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Abstract Currently, we still lack effective measures to

modify disease progression in neurodegenerative diseases.

Iron-containing proteins play an essential role in many

fundamental biological processes in the central nervous

system. In addition, iron is a redox-active ion and can

induce oxidative stress in the cell. Although the causes and

pathology hallmarks of different neurodegenerative dis-

eases vary, iron dyshomeostasis, oxidative stress and

mitochondrial injury constitute a common pathway to cell

death in several neurodegenerative diseases. MRI is cap-

able of depicting iron content in the brain, and serves as a

potential biomarker for early and differential diagnosis,

tracking disease progression and evaluating the effective-

ness of neuroprotective therapy. Iron chelators have shown

their efficacy against neurodegeneration in a series of

animal models, and been applied in several clinical trials.

In this review, we summarize recent developments on iron

dyshomeostasis in Parkinson’s disease, Alzheimer’s dis-

ease, Friedreich ataxia, and Huntington’s disease.
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Introduction

As the population is aging worldwide, neurodegenerative

diseases, especially Parkinson’s disease (PD) and Alzhei-

mer’s disease (AD) are becoming a main challenge to

health care professionals (Brookmeyer et al. 2007; Dorsey

et al. 2007). Unfortunately, so far we have no cure or

effective intervention to slow down the progression of

these neurodegenerative diseases. Although PD and AD

have different symptoms and pathological changes, several

processes are common in their pathogenesis and cell death:

iron accumulation, excess oxidative stress, and mitochon-

drial dysfunction (Ward et al. 2014; Crichton et al. 2011;

Parker et al. 1994; Deibel et al. 1996; Connor et al. 1992;

Dexter et al. 1989; Riederer et al. 1989; Devi et al. 2008;

Jenner et al. 1992). Moreover, iron overload has direct

interplays with the key components of pathological hall-

marks, a-synuclein in PD, b-amyloid and tau protein in AD

(Ostrerova-Golts et al. 2000; Golts et al. 2002; Ortega et al.

2015; Becerril-Ortega et al. 2014; Bodovitz et al. 1995;

Everett et al. 2014; Yamamoto et al. 2002). Besides, in

several hereditary neurodegenerative diseases such as

Huntington’s disease, and Friedreich ataxia, iron

dyshomeostasis also plays a critical role, and these diseases

share a common core mechanism of neurodegeneration

with PD and AD (Babcock et al. 1997; Rotig et al. 1997;

Hilditch-Maguire et al. 2000; Bulteau et al. 2004; Bartzokis

et al. 2007; Mena et al. 2015). Neuroimaging examination,

especially MRI, is a good measure to detect iron accu-

mulation early in the disease process, monitor iron over-

load along disease progression, and evaluate the effect of

treatment (Ward et al. 2014; Apple et al. 2014; He et al.

2015; Wieler et al. 2015; Devos et al. 2014). Iron chelation

is demonstrated effective in several animal models of the

above diseases, and promising in clinical trials of PD and
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Friedreich’s ataxia (Pandolfo et al. 2014; Dexter et al.

2011, 2014; Grolez et al. 2015; Devos et al. 2014; Kaur

et al. 2003). In this review, we mainly discuss iron

dyshomeostasis and its role in the pathogenesis of PD, the

application of imaging tools for iron detection in research

and clinical practice, and the prospect of iron chelation

therapy in PD. Additionally, we will give a brief overview

of iron dysregulation in AD, Friedreich ataxia, and Hunt-

ington’s disease.

