A SNP (rs35459363) on adult susceptibility

to ADHD (Kenar et al. 2014). A possible implication of

this SNP in psychiatric disorders during adulthood has also

been suggested by a Schizophrenia susceptibility study in a

sample from Canada and Portugal (Wong et al. 2004);

however, this was not replicated in a Japanese sample

(Kawashima et al. 2008) (Supplementary Table S1).

Childhood ADHD studies have not directly investigated the

effect of this SNP; nevertheless, no association was

observed when its effect was assessed in ASD, which is

another childhood onset psychiatric disorder (Nakamura

et al. 2008).

High functioning autism was nominally associated to the

functional STX1A rs2228607 SNP and rs4717806 in chil-

dren in a Caucasian sample (Nakamura et al. 2008) and to

rs6951030 in a Japanese sample (Nakamura et al. 2011).

Asperger’s Syndrome was associated to rs4717806 and

rs941298 in adults (Durdiaková et al. 2014) (Table 1 and

Supplementary Table S1). Moreover, the rs1569061 T-al-

lele was over-transmitted to ASD probands, but other SNPs

were not associated (Malenfant et al. 2012). Furthermore,

copy number variations encompassing Chr.7q11.23 region

have been associated with intellectual and developmental

disabilities (Kaminsky et al. 2011), Schizophrenia (Mulle

et al. 2014) and ASD (Malenfant et al. 2012; Tordjman

et al. 2013; Roberts et al. 2014).

Animals submitted to unpredictable stress to induce

depressive-like behavior presented lower Stx1A mRNA

levels in the adrenal medulla when compared to controls

(Santana et al. 2015). Concerning other expression studies, a

lower STX1A mRNA expression was found in post-mortem

brain tissues of adults with ASD, specifically in the anterior

cingulate gyrus (Nakamura et al. 2011). Nevertheless,

Schizophrenia patients present higher Syntaxin-1A levels in

cingulate cortex (Gabriel et al. 1997; Honer et al. 1997) and

in dorsolateral prefrontal cortex (Gil-Pisa et al. 2012—not

found by Gray et al. 2010). Additionally, changes in the

protein levels were not found in parietal cortex (Gabriel et al.

1997; Gray et al. 2010), frontal cortex (Gabriel et al. 1997)

and prefrontal cortex (Gray et al. 2010). Moreover, in

Schizophrenia patients a negative correlation between age

and STX1A mRNA levels was demonstrated in the temporal

cortex (Sokolov et al. 2000). Regarding Bipolar Disorder, an

expression study did not find significant differences in the

Syntaxin-1A levels between patients and controls in pre-

frontal cortex, dorsolateral prefrontal cortex and parietal

cortex (Gray et al. 2010).

Synaptotagmin (SYT1 and SYT2)

The SytI protein, encoded by the SYT1 gene (Chr.12q21.2),

acts as a Ca2? sensor in vesicular trafficking and neuro-

transmitter release (Fernández-Chacón et al. 2001).
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Although earlier childhood ADHD studies did not find any

association (Brookes et al. 2005, 2006), subsequent studies

found several SYT1 SNPs nominally associated with the

disorder (Guan et al. 2009; Sánchez-Mora et al. 2013) as

well as with age of ADHD onset (Lasky-Su et al.

2008) (Supplementary Table S1). For adulthood ADHD,

only one study has been conducted so far. Sánchez-Mora

et al. (2013) found a nominal association between SYT1

rs2251214 and ADHD in adults, but not in children. None

of the other SNPs tested was associated with ADHD in

adults (Sánchez-Mora et al. 2013). In addition, copy

number variations were evaluated for ASD where several

chromosomal regions were implicated, including a segment

encompassing the SYT1 gene (Szatmari et al. 2007).

Analyses of SYT1 mRNA levels in post-mortem brains

of elderly Schizophrenia patients and controls showed that

there was an increased expression in the left superior

temporal gyrus of the patients (Sokolov et al. 2000).

Moreover, rats with depressive-like symptoms present an

increase in Syt1 mRNA levels in the hypothalamus (Ge

et al. 2013). Despite that, rats that were submitted to

models of electroconvulsive therapy did not show changes

regarding Syt1 mRNA expression levels in frontal cortex

and hippocampus (Elfving et al. 2008). There was, how-

ever, a significant decrease in the paralogue Syt3 mRNA

levels in rat hippocampus after both single and repeated

treatment exposure (Elfving et al. 2008).

