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Abstract Parkinson’s disease (PD) is a progressive neu-

rodegenerative disorder characterized by motor distur-

bances, appearance of Lewy bodies and dopaminergic

neuronal death. The etiology of PD is unknown, although

aging and neurotoxins are established risk factors. The

activation of glial cells in the brain is the first defense

mechanism against pathological events in neurodegen-

erative diseases, and neuroinflammation is suggested to

play an important role in PD disease progression leading to

dopaminergic neuronal degeneration. Gene mutations in

several PD-related genes may affect up to 15 % of the PD

cases. These gene mutations can cause either loss or gain of

function in their respective proteins leading to autosomal

recessive and autosomal dominant PD, respectively. Most

of the identified genes play a role in mitochondrial activity

and integrity, and this was demonstrated mostly in neuronal

cells. In this review, we aim to describe the link between

PD-related genes, which are involved in mitochondrial

function, and deleterious neuroinflammation.
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Introduction

Parkinson’s disease (PD) is a progressive neurodegen-

erative disorder characterized by resting tremor, muscular

rigidity and gait disturbances (Fahn et al. 1998; Mayeux

2003), affecting more than 1 % individuals over 55 years

old and more than 3 % of those over the age of 75 years

(Mayeux 2003). PD pathology is characterized by the

progressive loss of dopaminergic neurons in the substantia

nigra (SN) pars compacta and their termini in the dorsal

striatum (Thomas 2009). The pathological hallmark of PD

is the presence of intracellular inclusions of aggregated a-

synuclein known as Lewy bodies (Croisier et al. 2005;

Spillantini et al. 1998). The etiology of PD is unknown,

although neurotoxins and older age are known risk factors.

In recent years, several genes and susceptibility factors

have been identified, implicating abnormal handling of

misfolded proteins by the autophagy–lysosomal and ubiq-

uitin–proteasome systems, mitochondrial and lysosomal

dysfunctions, increased oxidative stress and other patho-

genic dysfunctions, as contributing factors for PD (Lesage

and Brice 2009). Neuroinflammatory mechanisms might

contribute to the cascade of events leading to neuronal

degeneration (Hirsch and Hunot 2009), and several reports

suggest an important role of neuroinflammation in trig-

gering dopaminergic neuronal death in PD (Hirsch 2000;

Jenner 2003; Koutsilieri et al. 2002).

Interestingly, while the cause of sporadic PD is still

unclear, the percent of gene mutation in PD can reach to

approximately 15 % with genes still being identified

(Wood-Kaczmar et al. 2006; Xiromerisiou et al. 2010).

To date, 17 genes have been identified as related to PD

(Singleton et al. 2013) including a-synuclein and several

mitochondrial genes (see Fig. 1), and 10–25 % of pa-

tients with early onset (before age 50) PD carry
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mutations in these genes. These gene mutations can

cause either loss or gain of function in their respective

proteins, and can result in autosomal recessive and au-

tosomal dominant PD (Wood-Kaczmar et al. 2006;

Xiromerisiou et al. 2010).

In this review, we will address evidence of the in-

volvement of mitochondria and neuroinflammation in PD

pathology. Furthermore, we will discuss the different genes

identified as causing genetic forms of PD, and how they

affect mitochondrial activity and inflammation in the CNS.

Finally, we will describe links between mitochondrial ac-

tivity and neuroinflammation, as a result of gene mutation,

in the pathology of PD.

Mitochondria and reactive oxygen species in PD

Mitochondria are the organelles that constitute a cell’s

major source of adenosine triphosphate (ATP) production,

the chemical energy of the cell. Within mitochondria, ATP

is produced via the action of four respiratory complexes (I,

II, III, IV) in the matrix, and ATP synthase in the mito-

chondrial inner membrane (Haelterman et al. 2014).

Mitochondrial mechanisms have been implicated in a va-

riety of human disorders (Vafai and Mootha 2012) in-

cluding PD (Haelterman et al. 2014).

Animal models for PD are usuaslly based on adminstra-

tion of toxins to produce PD-related pathology and symp-

tomatology. A common feature of all toxin-induced models

is their ability to induce mitochondrial damage and to cause

cell death in dopaminergic neuronal cells that reflect what is

seen in PD (Blesa et al. 2012). This first led to focusing the

research on mitochondrial dysfunction in PD.