Regulation of cellular iron in the brain

Regulations of cellular iron in different cell types of the

brain varied. In microglia, oligodendrocytes, and most

neurons, the majority of the iron is stored in ferritin as a

non-reactive but bio-available form (Connor et al. 1994;

Hansen et al. 1999). However, in dopaminergic neurons

of the substantia nigra (SN), neuromelanin serves as the

main non-reactive iron storage. In the study by Zecca

et al. (2001), iron, ferritin, and neuromelanin in the SN

of normal subjects all increase with age. Since the

second decade, neuromelanin is the predominant mole-

cule reserving iron, and its proportion in total iron

content increases with age. In subjects aged

80–90 years, the concentration of total iron, ferritin and

neuromelanin are 109–199, 300–400, and 3500 ng/mg,

respectively (Zecca et al. 2001). We need to note that

the authors did not discriminate the iron, ferritin and

neuromelanin distributions between different cell types,

but we can infer the mainstay of neuromelanin in stor-

ing iron in dopaminergic neurons because of the sig-

nificant predominance of neuromelanin in SN. Studies

on Macaca arctoides and rat brains reported that astro-

cytes lack ferritin (Connor et al. 1994; Hansen et al.

1999). However, researches using cultured rat astrocytes

showed that stimulations with iron together with TNF-a,
iron oxide nanoparticles, or ferric ammonium citrate

induced a significant increase of ferritin in astrocytes

(Hoepken et al. 2004; Rathore et al. 2012; Geppert et al.

2012). These studies suggest that astrocytes can store

iron into ferritin to reduce oxidative stress under the

above stimulations. In addition to iron stored in ferritin

or neuromelanin as non-reactive forms, a small pro-

portion (less than 5 %) of iron in the cell is in the labile

cell pool, where the iron is redox-active, chelatable and

exchangeable. Labile cell iron is maintained within a

range of 0.5–1.5 lM physiologically (Cabantchik 2014).

Iron-sulfur clusters and heme are two crucial iron-con-

taining prosthetic groups, which are essential elements

of the mitochondrial electron transport chain (Gille and

Reichmann 2011; Zhang et al. 1998; Beinert et al. 1997;

Lin et al. 1982).

Normally, iron homeostasis is strictly controlled by a

series of regulators. In the plasma, iron is transported by

transferrin (Tf). To enter the central nervous system, iron

must cross the blood–brain barrier and the blood–cere-

brospinal fluid barrier, and there are transferrin receptors

(TfR) on the luminal surface of the capillary endothelial

cells. Firstly, transferrin with Fe3? and TfR form a Tf–TfR

complex on the luminal surface of the endothelial cells, and

then this complex is taken up into the endothelia by

endocytosis (Visser et al. 2004). How iron is expelled out

of the abluminal surface of the endothelia and into the

brain interstitial fluid is still controversial. Some studies

showed that iron was segregated from Tf in the endothelia

and then released to the brain interstitial fluid (Moos et al.

2006). Afterwards, iron is mainly incorporated with Tf in

the interstitial fluid. Neurons can import iron by endocy-

tosis of Tf–TfR complex (Leitner and Connor 2012; Moos

et al. 1998), then divalent metal ion transporter 1 (DMT1)

helps iron transport from the endosomes to the cell cyto-

plasm (Moos and Morgan 2004), where some of the iron is

sent to ferritin with the help of the chaperone poly-r(C)-

binding protein 1 (PCBP) family (Leidgens et al. 2013),

some imported into mitochondria for heme and iron-sulfur

cluster (ISC) synthesis, and few of the iron stays in the

labile iron pool (Lane et al. 2015). How iron is transported

into mitochondria is still not fully elucidated, and mito-

ferrin is a putative mitochondrial iron importer in neuronal

cells (Carroll et al. 2011; Lane et al. 2015). Mastrober-

ardino et al. (2009) demonstrated a Tf–TfR2 pathway

importing iron into mitochondria in the neurons in SN. As

neuromelanin is the main protein storing iron in

dopaminergic cells in SN, it is synthesized in the process of

dopamine oxidation (Zucca et al. 2015). Excess iron is

transported by ferroportin out of the neurons, with the help

of ferroxidases such as ceruloplasmin (CP) (De Domenico

et al. 2007). The homeostasis of cellular iron is kept by two

iron regulatory proteins (IRP1 and IRP2), which regulate

the translations of the mRNAs of proteins involved in iron

storage, influx, and efflux (Rouault 2006; Klausner et al.

