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Abstract Autism spectrum disorder (ASD) is a lifelong

neurodevelopmental condition that is accompanied by an

atypical development of brain maturation. So far, brain

development has mainly been studied during early child-

hood in ASD, and using measures of total or lobular brain

volume. However, cortical volumetric measures are a

product of two distinct biological neuroanatomical fea-

tures, cortical thickness, and surface area, which most

likely also have different neurodevelopmental trajectories

in ASD. Here, we therefore examined age-related differ-

ences in cortical thickness and surface area in a cross-

sectional sample of 77 male individuals with ASD ranging

from 7 to 25 years of age, and 77 male neurotypical con-

trols matched for age and FSIQ. Surface-based measures

were analyzed using a general linear model (GLM)

including linear, quadratic, and cubic age terms, as well as

their interactions with the main effect of group. When

controlling for the effects of age, individuals with ASD had

spatially distributed reductions in cortical thickness relative

to controls, particularly in fronto-temporal regions, and

also showed significantly reduced surface area in the pre-

frontal cortex and the anterior temporal lobe. We also

observed significant group 9 age interactions for both

measures. However, while cortical thickness was best

predicted by a quadratic age term, the neurodevelopmental

trajectory for measures of surface area was mostly linear.

Our findings suggest that ASD is accompanied by age-

related and region-specific reductions in cortical thickness

and surface area during childhood and early adulthood.

Thus, differences in the neurodevelopmental trajectory of

maturation for both measures need to be taken into account

when interpreting between-group differences overall.

Keywords Autism � Neuroanatomy � Cortical thickness �
Surface area � Neurodevelopment

Introduction

Autism spectrum disorder (ASD) is a lifelong neurode-

velopmental condition characterized by a triad of symp-

toms in (1) impaired social communication, (2) deficits in

social reciprocity, and (3) repetitive and stereotypic

behavior (Wing 1997). These ‘core’ symptoms of ASD

typically manifest before the age of 2 years and are

accompanied by developmental differences in brain anat-

omy and connectivity (Geschwind and Levitt 2007; Amaral

et al. 2008; Ecker et al. 2013b). However, the wider neural

systems underlying ASD are complex and involve abnor-

malities in multiple, spatially distributed neurocognitive
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systems (Ecker et al. 2012). This makes the neuroanatomy

of ASD inherently difficult to describe in vivo.

So far, most existing structural neuroimaging studies in

ASD have examined either children or adults with ASD in

order to determine the set of brain regions that differ most

from typical controls in terms of their neuroanatomy. For

example, neuroanatomical differences have consistently

been reported in (1) the fronto-striatal system, which has

been linked to repetitive and stereotyped behaviors (Lan-

gen et al. 2007, 2011); (2) fronto-temporal regions and the

amygdala, which are associated with abnormalities in

socio-emotional processing (Waiter et al. 2004; Schumann

et al. 2009; Nordahl et al. 2012); and (3) speech and lan-

guage regions that may underlie impaired social commu-

nication and language (Redcay and Courchesne 2008).

However, to date, there are few neuroimaging studies

examining neuroanatomy in ASD across different age-

groups in order to characterize age-dependent anatomical

variations between individuals with ASD and healthy

controls. Moreover, the few existing studies mainly focus

on cortical development through early infancy into late

childhood. For instance, there is evidence to suggest that

the brain is enlarged in toddlers with ASD (between 2 and

5 years of age) (Courchesne and Pierce 2005; Schumann

et al. 2010; Hazlett et al. 2011), while no significant dif-

ferences in total brain volume are typically observed during

late childhood or adulthood (McAlonan et al. 2005; Hardan

et al. 2009). However, it is largely unknown how the brain

develops during adolescence in ASD, and there is thus a

need for neuroimaging studies to also examine neurode-

velopmental trajectories from late childhood into

adulthood.

Furthermore, previous structural neuroimaging studies

in ASD have largely used volume-based approaches and

focused on measures of global or regional differences in

brain volume (e.g., Waiter et al. 2004; Carper and Cour-

chesne 2005; McAlonan et al. 2005). However, cortical

volume is by definition a product of cortical thickness and

surface area and can therefore be fractionated into different

morphometric sub-components, which have distinct

genetic determinants (Panizzon et al. 2009), contrasting

phylogeny (Rakic 1995), and differing developmental tra-

jectories (Raznahan et al. 2011). It is therefore important to

examine cortical thickness and surface area in isolation in

order to better understand the neurobiological mechanisms

associated with brain abnormalities in ASD.