Defects in mitochondrial complex-I lead to increased

free radical stress and reactive oxygen species (ROS), and

increased neuronal vulnerability to glutamate excito-

toxicity (Sherer et al. 2002). Studies of human post-mortem

brains indicate that ROS and abnormal complex-I function

play an important role in the pathogenesis of PD (Orth and

Schapira 2002; Schapira et al. 1998). The activity of

complex-I, a major component of the electron transport

chain, is decreased in the substantia nigra (Schapira et al.

1990) and frontal cortex (Parker et al. 2008) in patients

with PD.

Oxidative damage to lipids, proteins and DNA (Dexter

et al. 1989; Zhang et al. 1999) as a result of mitochondrial

Fig. 1 PD gene mutations impair mitochondrial activity and might

increase pro-inflammatory response. A Mitochondrial energy produc-

tion is impaired by aSyn over-expression, by down-regulation or loss

of function of parkin, PINK1 or DJ-1, and by expression of mutant

LRRK2. B Mitochondrial morphology, controlled by fission and

fusion, is disrupted by aSyn over-expression; by down-regulation or

loss of function of parkin or PINK1; and by expression of mutant

LRRK2 or over-expression of wild-type LRRK2. C Turnover of

mitochondria through mitophagy is affected by down-regulation or

loss of function of parkin and PINK1. D Expression of pro-

inflammatory cytokines, such as TNFa, IL-1b and IL-6 as well as

oxidative stress markers, such as iNOS, NO and NADPH oxidase, due

to differential expression of PD-related genes, is marked with arrows

to the respective genes
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dysfunction, as well as a decrease in the levels of an-

tioxidant glutathione (Perry and Yong 1986), has been

detected in autopsy tissue from the brains of individuals

with PD. This abnormality is predicted to render cells more

vulnerable to apoptosis, and possibly contributes to the

dysfunction and eventual death of cells during the PD

disease process (Henchcliffe and Beal 2008).

There are also findings that provide a link between ox-

idative damage and formation of the Lewy body protein

aggregates that are characteristic of PD, as oxidative

damage induces aSyn aggregation and impairs proteasomal

ubiquitination and degradation of proteins (Jenner 2003).

Oxidative stress may cause the oxidation of dopamine to

the quinone products, which are believed to be damaging to

brain mitochondria (Jenner 2003; Koutsilieri et al. 2002;

McGeer and McGeer 2008), suggesting positive feedback

of damaged mitochondria, oxidative stress and quinone

production, resulting in PD pathology and dopaminergic

cell death.

Inflammation and Parkinson’s disease

Neuroinflammatory mechanisms might contribute to the

cascade of events leading to neuronal degeneration (Hirsch

and Hunot 2009). Several reports suggest the important

role of neuroinflammation in triggering dopaminergic

neuronal death in PD (Hirsch 2000; Jenner 2003; Kout-

silieri et al. 2002).

There is evidence of elevated levels of proinflammatory

cytokines, such as interleukin-1b (IL-1b), tumor necrosis

factor-a (TNFa) and IL-6, which leads to increased pro-

duction of inducible nitric oxide synthase (iNOS), secretion

of nitric oxide (NO), oxidative sterss, neuronal stress, and

further neuronal dysfunction and death in postmortem PD

brains (McGeer et al. 1988; Mogi et al. 1994a, b) and PD

models (Hirsch and Hunot 2009). As key components of

the innate immune response in the brain, glial cells, and in

particular microglia and astrocytes, can function as a

double-edged sword, with both neurotoxic and neu-

rotrophic effects (Block et al. 2007).