1993).

The iron transport related to the glia is less clear than

that in the neurons. Virtually no DMT1 or transferrin

receptor can be detected in quiescent astrocytes, microglia,

and oligodendrocytes (Moos and Morgan 2004; Pelizzoni

et al. 2013; Skjorringe et al. 2015; Moos 1996). Ferroportin

was not detected in astrocytes and resting microglia (Moos

and Rosengren Nielsen 2006). Microglia iron uptake is

performed via phagocytosis of ferritin (Leitner and Connor

2012), and oligodendrocytes also obtain iron from ferritin

(Todorich et al. 2008). Astrocytes acquire iron through the

resident transient receptor potential (TRP) channels in the

quiescent state, and the de novo expressed DMT1 in acti-

vated state (Pelizzoni et al. 2013).
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Interplay between mitochondrial injury, iron
dyshomeostasis, and oxidative stress

Mitochondria provide energy for the cell via oxidative

phosphorylation. This makes mitochondria a source of

hydrogen peroxide and superoxide, which can react with

iron. In addition, heme and ISC are synthesized in mito-

chondria, so iron is actively transported into and within

mitochondria (Lill et al. 2006; Heinemann et al. 2008;

Nilsson et al. 2009). Through Fenton and Haber–Weiss

reactions, the most reactive oxygen species (ROS) hydro-

xyl radicals are produced (Wardman and Candeias 1996;

Kehrer 2000). Therefore, iron overload can lead to

increased oxidative stress, which can induce lipid peroxi-

dation, damage DNA, and oxidize proteins (especially

protein carbonylation) (Catala 2009; Stadtman 2006; Keyer

and Imlay 1996). In particular, mitochondrial DNA is

vulnerable to oxidative damage because of the absence of

protection from histones (Shokolenko et al. 2009). Mito-

chondrial injury leads to reduced synthesis of ISCs and

heme, then decreased ISCs causes IRPs activation and

further exacerbates iron accumulation and related oxidative

stress. Thus mitochondrial injury, iron accumulation, and

oxidative stress form a vicious cycle that can lead to cell

death (Mena et al. 2015). Moreover, this process discussed

above can trigger inflammation response by activating

microglia, adding oxidative stress in the vicious circle

(Urrutia et al. 2014).

Iron and PD

Iron overload in the substantia nigra in PD

The Lewy body is the pathological hallmark of PD, and SN

is an especially vulnerable area. Neurons in the SN pro-

gressively decreased in PD, which is responsible for the

disabling motor symptoms. Total iron in SN is demon-

strated to be increased by multiple post-mortem examina-

tions (such as inductively coupled plasma spectroscopy,

atomic absorption spectroscopy), MRI, and transcranial

sonography in PD (Dexter et al. 1989; Riederer et al. 1989;

Zecca et al. 2005; Michaeli et al. 2007; Rossi et al. 2013;

Martin et al. 2008). Furthermore, ferritin and neuromelanin

are reported to be decreased in the SN of PD patients

(Dexter et al. 1990; Connor et al. 1995; Zecca et al. 2002).

Considering the increase of total iron, and the decrease of

iron-binding proteins, the labile iron pool of the cells in SN

of PD patients is probably enlarged. Riederer et al. reported

that Fe(III) was significantly increased in SN in PD, while

Fe(II) remained unchanged (Riederer et al. 1989). Iron

dyshomeostasis is caused by increased expression of the

iron import transporter DMT1, decreased expression of the

iron export protein ferroportin and CP activity (Salazar

et al. 2008; Song et al. 2010; Ayton et al. 2013). Moreover,

IRP is up-regulated in PD, rather than down-regulated to

keep iron homeostasis (Wong and Duce 2014; Faucheux

et al. 2002; Jiang et al. 2010). The shift of IRP may be

partially caused by increased oxidative stress. So far, it is

unclear what is the primary drive for the above mechanism

of iron excess in SN of patients with PD, but it is suggested

that a-synuclein aggregation, oxidative stress, and mito-

chondrial dysfunction might be involved. In addition, these

factors and iron accumulation compose a vicious circle

leading to neuroinflammation and neurodegeneration

(Mena et al. 2015; Urrutia et al. 2014).