SytII seems to play a role similar to SytI on the SNARE

complex assembly (Nagy et al. 2006). SYT2 SNPs

(rs6427957-G and rs907697-T) were significantly associ-

ated with ADHD in children, but not in adults (Sánchez-

Mora et al. 2013). The conflicting results between child-

hood and adulthood ADHD found for SYT2 may indicate

that some SNPs in genes related to neurotransmitter release

might be age-specific factors, interfering on the age of

onset or diagnosis persistence. More studies regarding this

gene in other psychiatric disorders are needed to further

elucidate its role on neurodevelopment.

SNARE genes and pharmacogenetics

The interindividual variability in treatment response to

psychiatric drugs may be better understood through phar-

macogenetic studies. Since the majority of the medications

used to treat psychiatric disorders target components of the

neurotransmitter systems, genes related to this pathway

have earned attention and raised prominent results in psy-

chiatric pharmacogenetics (Kitzmiller et al. 2011). In this

context, genes encoding components of the SNARE com-

plex and its regulatory proteins are candidates with

potential effects on treatment response to psychiatric

medications, since they play a key role in neurotransmitter

release (Südhof 2013). Unfortunately, scarce

pharmacogenetic studies focusing on the components of

this complex have been conducted so far.

Evidence from animal model studies evaluating SNARE

complex mRNA or protein have supported the importance

of this system in response to a variety of psychiatric drugs.

Hess et al. (1996) evaluated the effects of the widely used

psychostimulants in ADHD treatment, methylphenidate

(MPH) and amphetamine, on locomotor activity using the

Coloboma mice mentioned above compared to controls.

Administration of amphetamine reduced the hyperactivity

symptoms of Coloboma mice, but increased the locomotor

activity of controls. On the other hand, MPH increased

locomotor activity in both Coloboma and control mice,

suggesting a more important role of Snap25 on ADHD

treatment with amphetamine than with MPH. Additionally,

PC12 cells treated with MPH presented reduced Syt1, Syt4

and Stx1a mRNA levels (Bartl et al. 2010). Thus, one could

speculate that the SNARE complex may be involved in the

response to commonly used ADHD medications.

There is also evidence of changes on SNARE proteins

expression levels in different regions of the rat brain under

antipsychotic treatment. More specifically, it has been

shown that the use of typical antipsychotic drugs (chlor-

promazine, haloperidol or trifluoperazine) alters Snap-25

and Synaptophysin protein levels in a drug- and region-

specific manner in the rat hippocampus (Barr et al. 2006).

Moreover, Barakauskas et al. (2010) observed that treat-

ment with haloperidol led to increased Snap-25, Syntaxin

and Vamp protein levels in striatal regions of rats, whereas

clozapine only increased levels of Vamp in the same region

(Barakauskas et al. 2010). In the same sense, clozapine

seems to downregulate Stx1a expression in frontal cortex

whereas it upregulates expression in the parietal cortex

(Sommer et al. 2010). Additionally, antidepressants have

also been associated with changes in SNARE proteins

expression levels. For example, Yamada et al. (2002)

showed that chronic antidepressant treatment with imipra-

mine and sertraline increased Vamp-2 protein levels in the

frontal cortex of rat, but reported no significant differences

on Snap-25 and Stx1 protein levels. Taken together, these

results from animal models suggest that components of

SNARE complex may exert important functions on the

treatment response to different psychiatric drugs and that

genes encoding these components are considered good

candidates for pharmacogenetic studies.

In clinical psychiatric studies, the most promising

results regarding pharmacogenetics of SNARE complex

genes are related to SNAP25. The rs3746544 polymor-

phism, in addition to their robust associations with child-

hood ADHD susceptibility (Forero et al. 2009; Gizer et al.