Most proposed etiologies of PD, including environ-

mental toxins (Sherer et al. 2003), and bacterial and viral

exposure (Carvey et al. 2006), induce inflammatory acti-

vation. For example, lipopolysaccharide (LPS), endotoxin

from gram-negative bacteria, is a potent inductor of in-

flammation and presents diverse effects on microglia and

astrocytes (Benveniste 1992). Interestingly, inflammatory

activation by intracerebral LPS administration into the

cortex, hippocampus, striatum or SN of mice and rats en-

hances the death of only dopaminergic neurons in the SN

(Castano et al. 1998; Herrera et al. 2000), which is in

accordance with the inflammatory response reported in

PD. In addition to infectious responses, non-infectious

inflammatory response were also linked to PD. High

mobility group box 1 (HMGB1), a type of damage-asso-

ciated molecular pattern molecule (DAMP), is increased

following exposure of microglia to several PD-inducing

toxins, such as rotenone and toxin 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine (MPTP), (Gao et al. 2011b).

HMGB1 was also shown to create a non-infectious in-

flammatory response, through secretion and paracrine ac-

tivation of TLRs.

It was recently shown that human microglia express

dopamine receptors (Mastroeni et al. 2009) and exposure to

dopamine may increase secretion of proinflammatory cy-

tokines (Rogers et al. 2007; Trudler et al. 2014). Indeed,

increase sensitivity of microglia to dopamine was previ-

ously suggested to trigger neurotoxicity to dopaminergic

neurons (Trudler et al. 2014). Activated microglia can

produce large amounts of superoxide radicals, which may

be the major source of the oxidative stress responsible for

dopaminergic cell death in PD (McGeer and McGeer

2008).

Astrocytes maintain brain plasticity and protect the brain

from injuries (Sofroniew 2005) by secreting protective

neurotrophic factors and toxic inflammatory mediators

(Segev-Amzaleg et al. 2013). In most cases of PD, there is

an elevation in glial fibrillary acidic protein (GFAP) ex-

pression that marked astrocytes activation (Cabezas et al.

2013). In experimental models of the toxin such as MPTP,

there is marked increase in proliferation and activation of

astrocytes in the striatum and substantia nigra (Kohutnicka

et al. 1998). Astrocytes activation may mediate neuroin-

flammatory response towards dopaminergic neurons by

secretion of proinflammatory cytokines, generation of ROS

and lipid peroxidation (Cabezas et al. 2013). This astro-

cytic activation was also shown to be accompanied by in-

creased expression of nuclear factor erythroid 2 [NF-E2]-

related factor 2 (NRF2) and Wnt1, which exerted neuro-

protective effects on dopaminergic neurons (Chen et al.

2009; L’Episcopo et al. 2011). This may suggest that as-

trocytes activation may also play a neuroprotective role in

PD.

Peripheral immune cells such as T-cells also appear to

play a role in the pathology of PD. In PD patients’

brains, there is an increase in CD4? and CD8? T-cells,

which appears to be specific to the substantia nigra

(Brochard et al. 2009). MPTP model in CD4 knockout

resulted in higher survival of dopaminergic neurons and

markedly reduced activation of microglia (Brochard et al.

2009). In this review, however, we will focus on the role

of CNS resident cells in mediating inflammatory pro-

cesses in PD.
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Genetic links between mitochondrial activity
and neuroinflammation in PD

Several genes have been identified to cause monogenetic

forms of PD. Most of these genes are involved in mito-

chondrial activity, some of which also play a part in the

inflammatory process in the CNS. In this section, we will

review these genes and discuss the involvement in those

processes (see Fig. 1).

Alpha synuclein

Alpha synuclein (aSyn) is the major component of PD

Lewy bodies and clinically, patients with mutated aSyn

have relatively young age of onset, rapid progression, and

high prevalence of dementia, psychiatric, and autonomic

disturbances (Xiromerisiou et al. 2010). The normal func-

tion of aSyn is poorly understood, but it is implicated in the

regulation of vesicle dynamics at the presynaptic mem-

brane, and is important in learning and neuronal plasticity

(Sidhu et al. 2004).

aSyn can localize to the mitochondria via an N-terminal

targeting motif (Shavali et al. 2008). aSyn can also impair

the normal dynamics of mitochondria and this effect is more

substantial in A53T mutant (Xie and Chung 2012). aSyn

overexpression in neurons results in abnormal mitochon-

drial function and impaired complex-I activity, specifically

in the dopaminergic neurons of the nigrostriatal pathways

(Subramaniam et al. 2014). Overexpression of the A53T

mutant of aSyn resulted in accumulation of aSyn in the

mitochondria, in correlation with complex-I inhibition and

aging (Chinta et al. 2010). Elevated expression levels of

aSyn in the brain can lead to the development of PD (Miller

et al. 2004; Singleton et al. 2003). This enhanced expression

increases the deposition of soluble aSyn into insoluble ag-

gregates (Miller et al. 2004). Pathogenic mutations in aSyn

(notably A53T) have increased rates of self-assembly and

fibrillization, and are considered gain of function mutations,

resulting in autosomal dominant inheritance (Conway et al.