Differences in cortical thickness have been reported in

children (Hardan et al. 2006; Mak-Fan et al. 2011) and

adults with ASD (Hyde et al. 2010; Ecker et al. 2013a), and

seem most prominent in temporal, parietal, and frontal

lobes. In children with ASD, cortical thickness in these

regions mainly seems to be increased relative to controls,

while decreased cortical thickness in ASD is typically

observed in adult samples. Thus, the sign of between-group

differences in cortical thickness (i.e., increased or decrease)

in ASD seems to be dependent on the particular age-group

under investigation, which prompted several studies to also

examine age-related differences in cortical thickness in

ASD. For example, Wallace et al. (2010) investigated

differences in cortical thickness in individuals with ASD

and matched controls ranging from 12 to 24 years of age,

and noted extensive temporal and parietal reductions in

cortical thickness in ASD while controlling for age, and a

more accelerated age-related decline in cortical thickness

over time (Wallace et al. 2010). Similar findings of an

accelerated cortical thinning in ASD were reported in

individuals ranging from 10 to 60 years (Raznahan et al.

2010) and 20 to 55 years of age (Scheel et al. 2011). While

these studies were important first steps in determining age-

dependent differences in a specific aspect of cortical

pathology implicated in ASD, a major limitation to these

studies is that only linear age effects were examined.

Studies of typical gray matter maturation suggest that there

is considerable regional variation in complexity of the

normal developmental trajectory of cortical thickness

across the cerebral cortex, including cubic, quadratic, and

linear effects (Shaw et al. 2006). As noted previously by

Wallace et al. (2010), the cubic and quadratic develop-

mental trajectories (i.e., inverted U-shapes) of gray matter

maturation pose a challenge for comparisons across cross-

sectional studies as a precocious or delayed maturation in a

particular subject group could lead to a significantly posi-

tive difference at one age and a negative difference at a

different age (Wallace et al. 2010). It is therefore important

to examine a variety of statistical models in order to find

the model best suited to examine age-related differences in

cortical thickness in ASD. Moreover, while the typical

neurodevelopmental trajectories are well established for

measures of cortical thickness, there is currently no com-

parable data for vertex-based measures of surface area.

Differences in cortical surface area remain relatively

unexplored in ASD, particularly on the local (i.e., vertex)

level, and results seem to be in disagreement. Raznahan

et al. (2010) reported that there was no main effect of group

nor a group 9 age interaction in lobar-level surface area

when comparing individuals with ASD to neurotypical

controls ranging from 10 to 60 years (Raznahan et al.

2010). Similarly, Mak-Fan et al. (2011) found no signifi-

cant between-group differences but reported a significant

group 9 age interaction in occipital lobe surface area in

older children with ASD (Mak-Fan et al. 2011). There are

also two studies examining vertex-level differences in

surface area in ASD. A recent study by Wallace et al.

(2013) reported no group differences in vertex-wise esti-

mates of surface area, and no interaction between age and

group, in a sample of individuals with ASD and matched
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controls ranging from 12 to 24 years of age (Wallace

et al. 2013). Also, Doyle-Thomas et al. (2013) investi-

gated a larger age range of individuals with ASD

(7–39 years of age), reporting that surface area in the

right cingulate was significantly different between

groups and decreased more rapidly with age in ASD

compared to controls. There is thus a need for replicating

these findings in a large and well-characterized sample of

individuals with ASD and matched neurotypical controls,

and to contrast differences in the neurodevelopmental

trajectory of cortical thickness with age-dependent

variations in surface area.

Here, we employed a cross-sectional design to examine

age-related differences in cortical thickness and surface

area in the same group of individuals with ASD and mat-

ched healthy controls between 7 and 25 years of age. We

examined linear, quadratic, and cubic age effects on both

measures in order to find the most ‘parsimonious’ model

(i.e., model with the smallest number of parameters) that

allowed us to examine between-group differences in cor-

tical thickness and surface area in ASD in the presence of

significant age effects, as well as age 9 group (age ‘by’

group) interactions.

Materials and methods

Participants

Seventy-seven (77) right-handed male individuals with

ASD and 77 controls aged 7–25 years were recruited by

advertisement and subsequently assessed at the Institute of

Psychiatry, King’s College, London. Both groups were

matched for gender (all male), age, full-scale IQ, and

handedness (all right-handed). Exclusion criteria for all

participants included a history of major psychiatric disor-

der, head injury, genetic disorder associated with autism

(e.g., fragile 9 syndrome and tuberous sclerosis), or any

other medical condition affecting brain function (e.g.,

epilepsy). We excluded potential participants with a history

of substance abuse (including alcohol) and individuals

taking antipsychotic medication, mood stabilizers, or ben-

zodiazepines. All participants with ASD were initially

assessed according to the International Statistical Classifi-

cation of Diseases, 10th Revision (ICD-10) research cri-

teria. Diagnosis for individuals with ASD was then

confirmed using the Autism Diagnostic Interview–Revised

[ADI-R, (Lord et al. 1994)] to ensure that all participants

with ASD met the criteria for childhood autism. All cases

of ASD reached ADI-R algorithm cutoff values in the three

domains of impaired reciprocal social interaction, com-

munication, and repetitive behaviors and stereotyped pat-

terns, although failure to reach cutoff in one of the domains

by one point was permitted (see Table 1 for details).