2009) was also investigated in studies evaluating the

response to MPH in patients with ADHD. In preschoolers

aged 3–5 years, the TT genotype of rs3746544 was
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associated with better response to IR-MPH (immediate

release MPH) when compared to G carriers. Additionally,

this study also showed association between the G-allele

and risk to irritability as treatment side effect (McGough

et al. 2006). However, these results were not replicated in a

subsequent study in patients with ADHD aged 6–17 years

(McGough et al. 2009). More recently, this same SNP was

associated with OROS-MPH (osmotic controlled release

oral delivery system MPH) treatment response in a sample

of children and adolescents aged 6–18 years, in which the

TT and TG genotypes were associated with better thera-

peutic response (Song et al. 2014). These findings are in

agreement with the results reported in preschoolers with

IR-MPH (McGough et al. 2006). However, the single study

that evaluated the role of this SNAP25 SNP on MPH

response in adults with ADHD did not retrieve any sig-

nificant association (Contini et al. 2012). The rs3746544

polymorphism was also associated with efficacy of treat-

ment and weight gain after 14 weeks of treatment in

Schizophrenia patients with history of poor response to

antipsychotics (Müller et al. 2005). Patients under treat-

ment with clozapine, olanzapine, risperidone or haloperidol

that carried the TT genotype showed a better clinical

response, but also increased weight gain when compared to

TG and GG genotypes. Such findings are in line with the

results supported by two meta-analyses reporting the

G-allele as risk to Schizophrenia susceptibility as described

earlier (Dai et al. 2014; Wang et al. 2015). However, this

SNP was not associated with treatment response in another

study that evaluated patients with Schizophrenia being

treated with quetiapine, risperidone, aripiprazole and

olanzapine over a period of 8–12 weeks (Spellman et al.

2008).

Another well-studied SNAP25 SNP, rs1051312, was

also investigated in most studies mentioned above. This

SNP was associated with IR-MPH treatment response and

side effects in preschoolers with ADHD (3–5 years old), in

which the T-allele was associated with worse treatment

response and the C-allele predicted motor tics as a side

effect (McGough et al. 2006). However, no association of

this SNP with treatment response and side effects was

found in a sample of children and adolescents (McGough

et al. 2009). Regarding antipsychotics, this polymorphism

was not significantly associated with clinical response or

weight gain in patients with Schizophrenia (Müller et al.

2005; Spellman et al. 2008). Apart from SNAP25, other

SNARE components are still poorly investigated in clinical

pharmacogenetic studies. In one of the few studies, VAMP2

gene polymorphisms were investigated on clinical response

to the antidepressant fluvoxamine in a Japanese sample of

adults with Major Depressive Disorder, but no significant

association was found (Saito et al. 2007).

Given the relative scarcity of clinical pharmacogenetic

studies, expression experiments may raise interesting pos-

sibilities for further investigations. An interesting example

comes from the post-mortem analysis of protein expression

levels in the prefrontal cortex of subjects with and without

Schizophrenia, treated or not with antipsychotics. It was

demonstrated that Syntaxin-1A protein levels were

increased in Schizophrenia, but showed a slightly reduction

with antipsychotic treatment (Gil-Pisa et al. 2012). SNAP-

25, VAMP, Syt, Munc18-1a and Synaptophysin expression

was not altered in the brain of Schizophrenia patients

without treatment, while in patients treated with antipsy-

chotics drugs only VAMP had reduced expression levels

(Gil-Pisa et al. 2012).

Despite more replication studies being warranted, the

evidence up to now involving animal model, expression

and clinical studies suggests that SNARE complex genes

are important candidates to be investigated on response to

different psychiatric drugs, including antipsychotics, psy-

chostimulants and antidepressants. Provided that the

SNARE proteins have different expression patterns

throughout life, it is worth mentioning the importance of

considering age groups in such pharmacogenetics studies,

at least regarding MPH response. Thus, elucidating genetic

variants that influence the effectiveness of treatment or the

incidence of adverse effects will allow to perform early

pharmacological intervention and improve the patient’s

prognosis.

Conclusion

In this review we addressed the state-of-the-art of genetic

association findings and biological evidence linking

SNARE complex to developmental psychiatry. We revis-

ited studies exploring the relationship between SNARE

genes (SNAP25, VAMP1, VAMP2, STX1A, SYT1 and SYT2)

and several psychiatric disorders and their treatments.

Although still inconclusive, genetic association findings on

psychiatric disorders susceptibility depict a promising

overall scenario, with variants exerting distinct effects in

children and in adults. Additionally, despite SNARE pro-

teins usually being known by their role in neurotransmitter

release, they participate in a wide variety of processes

throughout life stages and are essential to neuropsychiatric

development.