Iron involvement in the pathogenesis of PD

The vicious circle of mitochondrial injury, oxidative stress,

iron dyshomeostasis and neuroinflammation has close

interactions with several factors in PD. Firstly, dopamine

metabolism creates highly reactive species in SN, and co-

localization of iron and dopamine in SN raises the risk of

oxidative stress (Hare et al. 2014). Secondly, as oxidative

stress can induce protein carbonylation, Münch and col-

leagues suggested that the products of protein carbonyla-

tion could induce a-synuclein crosslinking and Lewy body

formation (Munch et al. 2000). Thirdly, ferric iron may

directly catalyze the formation of a-synuclein oligomers,

and a-synuclein overexpression can exacerbate iron accu-

mulation (Ostrerova-Golts et al. 2000; Golts et al. 2002;

Ortega et al. 2015). In turn, aggregated a-synuclein can

impair mitochondria, enhance oxidative stress and iron

dyshomeostasis, thus intimately participate into the posi-

tive feedback loop (Davies et al. 2011; Devi et al. 2008;

Funke et al. 2013). Moreover, neuromelanin released by

dying dopaminergic neurons contains large amounts or

iron, which can lead to the activation of adjacent microglia.

The activated microglia induces inflammation and aggra-

vates the vicious circle of oxidative stress, mitochondrial

injury and cell death. Then more neuromelanin can be

released from the demised neurons, and form a positive

feedback of neuroinflammation and neurodegeneration

(Zucca et al. 2014).

Imaging modalities for brain iron detection in PD

MRI can display the morphological changes of SN and

evaluate the iron content in SN. MR imaging of SN is

based on its iron components. Generally, SN has a high

level of iron, so it appears as low intensity in T2WI, T2*,
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and susceptibility weighted imaging (SWI) (Lehericy et al.

2014; Jin et al. 2011). The iron level can be quantitatively

assessed by R2*, SWI phase values, quantitative suscep-

tibility mapping (QSM) and similar techniques (Rossi et al.

2013; Jin et al. 2011; He et al. 2015). Recently, it was

recognized that neuromelanin had a T1 shortening effect,

and could be well demonstrated by neuromelanin MR

imaging (Lehericy et al. 2014; Blazejewska et al. 2013).

Studies using 1.5 Tesla and 3.0 Tesla MRI have shown that

the volume of SN is decreased, while iron load of SN is

increased in PD. Furthermore, iron elevation of SN is

correlated with disease severity and disease duration (He

et al. 2015; Rossi et al. 2013). Due to the better spatial

resolution and contrast, 7 Tesla MRI can reliably differ-

entiate SN pars reticulata (SNr) and SN pars compacta

(SNc), and in particular recognize the nigrosome-1 with

high confidence. That is because SNr has abundant iron

while SNc is rich in neuromelanin (Lehericy et al. 2014;

Kwon et al. 2012; Blazejewska et al. 2013). Research using

7 Tesla MRI suggests that the main abnormalities in SN in

PD are: loss of nigrosome-1 hyperintensity, abnormal SN

contours, and volume changes (Lehericy et al. 2014; Kwon

et al. 2012; Blazejewska et al. 2013). MRI can also be used

for early diagnosis (even presymptomatic), differential

diagnosis, monitoring disease progression and assessing the

effect of iron chelation treatment, as well as exploring the

pathophysiology of iron toxicity (Jin et al. 2011; Ward

et al. 2014; Pyatigorskaya et al. 2015; Boelmans et al.