2000). Furthermore, it was recently suggested that cell–cell

transmission of aSyn pathology is the basis for disease

spreading between interconnected areas in the brain.

However, while several brain regions, such as the thalamus

and cortical regions, exhibit formation of Lewy bodies after

injection of aSyn, the neurodegeneration appears to be se-

lective to dopaminergic neurons in the substantia nigra (Luk

et al. 2012).

Watson et al. (2012) have demonstrated that in aSyn

overexpressing mice, despite the presence of high levels of

aSyn in other brain regions, there was a selective early

inflammatory response in regions of the nigrostriatal

pathway. They suggested that specific factors, that may

involve an increase in the expression of Toll-like receptors

(TLRs), mediate aSyn-induced inflammatory responses in

the SN, which could explain the selective vulnerability of

dopaminergic neurons in PD (Watson et al. 2012). Trans-

genic mice overexpressing of human aSyn exhibited in-

creased vulnerability of dopaminergic neurons to LPS-

induced inflammation, and this inflammatory response led

to the accumulation of insoluble aSyn aggregates and the

formation of cytoplasmatic aSyn inclusions bodies within

dopaminergic neurons (Gao et al. 2008). LPS-challenged

transgenic mice expressing mutant aSyn (A53T) showed

nitration and aggregation of aSyn and degeneration of

dopaminergic neurons. Furthermore, those Tg mice have

prolonged microglial activation, expressing iNOS and

NADPH oxidase enzymes which generate nitric oxide and

superoxide, respectively (Gao et al. 2011a). This finding

suggests that microglia-dependent oxidative stress is a

causative factor in aSyn accumulation and toxicity. It has

been suggested that aSyn has a role in neuroinflammation

and microglial activation in PD (Meulener et al. 2005).

Microglial cells that were exposed to extracellular aSyn

show increased proinflammatory phenotype, with increased

IL1a, IL1b, TNFa and IL6 secretion (Alvarez-Erviti et al.

2011; Roodveldt et al. 2010). In addition, nitrated aSyn

was shown to increase the expression of HMGB1 in mi-

croglia (Reynolds et al. 2008) suggesting that the mi-

croglial activation pattern following exposure to

aggregated aSyn shows similarities to other non-infectious

inflammatory responses. Finally, when microglia was

treated with the A53T mutation of aSyn, this effect was

exacerbated (Alvarez-Erviti et al. 2011; Roodveldt et al.

2010) (see Fig. 1).

aSyn stimulates human astrocytes as well as human

U-373 MG astrocytoma cells to up-regulate IL-6 and in-

flammatory mediator intercellular adhesion molecule-1

(ICAM-1). The mutated forms of aSyn are more potent

stimulators than the WT forms (Klegeris et al. 2006).

Moreover, mice that selectively express mutated aSyn in

astrocytes developed an early onset movement disability,

and demonstrated dysfunctional astrocytes. These astro-

cytes were able to activate microglia and induce neurode-

generation (Gu et al. 2010).

A possible mechanism underlying the effect of aSyn on

immune activation is Nurr1, a transcription factor belong-

ing to the orphan nuclear receptor family. The expression

of Nurr1 is reduced in aSyn expressing cells, as demon-

strated in mice (Lagace-Wiens et al. 2008), and PD patients

(Frohman et al. 2005). Nurr1 is a potential regulator of

cytokine and growth factor action through regulating the

inflammatory response (Lev et al. 2009). Moreover, Nurr1

has a neuroprotective effect because of its capability to

inhibit the production of inflammatory mediators in mi-

croglia by interaction with CoREST, an NF-jB repressor,
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and by the promotion of the bound formation with NF-kB

subunit p65 resulting in reduction of TNFa secretion (Saijo

et al. 2009).