Current symptoms were assessed using the Autism Diag-

nostic Observation Schedule [ADOS, (Lord et al. 1989)],

but were not used as inclusion criteria. Overall intellectual

ability was assessed using the Wechsler Abbreviated Scale

of Intelligence (Wechsler 1999) in all participants. All

participants fell within the high-functioning range of the

spectrum, defined by a full-scale IQ higher than 70. All

participants gave informed written consent in accordance

with ethics approval by the National Research Ethics

Committee, Suffolk, England.

MRI data acquisition

All participants were scanned at the Centre for Neuroim-

aging Sciences, Institute of Psychiatry, London, UK, using

a 3-T GE Signa System (General-Electric, Milwaukee,

WI). High-resolution structural T1-weighted volumetric

images were acquired with full-head coverage, 196 con-

tiguous slices (1.1 mm thickness, with 1.09 9 1. 09-mm

in-plane resolution), a 256 9 256 9 196 matrix, and a

repetition time/echo time (TR/TE) of 7/2.8 ms (flip

angle = 20 in., FOV = 28 cm). A (birdcage) head coil

was used for radiofrequency transmission and reception.

Consistent image quality was ensured by a semiautomated

quality control procedure.

Cortical reconstruction using FreeSurfer

All individual T1-weighted scans were initially screened

by a radiologist to exclude images with visible clinical

abnormalities or large-scale movement artifacts. Scans of

insufficient quality were excluded from the analysis

(dropout \2 %). The FreeSurfer analysis suite (vFS5.3.0

release, http://surfer.nmr.mgh.harvard.edu/) was used to

derive models of the cortical surface in each T1-weighted

image. These well-validated and fully automated proce-

dures have been extensively described elsewhere (e.g.,

Fischl et al. 1999b, a; Dale et al. 1999; Ségonne et al.

Table 1 Subjects Demographics

ASD (n = 77) Control (n = 77)

Age, years 17 ? 4 (7–25) 16 ? 4 (8–25)

Full-scale IQ, WASI 107 ? 14

(70–140)

110 ? 10

(84–134)

ADI-R social 19 ? 5 (9–28) –

ADI-R communication 15 ? 4 (7–24) –

ADI-R repetitive behavior 9 ? 3 (2–20) –

ADOS total 9 ? 3 (3–19) –

Data expressed as mean ? standard deviation (range). There were no

significant between-group differences in age or iq, p \ 0.05 (two

tailed)
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2004). In brief, a single filled white matter volume was

generated for each hemisphere after intensity normaliza-

tion, skull stripping, and image segmentation using a

connected components algorithm. Then, a surface tessel-

lation was generated for each white matter volume by fit-

ting a deformable template. This resulted in a triangular

cortical mesh for gray and white matter surfaces consisting

of approximately 150,000 vertices (i.e., points) per hemi-

sphere. Following standard FreeSurfer preprocessing, each

reconstructed surface was then visually inspected for

reconstruction errors, and images that did not reconstruct

correctly (i.e., with visible anatomical abnormalities) were

further excluded from the statistical analysis (dropout

5 %).

Measures of cortical thickness were computed as the

closest distance from the gray and white matter boundary

to the gray matter and cerebrospinal fluid boundary at each

vertex on the tessellated surface. For each participant, we

also computed mean cortical thickness across the entire

brain. Vertex-based estimates of surface area were derived

as outlined by (Winkler et al. 2012). Here, the individual’s

native surface is initially transformed into a spherical

representation, which preserves vertex identities (e.g., total

numbers) and original areal quantities, and subsequently

registered to a common atlas/template. This registration

does not change areal quantities but shifts vertex positions

to match the template. Finally, areal quantities are trans-

ferred to a common grid via areal interpolation. Here, the

final amount of ‘area’ each face receives on the new grid

depends on the overlap between the original source face

and the target (i.e., common grid) face. In this way, the

fixed target surface is redistributed across one of more

source faces and can be used as weighting factor to account

for inter-individuals differences in surface reconstructions.

We also computed total surface area and mean cortical

thickness (across both hemispheres) for each participant.

To improve the ability to detect population changes, each

parameter was smoothed using a 10-mm surface-based

smoothing kernel.