2012; Devos et al. 2014).

SN hyperechogenicity in transcranial sonography is

detected in approximately 90 % of the patients with PD

(Berg et al. 2001; Berg 2011). The source of SN hypere-

chogenicity may be increased iron content and microglia

activation (Berg 2011; Zecca et al. 2005). About 10 % of

the healthy people also have SN hyperechogenicity, and

longitudinal studies showed that those healthy people with

SN hyperechogenicity had a significantly higher risk to

develop PD (Becker et al. 1995; Behnke et al. 2007; Berg

2011). On one hand, SN hyperechogenicity can present

early in the disease course, even before motor symptoms

occur (Haehner et al. 2007; Miyamoto and Miyamoto

2013). On the other hand, it does not change during disease

progression, and is poorly correlated with striatal FP-CIT

uptake (Li et al. 2015). Therefore, it may be an appropriate

tool for early diagnosis. Although in patients with hypos-

mia or rapid eye movement sleep behavior disorder, the

sensitivity and specificity of SN hyperechogenicity for

predicting future PD is not satisfactory, combining other

biomarkers may improve the ability of future PD prediction

(Miyamoto and Miyamoto 2013; Haehner et al. 2007). In

addition, transcranial sonography can provide help in

differentiating PD from other Parkinsonian disorders (Berg

2011; Tsai et al. 2007).

Iron chelation therapy in PD

Iron chelation therapy in PD is still an expanding field of

research. Genetic (overexpression of ferritin) and medical

iron chelation treatments showed neuroprotective affects in

various PD animal models, including 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxy-

dopamine (6-OHDA), mouse/rat models of PD (Dexter

et al. 2011; Kaur et al. 2003; Shachar et al. 2004; Devos

et al. 2014). Devos et al. (2014) had demonstrated that

deferiprone reduced iron overload in SN, decreased neu-

ronal labile iron, increased levels of glutathione, dimin-

ished oxidation products of lipid and DNA, reduced

dopamine depletion and improve motor symptoms in the

MPTP mouse model. It showed that deferiprone could stop

the vicious cycle of iron accumulation, mitochondrial

injury and oxidative stress, then decrease neuronal

destruction (Devos et al. 2014). Moreover, the authors

showed deferiprone can slow down the motor symptom

progression and decrease iron accumulation in SN in PD

patients (Devos et al. 2014). Additionally, Grolez et al.

(2015) showed CP activity might play a role in the thera-

peutic mechanism of deferiprone, and PD patients with

lower CP responded better to iron chelation therapy. The

authors pointed out insights for the prospect of future

pharmacological modulation of CP activity in PD (Grolez

et al. 2015). In recent years, Youdim and colleagues have

developed a series of multifunctional iron chelators, such

as M30, HLA20, and VAR. These drugs can both chelate

iron and inhibit monoamine oxidase (MAO) activity. In a

recent study by Bar-Am et al. (2015), VAR not only che-

lated iron, and alleviated oxidative stress induced lipid

peroxidation, but also inhibited MAO-A and MAO-B, and

increased dopamine and 5-Hydroxytryptophan (5-HT)

levels. In 6-OHDA and MPTP rat models, VAR could

increase dopamine and 5-HT, as well as improve motor

function (Bar-Am et al. 2015). Since PD patients often

have accompanying depression which is related to 5-HT

(Goetz 2010), VAR is a promising drug that can slow

disease progression, improve motor symptoms, and alle-

viate depression in PD. Another novel chelator M30, has

the ability of chelating iron, up-regulating hypoxia-in-

ducible factor (HIF)-1a and its downstream proteins such

as vascular endothelial growth factor, erythropoietin, eno-

lase-1, inducing the expression of a series of neurotrophic

factors like brain-derived neurotrophic factor, glial cell-

derived neurotrophic factor and antioxidant enzymes

including catalase, superoxide dismutase, and glutathione
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peroxidase in the brain, and regulating several factors

involved in pro-survival signaling pathways such as

phosphorylated protein kinase C, ERK1/2, -Akt and GSK-

3b, in the CNS. Therefore, M30 has an extensive effect of

neuroprotection (Kupershmidt et al. 2011).