Acknowledgments This work was financially supported by the

Brazilian governmental funding agencies CAPES and CNPq.

Compliance with ethical standards

Conflict of interest The authors declare no conflict of interest.

SNARE complex in developmental psychiatry: neurotransmitter exocytosis and beyond 877

123



References

Abrial E, Betourne A, Etievant A et al (2015) Protein kinase C

inhibition rescues manic-like behaviors and hippocampal cell

proliferation deficits in the sleep deprivation model of mania. Int

J Neuropsychoph 18:1–11. doi:10.1093/ijnp/pyu031

Araque A, Li N, Doyle RT, Haydon PG (2000) SNARE protein-

dependent glutamate release from astrocytes. J Neurosci

20:666–673

Baker K, Gordon S, Grozeva D et al (2015) Identification of a human

synaptotagmin-1 mutation that perturbs synaptic vesicle cycling.

J Clin Invest 125:1670–1678. doi:10.1172/JCI79765

Barakauskas VE, Beasley CL, Barr AM et al (2010) A novel

mechanism and treatment target for presynaptic abnormalities in

specific striatal regions in schizophrenia. Neuropsychopharmacol

35(5):1226–1238

Bark IC (1993) Structure of the chicken gene for SNAP-25 reveals

duplicated exons encoding distinct isoforms of the protein. J Mol

Biol 233:67–76

Bark IC, Hahn KM, Ryabinin AE, Wilson MC (1995) Differential

expression of SNAP-25 protein isoforms during divergent

vesicle fusion events of neural development. Proc Natl Acad

Sci USA 92:1510–1514. doi:10.1073/pnas.92.5.1510

Baron W, Hoekstra D (2010) On the biogenesis of myelin

membranes: sorting, trafficking and cell polarity. FEBS Lett

584:1760–1770. doi:10.1016/j.febslet.2009.10.085

Barr AM, Young CE, Phillips AG, Honer WG (2006) Selective effects

of typical antipsychotic drugs on SNAP-25 and synaptophysin in

the hippocampal trisynaptic pathway. Int J Neuropsychopharma-

col 9:457–463. doi:10.1017/S1461145705006000

Bartl J, Link P, Schlosser C et al (2010) Effects of methylphenidate:

the cellular point of view. Atten Deficit Hyperact Disord

2:225–232. doi:10.1007/s12402-010-0039-6

Bennett JC, McRae PA, Levy LJ, Frick KM (2006) Long-term

continuous, but not daily, environmental enrichment reduces

spatial memory decline in aged male mice. Neurobiol Learn

Mem 85:139–152. doi:10.1016/j.nlm.2005.09.003

Bortoluzzi A, Blaya C, Rosa ED et al (2015) What can HPA axis-

linked genes tell us about anxiety disorders in adolescents?

Trends Psychiatry Psychother 37(4):232–237. doi:10.1590/2237-

6089-2015-0035

Boschert U, O’Shaughnessy C, Dickinson R et al (1996) Develop-

mental and plasticity-related differential expression of two

SNAP-25 isoforms in the rat brain. J Comp Neurol

367:177–193. doi:10.1002/(SICI)1096-9861(19960401)367:

2\177:AID-CNE2[3.0.CO;2-2

Bourassa CV, Meijer IA, Merner ND et al (2012) VAMP1 mutation

causes dominant hereditary spastic ataxia in newfoundland

families. Am J Hum Genet 91:548–552. doi:10.1016/j.ajhg.2012.

07.018

Braida D, Guerini FR, Ponzoni L et al (2015) Association between

SNAP-25 gene polymorphisms and cognition in autism: func-

tional consequences and potential therapeutic strategies. Transl

Psychiatry 5(1):e500. doi:10.1038/tp.2014.136

Brookes KJ, Knight J, Xu X, Asherson P (2005) DNA pooling

analysis of ADHD and genes regulating vesicle release of

neurotransmitters. Am J Med Genet B 139B:33–37. doi:10.1002/

ajmg.b.30216

Brookes K, Xu X, Chen W et al (2006) The analysis of 51 genes in

DSM-IV combined type attention deficit hyperactivity disorder:

association signals in DRD4, DAT1 and 16 other genes. Mol

Psychiatry 11:934–953. doi:10.1038/sj.mp.4001869

Brunger AT (2000) Structural insights into the molecular mechanism

of Ca(2 ?) dependent exocytosis. Curr Opin Neurobiol

10(3):293–302. doi:10.1016/S0959-4388(00)00098-2

Burgess RW, Deitcher DL, Schwarz TL (1997) The synaptic protein

syntaxin1 is required for cellularization of Drosophila embryos.