Microglial activation following phagocytosis of aggre-

gated aSyn also enhanced dopaminergic neurodegeneration

through production of ROS, in a NADPH oxidase depen-

dent manner (Zhang et al. 2005b). These results suggest

that damage to neurons in the substantia nigra may release

aggregated aSyn to the substantia nigra, promoting mi-

croglia to produce proinflammatory mediators, thereby

further inducing nigral neurodegeneration in PD (Zhang

et al. 2005b). The extent of microglial activation was

correlated with the degree of dopaminergic neurotoxicity

induced by both wild-type and mutant aSyn. Exposure to

mutated aSyn also induced greater production of reactive

oxygen species (ROS) than WT aSyn. These results

demonstrated that microglia have an important role in

mediating the enhanced neurotoxicity induced by mutant

forms of aSyn (Zhang et al. 2007). Interestingly, recent

results suggest that passive immunization with monoclonal

antibodies against aSyn may be of therapeutic relevance in

patients with PD (Masliah et al. 2011), providing further

evidence for the involvement of immune activity in disease

progression (see Fig. 1).

Leucine-rich repeat kinase 2 (LRRK2)

LRRK2 is a large gene that consists of 51 exons. It encodes

the 2527 amino acid cytoplasmic protein leucine-rich re-

peat kinase 2 (LRRK2) that consists of a leucine-rich re-

peat towards the amino terminus of the protein, and a

kinase domain toward the carboxyl terminus with various

conserved domains in between (Klein and Westenberger

2012). There are more than 50 different missense and

nonsense mutations reported in LRRK2 to date (Nuytemans

et al. 2010), and at least 16 of them are pathogenic, with

gain of function attributes, and the G2019S mutation has

been extensively researched (Klein and Westenberger

2012; West et al. 2005). However, the pathogenic

mechanism leading to PD caused by LRRK2 mutations is

still uncertain. LRRK2 is a large protein with many do-

mains capable of protein–protein interactions, and thus it is

plausible that changes in these domains would influence

the LRRK20s relationship with other proteins (Berger et al.

2010; Klein and Westenberger 2012; Venderova et al.

2009).

LRRK2 can localize to the outer membrane of the mi-

tochondria (Biskup et al. 2006). LRRK2 mediated mito-

chondrial fragmentation and dysfunction, which is

exacerbated in the G2019S mutation, leading to neuro-

toxicity (Wang et al. 2012). Fibroblasts acquired from

LRRK2 mutated patient (G2019S), showed decreased

mitochondrial membrane potential and intracellular ATP

levels (Mortiboys et al. 2010). This was also demonstrated

recently with induced pluripotent stem cells (iPSC) from

PD patients carrying LRRK2 mutations. Mutant LRRK2

iPSCs demonstrated mitochondrial dysfunction and mito-

chondrial DNA damage (Cooper et al. 2012; Sanders et al.

2014), further supporting the role of LRRK2 in mito-

chondrial function.

High LRRK2 expression has been discovered in mac-

rophages and monocytes (Thevenet et al. 2011), as well as

T-cells (Hakimi et al. 2011), leading to the speculation of a

functional role for LRRK2 in the immune system (see

Fig. 1).

Moehle et al. (2012) have shown that microglial acti-

vation triggers LRRK2 expression, and that LRRK2 inhi-

bition, by either small-molecule kinase inhibitors or

shRNA, attenuates microglial proinflammatory response

and reduces TNFa and NO levels following LPS activation

(Moehle et al. 2012). This suggests that LRRK2 plays an

important role in mediating proinflammatory responses in

microglia cells. Recently, it was demonstrated that LRRK2

acts through regulation of p38 MAPK and NF-jB signaling

pathways to stimulate microglial inflammatory responses.

p38 MAPK plays a crucial role in regulating oxidative

stress-induced cell death and survival (Runchel et al.

2011). LRRK2 knockdown attenuated the inflammatory

response to LPS and reduces cytokine and NO secretion,

and LRRK2 overexpression increased the response (Kim

et al. 2012). Furthermore, mutated LRRK2 microglia

showed a decrease in IL-10 production in response to LPS

stimuli, as compared to WT (Gillardon et al. 2012).