Iron and other neurodegenerative diseases

Iron and AD

Excessive iron is deposited in multiple regions of the brain

in AD, especially in the hippocampus. Iron also accumu-

lates in senile plaques and neurofibrillary tangles, which

are pathologic hallmarks of AD (Connor et al. 1992; Deibel

et al. 1996; Good et al. 1992). The changes of iron regu-

lating proteins drive iron overload, iron importer DMT1 is

increased, while ferroportin 1 and CP that are responsible

for iron exportation are decreased (Zheng et al. 2009;

Crespo et al. 2014; Raha et al. 2013; Connor et al. 1993;

Guerreiro et al. 2015; Wan et al. 2011). Similar as in other

neurodegenerative diseases, iron also induces oxidative

stress and mitochondrial dysfunction in AD (Wan et al.

2011; Mena et al. 2015). Moreover, amyloid b (Ab), its
precursor amyloid precursor protein (APP) and hyper-

phosphorylated tau have close interactions with excess iron

in AD (Mena et al. 2015; Crichton et al. 2011; Everett et al.

2014; Yamamoto et al. 2002; Bodovitz et al. 1995). Nor-

mally, APP is cleaved by a- and c-secretase. This process
produces neuroprotective extracellular soluble sAbPPsa
fragments and avoids Ab formation. On the contrary, in

AD, APP is cleaved by b- and c-secretase, and this path-

way leads to Ab production and aggregation. Whether APP

is firstly cleaved by a- or b- secretase is regulated by iron

via furin. Iron overload can decrease furin expression, and

as a result promote Ab accumulation (Crichton et al. 2011;

Bodovitz et al. 1995; Silvestri and Camaschella 2008;

Silvestri et al. 2008). Besides, APP expression is modu-

lated by IRP. Thus excessive iron can enhance APP pro-

duction, and this will further increase Ab formation

(Rogers et al. 2002). In turn, Ab can impair mitochondrial

function, reduce ferric iron into a redox-active ferrous

state, induce oxidative stress, and then exacerbate iron

overload, thus aggravating the common pathway of neu-

rodegenerative diseases (Mena et al. 2015; Everett et al.

2014; Wang et al. 2008; Smith et al. 1998). Iron can also

interplay with hyperphosphorylated tau and induce the

formation of neurofibrillary tangles (Castellani et al. 2012;

Sayre et al. 2000; Yamamoto et al. 2002).

MRI is capable of evaluating iron accumulation in AD,

and is promising for assisting diagnosis, as well as moni-

toring the efficacy of iron chelation and disease progression

(Ward et al. 2014; van Rooden et al. 2015). In addition, a

recent post-mortem study using 7 Tesla MRI demonstrated

activated iron-containing microglia in the hippocampus of

patients with AD (Zeineh et al. 2015). The advent of 7

Tesla MRI may provide more information on the role of

iron in AD.

In recent years, clinical trials in AD targeting Ab have

failed one after another (Mangialasche et al. 2010; Sal-

loway et al. 2014; Doody et al. 2014). Part of the reasons is

that the pathophysiology of AD is complex, and contains a

self-propagating vicious circle of iron accumulation,

oxidative stress, and mitochondrial injury. Only cutting off

the upstream factors such as Ab cannot stop this vicious

circle. On the other hand, iron chelation therapy may

provide some hope. Iron chelation treatments using defer-

oxamine, clioquinol, and PBT2 can improve cognition,

reduce Ab accumulation and tau phosphorylation in animal

models (Guo et al. 2013a, b; Grossi et al. 2009; Adlard

et al. 2008). A clinical trial by Crapper McLachlan showed

desferrioxamine significantly slowed down the decline of

daily living skills in AD (Crapper McLachlan et al. 1991).