J Cell Biol 138:861–875. doi:10.1083/jcb.138.4.861

Carroll LS, Kendall K, O’Donovan MC et al (2009) Evidence that

putative ADHD low risk alleles at SNAP25 may increase the risk

of schizophrenia. Am J Med Genet B 150:893–899. doi:10.1002/

ajmg.b.30915

Caspi A, Sugden K, Moffitt TE et al (2003) Influence of life stress on

depression: moderation by a polymorphism in the 5-HTT gene.

Science 301(5631):386–389

Chen Q, He J, Ma C et al (2015) Syntaxin 1A modulates the sexual

maturity rate and progeny egg size related to phase changes in

locusts. Insect Biochem Mol Biol 56:1–8. doi:10.1016/j.ibmb.

2014.11.001

Conner SD, Wessel GM (1999) Syntaxin is required for cell division.

Mol Biol Cell 10:2735–2743. doi:10.1091/mbc.10.8.2735

Contini V, Victor MM, Bertuzzi GP et al (2012) No significant

association between genetic variants in 7 candidate genes and

response to methylphenidate treatment in adult patients with

ADHD. J Clin Psychopharmacol 32:820–823. doi:10.1097/JCP.

0b013e318270e727

Craig TJ, Anderson D, Evans AJ et al (2015) SUMOylation of

Syntaxin1A regulates presynaptic endocytosis. Sci Rep.

4(5):17669. doi:10.1038/srep17669

Curtis L, Datta P, Liu X et al (2010) Syntaxin 3B is essential for the

exocytosis of synaptic vesicles in ribbon synapses of the retina.

Neuroscience 166(3):832–841. doi:10.1016/i.neuroscience.2009.

12.075

Dai D, Wang Y, Yuan J et al (2014) Meta-analyses of 10

polymorphisms associated with the risk of schizophrenia.

Biomedical Reports. doi:10.3892/br.2014.308

De Blas GA, Roggero CM, Tomes CN, Mayorga LS (2005) Dynamics

of SNARE assembly and disassembly during sperm acrosomal

exocytosis. PLoS Biol. doi:10.1371/journal.pbio.0030323
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Zhang Q, Pangršič T, Kreft M et al (2004b) Fusion-related release of

glutamate from astrocytes. J Biol Chem 279:12724–12733.

doi:10.1074/jbc.M312845200

Zhang H, Zhu S, Zhu Y et al (2011) An association study between

SNAP-25 gene and attention-deficit hyperactivity disorder. Eur J

Paediatr Neurol 15:48–52. doi:10.1016/j.ejpn.2010.06.001

Zylbersztejn K, Galli T (2011) Vesicular traffic in cell navigation.

FEBS J 278:4497–4505. doi:10.1111/j.1742-4658.2011.08168

SNARE complex in developmental psychiatry: neurotransmitter exocytosis and beyond 883

123

http://dx.doi.org/10.1073/pnas.0401960101
http://dx.doi.org/10.1074/jbc.M312845200
http://dx.doi.org/10.1016/j.ejpn.2010.06.001
http://dx.doi.org/10.1111/j.1742-4658.2011.08168

	SNARE complex in developmental psychiatry: neurotransmitter exocytosis and beyond
	Abstract
	Introduction
	SNARE proteins and its multiple biological functions
	Post-translational modifications of SNARE proteins
	Distinct expression profiles among isoforms and family members
	SNARE proteins in glial cells
	SNARE complex and psychiatric disorders
	Synaptosomal-associated protein 25 (SNAP25)
	Vesicle-associated membrane protein (VAMP1 and VAMP2)
	Syntaxin-1A (STX1A)
	Synaptotagmin (SYT1 and SYT2)
	SNARE genes and pharmacogenetics

	Conclusion
	Acknowledgments
	References