In a small cohort of patients carrying LRRK2 mutations,

patients showed neuronal degeneration in substantia nigra,

and some of the patients exhibited Lewy body pathology

(Zimprich et al. 2004). Similarly, double mutant mice

carrying mutated aSyn and mutated LRRK2 showed in-

creased striatal neurodegeneration, compared to mice car-

rying only mutated aSyn (Lin et al. 2009), suggesting a

possible connection between LRRK2 and aSyn

pathologies.

Taken together, these results suggest that LRRK2 mu-

tations, which are gain of function mutations, could change

the microglia towards a proinflammatory phenotype, which

changes the microenvironment of brain, and thereby trig-

gers and/or enhances the pathogenesis of PD.

Parkin

Parkin is a 465 amino acid protein with a molecular mass

of 52 kDa, which is highly expressed in heart, testis, brain

and skeletal muscle (Kitada et al. 1998). Parkin was

identified to have E3 ubiquitin ligase activity (Shimura
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et al. 2000), and parkin mutations in patients resulted in the

loss of E3 activity (Imai et al. 2000). Parkin also has a role

in the mitochondrial activity and integrity (Abou-Sleiman

et al. 2006), and in mammalian cells, parkin was shown to

be recruited to the dysfunctional mitochondria, where it

mediates the engulfment and degradation of deficient mi-

tochondria, a process known as mitophagy (Narendra et al.

2008). Parkin-null Drosophila demonstrate disordered mi-

tochondria (Greene et al. 2003), parkin-/- mice showed

decreased mitochondrial respiratory capacity and increased

oxidative stress (Palacino et al. 2004). Mitochondrial

quality control is important for vital energy production

processes, and was also linked to apoptosis-related pro-

cesses such as the release of cytochrome c (Youle and van

der Bliek 2012), suggesting that impairments in mitophagy

could have detrimental effects on cells. In similar ex-

periments using parkin-/- mice, however, there was no

significant loss of dopaminergic neurons in the substantia

nigra and inclusion bodies (Goldberg et al. 2003) Inter-

estingly, Parkin-/- mice bearing mutated aSyn, did not

show a more severe phenotype compared to mice carrying

only mutated aSyn, regarding Lewy bodies deposition and

neurodegeneration (von Coelln et al. 2006). These findings

suggest that parkin-mediated toxicity is not necessarily

synuclein-dependent, and may require additional factors to

induce marked neurodegeneration.

Parkin is abundantly expressed in microglia, and parkin-

null mice have increased number of microglia, as measured

by immunocytochemical analysis (Casarejos et al. 2006).

Additionally, parkin loss of function in microglia resulted

in enhanced toxicity to dopaminergic neurons after rote-

none treatment (Casarejos et al. 2006).

A possible mediator for the effect of parkin on inflam-

mation is TNF-a receptor-associated factor (TRAF) 2/6

signaling pathway. TRAF2 and TRAF6 are essential me-

diators of cytokine signaling by regulating c-Jun N-termi-

nal kinase (JNK) and nuclear factor-jB (NF-jB) signaling.

Parkin expression is inversely related to TRAF2/6 ex-

pression, and it promotes the proteasomal degradation of

TRAF2/6 and protects inflammatory signaling in response

to cytokine activation. These results suggest that TRAF2/6

may be a physiological target of parkin, and they provide

an explanation for why loss of parkin is detected in PD

(Chung et al. 2013), and how it relates to the neuroin-

flammation observed in PD. This indicates that the loss of

parkin may induce an inflammatory response in PD (see

Fig. 1).

Parkin levels are reduced in microglia in response to

LPS of TNFa activation, in an NF-jB dependent manner.

In addition, activated macrophages from Parkin-null mice

expressed increased levels of TNFa, IL-1b, and iNOS

mRNA compared to WT macrophages (Tran et al. 2011).

Moreover, loss of parkin function increases the

vulnerability of dopaminergic neurons in the SN to in-

flammation-related degeneration, that was triggered by i.p.

injection of low dose LPS (Frank-Cannon et al. 2008).