More recently, the multi-target iron chelators M30 and

HLA20 improved cognition of sporadic AD rat models.

Additionally, chronic M30 therapy completely restored

streptozotocin induced tau hyperphosphorylation in the

hippocampus of those rats (Salkovic-Petrisic et al. 2015).

Incorporating iron chelation in AD treatments is a

promising approach in the future.

Iron and Friedreich ataxia

Friedreich ataxia is the most prevalent hereditary ataxia,

and most of the patients with Friedreich ataxia are caused

by an expanded GAA trinucleotide repeat in Frataxin

(FXN) gene. This mutation decreases the level of FXN

protein. FXN is an iron chaperone in iron–sulfur cluster

and heme synthesis, and plays a critical role in keeping iron

homeostasis and reducing oxidative stress (Gille and

Reichmann 2011; Bulteau et al. 2004). Therefore, reduced

expression of FXN leads to mitochondrial dysfunction,

oxidative stress, and mitochondrial iron dyshomeostasis

(Gille and Reichmann 2011; Babcock et al. 1997; Rotig

et al. 1997). Whether overall iron is increased in the dorsal

root ganglia and cerebellum is still controversial, and

recent research showed iron was relocated from degener-

ated neurons to peripheral glial cells (Martelli and Puccio

2014; Koeppen et al. 2009, 2012, 2013). A quite recent

phase 2, multicenter clinical trial on the safety and efficacy

of iron chelator deferiprone did not find a significant

improvement in clinical outcomes. However, subgroup

analysis implied that deferiprone might be effective in less

severe patients (Pandolfo et al. 2014). The effectiveness of

iron chelation therapy in Friedreich ataxia warrant further

investigation.
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Iron and Huntington’s disease

Huntington’s disease is caused by a CAG trinucleotide

repeat expansion in the huntingtin gene. Then the mutant

huntingtin protein leads to multiple detrimental outcomes

such as mitochondrial dysfunction, oxidative stress,

abnormal transcription of multiple genes, calcium

dyshomeostasis, activation of proteolytic enzymes, and

microglia activation (Muller and Leavitt 2014). As a redox-

active metal, iron is closely involved in the mutant hunt-

ingtin-induced pathological cascade (Firdaus et al. 2006;

Muller and Leavitt 2014). In addition, iron homeostasis is

influenced in this process, and iron accumulation in mul-

tiple brain regions has been demonstrated by MRI and

post-mortem examinations (Bartzokis et al. 1999, 2007).

MRI examination incorporating iron-sensitive techniques

(such as T2*, SWI, R2*, SWI phase values, and QSM) is

promising to assist presymptomatic diagnosis and monitor

disease progression (Bartzokis et al. 2007; Apple et al.

2014; Macerollo et al. 2014; Dominguez et al. 2015;

Sanchez-Castaneda et al. 2015). So far, there is scarce

evidence on iron chelation treatments in Huntington’s

disease. Recently, Chen and colleagues demonstrated the

neuroprotective efficacy of deferoxamine in a mouse model

(Chen et al. 2013). The effectiveness of iron chelation

therapy in Huntington’s disease animal models warrants

further exploration.

Conclusions

Although the above neurodegenerative diseases have dis-

tinct causes and pathology features, iron dyshomeostasis,

oxidative stress and mitochondrial dysfunction form a

vicious circle and play a crucial role in their pathogenesis.

The mechanisms of abnormal iron metabolism in those

neurodegenerative diseases are to be further elucidated.

MRI is a helpful tool in revealing iron accumulation in the

brain, and is increasingly used in early and differential

diagnosis, tracking disease progression, and evaluating the

efficacy of chelation therapy. Iron chelation is promising

and has already exhibited its effectiveness in several clin-

ical studies.
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