These reports indicate that parkin serves as an anti-in-

flammatory factor, suggesting that reduced parkin levels, or

mutated parkin which has a loss of function phenotype,

may be proinflammatory, and increase the neuronal death

attributed to inflammation.

PTEN induced putative kinase 1 (PINK1)

PINK1 gene encodes a 581 amino acid protein with an

N-terminal mitochondrial targeting motif and a highly

conserved kinase domain homologous to the serine/thre-

onine kinases of the Ca2?/calmodulin family (Gandhi et al.

2006). PINK1 is crucial for the intact function of cells, and

is involved in cell respiration (Gandhi et al. 2009), protein

folding and degradation (Dagda et al. 2009; Moriwaki et al.

2008), and in several mitochondrial functions, such as

fission/fusion dynamics (Deng et al. 2005; Poole et al.

2008), trafficking (Weihofen et al. 2009) and calcium

signaling (Marongiu et al. 2009). In addition, PINK1 is

required for recruitment of parkin to the mitochondria with

impaired membrane potential (Narendra et al. 2010; Vives-

Bauza et al. 2010). PINK1 loss of function impairs the

mitochondrial respiratory chain and ATP production, and

induces neuronal aggregation of aSyn (Liu et al. 2009).

Conversely, PINK1 overexpression can rescue aSyn-in-

duced neuronal degeneration in a fly model (Todd and

Staveley 2008), as well as aSyn-induced mitochondrial

fragmentation in a Caenorhabditis elegans model (Kamp

et al. 2010). These reports emphasize the important role of

PINK1 in modulation of mitochondrial activity under

normal conditions, as well under disease conditions.

PINK1 can interact with several chaperone proteins and

such interaction may affect both its stability and its neu-

roprotective effects (Deas et al. 2009). PINK1 has been

shown to protect cells against oxidative stress (Deas et al.

2009) by phosphorylating the mitochondrial protein

TRAP1 (chaperone tumor necrosis factor receptor-associ-

ated protein 1) (Pridgeon et al. 2007).

Mutations in PINK1 gene account for 1–8 % of the early

onset autosomal recessive PD cases (Klein et al. 2007;

Xiromerisiou et al. 2010). PINK1 deficiency, results in

calcium overload within mitochondria, causing ROS pro-

duction in the mitochondria and cytosol (Gandhi et al.

2009). Moreover, PINK1 knockdown induced mitophagy,

i.e., lysosomal degradation of mitochondria, a decrease in

mitochondria levels within cells (Dagda et al. 2009).

PINK-/- embryonic fibroblasts showed decreased basal

and inflammatory cytokine-induced NF-jB activity. In

addition, PINK-/- mice had increased levels of IL-1b, IL-

1414 D. Trudler et al.
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12 and IL-10 in the striatum after peripheral stimulation

with LPS (Akundi et al. 2011) (see Fig. 1). Kim and col-

leages (2013) have shown that in organotypic cultures,

PINK1-/- slices expressed higher mRNA levels of TNFa,

IL1b and IL-6 compared to those of WT slices. These re-

sults indicate that PINK1 deficiency increases the produc-

tion of proinflammatory cytokines, leading to a neurotoxic

effect. The observed effect was mediated by reduced ser-

ine/theronine kinase Akt activation and enhanced IjB

degradation in response to brain injury (Kim et al. 2013).

Another possible mechanism for the effect is that PINK1

directly interacts with two members of the IL-1b-mediated

downstream signaling pathway, TRAF6 and transforming

growth factor b activated kinase-1 (TAK1), and positively

regulates their activation leading to enhanced IL-1b-me-

diated cytokine production (Lee et al. 2012). These reports

demonstrate that PINK1 plays a role in the proinflamma-

tory response in PD, possibly through interactions with the

mitochondria.

DJ-1

DJ-1 encodes a small 189 amino acid protein that is ubiq-

uitously expressed and highly conserved throughout diverse

species (Bandopadhyay et al. 2004; Nagakubo et al. 1997).

DJ-1 is localized to the cytoplasm, nucleus (Bader et al.

2005; Nagakubo et al. 1997) and mitochondria (Zhang et al.

2005a) of the cells, and it has been suggested that oxidation

promotes the mitochondrial localization of DJ-1 (Blackin-

ton et al. 2005). It was shown that the loss of functional DJ-

1 causes 1–2 % of autosomal recessive early onset PD cases

(Abou-Sleiman et al. 2003; Bonifati et al. 2003).

Several hypotheses have been introduced to explain the

mechanism of DJ-1 involvement in PD pathogenesis. It has

been suggested that DJ-1 plays a role in maintenance of

mitochondrial complex-I activity (Hayashi et al. 2009) as

well as in maintenance of mitochondrial morphology

through fission/fusion dynamics (Irrcher et al. 2010), and

that loss of DJ-1 function impairs nigrostriatal dopamin-

ergic function (Chen et al. 2005; Goldberg et al. 2005; Kim

et al. 2005). Of note, similarly to PINK1, DJ-1 overex-

pression can also rescue aSyn-induced mitochondrial

fragmentation in a C. elegans model (Kamp et al. 2010).

Neuronal cells that carry mutant forms of DJ-1, become

more susceptible to death in parallel with the loss of oxi-

dized forms of DJ-1 (Taira et al. 2004; Yokota et al. 2003),

and are more sensitive to toxins (Lev et al. 2008). More-

over, DJ-1-/- mice are more vulnerable to several toxicity

models of PD, such as 1-methyl-4-phenyl-1,2,3,6-tetrahy-

dropyridine (MPTP) treatment (Kim et al. 2005), 6-hy-

droxydopamine (6-OHDA), and rotenone toxicity without

aSyn pathology (Lev et al. 2008, 2013). In all of the above

models, DJ-1-/- induced a greater loss of dopaminergic

neurons in these mice. It was demonstrated that ROS

production, induced by bisphenol A (BPA) compromised

mitochondrial function and elevated the expression and

oxidization of DJ-1. DJ-1 was found to maintain the

complex-I activity against BPA-induced oxidative stress

after the localization in mitochondria. Furthermore, it was

suggested that DJ-1 plays a role in the prevention of mi-

tochondrial injury-induced cell death (Ooe et al. 2005).

It has been previously reported that DJ-1 is important for

the proinflammatory response in astrocytes, and that DJ-

1-/- astrocytes have neurotoxic properties, with increased

NO production and enhanced induction of COX2 and IL-6

(Waak et al. 2009). Moreover, recent research demonstrated

that DJ knockout attenuates astrocytes neuroprotection

against 6-OHDA toxicity (Lev et al. 2013), suggesting a

protective role for astrocytes in the 6-OHDA model for PD,

which depends on DJ-1 activation. When DJ-1 is knocked

out, the protective effect is diminished, suggesting that DJ-1

is important for the neuroprotective ability of astrocytes,

and that mutated DJ-1 reduces the neuroprotection.

Stimulation of macrophages with LPS induced an

elevation in the DJ-1 protein levels (Mitsumoto and

Nakagawa 2001). We have recently demonstrated that DJ-

1-deficient microglia have increased monoamine oxidase

(MAO) activity which resulted in elevation of intracellular

ROS, NO, and proinflammatory cytokines, leading to in-

creased dopaminergic neurotoxicity. This phenotype was

ameliorated by rasagaline, a MAO inhibitor which is ap-

proved for treatment in PD patients. Those results

demonstrate the important role of DJ-1 in immune activa-

tion in Parkinson’s disease (Trudler et al. 2014).

Conclusion

There is increasing evidence that connects neuroinflam-

mation and PD progression. PD gene mutations were pre-

viously suggested to lead to neuronal dysfunction leading to

neuronal death. Here, we described the potential role of PD

genes in mediating brain inflammation, as well as their ef-

fect on mitochondrial structure and function. Furthermore,

we suggest that PD genes may trigger neuroinflammation to

dopaminergic neurons either as a result of neuronal stress or

by direct activation of glia cells in the microenvironment

towards the dopaminergic neurons. This phenomenon sup-

ports the notion of a non-cell-autonomous mechanism in

PD. Further understanding of the mechanisms underlying

impairment of microglia or astrocyte activity, which are

linked to PD genes, may provide new avenues for the eti-

ology of PD and new therapeutic approaches.
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