Statistical analysis

Statistical analysis was conducted using the SurfStat tool-

box (http://www.math.mcgill.ca/keith/surfstat/) for Matlab

(R2010b; MathWorks). To determine developmental tra-

jectories at each vertex, we initially tested for linear, cubic,

and quadratic age effects on measures of cortical thickness

and surface area, in addition to the main effect of group.

Here, an F test for nested model comparisons was used at

each vertex employing a step-up model selection proce-

dure. Initially, the linear (i.e., most reduced) model was

compared to a more complex quadratic model in order to

determine whether the addition of a quadratic age effect

significantly improved the goodness of fit. If the quadratic

model performed significantly better, it was then compared

to the full cubic (i.e., most complex) model, which con-

tained a linear, quadratic, and cubic age term. This allowed

us to identify the most parsimonious model at each vertex,

i.e., most simple plausible model that explains variations in

measures of brain morphology with the smallest set of

predictors. Parameter estimates for CT and SA (Yi) were

estimated separately by regression of a general linear

model (GLM) at each vertex i and subject j, with (1) group

(G) as categorical fixed-effects factor, (2) linear, quadratic,

and cubic terms for age as well as their interactions with

group, and (3) FSIQ as continuous covariate.

Thus, the cubic model was formalized as: Yi = b0 ? b1

Gj ? b2 Agej ? b3 Agej
2 ? b4 Agej

3 ? b5 (Agej 9

Group) ? b6 (Agej
2 9 Group) ? b7 (Agej

3 9 Group) ? b8

IQj ? ei, where e denotes the residual error. The quadratic

model lacked the cubic age term, so that: Yi = b0 ? b1

Gj ? b2 Agej ? b3 Agej
2 ? b4 (Age 9 Gj) ? b5

(Agej
2 9 Group) ? b6 IQj ? ei. The linear model lacked

cubic and quadratic age terms, so that: Yi = b0 ? b1

Gj ? b2 Agej ? b3 Agej 9 Gj ? b4 IQj ? ei. Subse-

quently, we examined between-group differences in the

neurodevelopmental trajectory of cortical thickness and

surface area using the most parsimonious model resulting

from the nested model comparison.

Age-related differences in cortical thickness and surface

area were firstly examined based on the fixed-effect coef-

ficient b1 normalized by the corresponding standard error,

which indicated significant between-group differences

while controlling for the effects of age. Secondly, we

examined the interactions between group and each corre-

sponding age term. Thus, for the linear model, we exam-

ined the interaction between age 9 group; for the quadratic

model, we examined the interactions between age 9 group

and age2 9 group; and for potential cubic growth curves,

we examined the interactions between age 9 group,

age2 9 group, and age3 9 group. This approach allowed

us to examine between-group differences and age 9 group

interactions for both linear and more complex age terms.

Corrections for multiple comparisons across the whole

brain were performed using random-field theory (RFT)-

based cluster-corrected analysis for non-isotropic images

using a p \ 0.05 (two tailed) cluster significance threshold

(Worsley et al. 1999).

Results

Subject demographics

There were no significant differences between individuals

with ASD and controls in age [t(152) = 1.32, p = 0.186]
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or full-scale IQ [t(152) = -1.73, p = 0.085]. There were

also no significant between-group differences in mean

cortical thickness [t(152) = -0.91, p = 0.361] or total

surface area [t(152) = 0.23, p = 0.813]. We therefore did

not covary for total brain measures in the statistical ana-

lysis of cortical thickness and surface area.

Nested model comparisons

For measures of cortical thickness, we found that the

quadratic model provided a significantly better goodness of

fit than the linear model in several spatially distributed

clusters across the cortex (see Fig. 1a for individual

regions). However, there was no significant improvement

in fit when comparing the quadratic with the more complex

cubic model, and no clusters survived correction for mul-

tiple comparisons (RFT-based, cluster-corrected, p \ 0.05)

(Fig. 1b). Thus, we selected the quadratic model as the

most parsimonious model for examining between-group

differences in cortical thickness (i.e., model with the

smallest number of predictors), which also allowed us to

investigate age 9 group interactions for the linear and

quadratic age term.

For vertex-based estimates of surface area, we found

that neither quadratic nor cubic age term significantly

increased the goodness of fit overall, and there were no

clusters in which the more complex models (quadratic or

cubic) provided a significantly better fit than the linear

model (Fig. 2). Thus, we selected the linear model as the

most parsimonious model for examining between-group

Fig. 1 Nested model comparisons for cortical thickness. a Linear vs.

quadratic model. b Quadratic model vs. cubic model. Left panel

shows the difference map resulting from the model comparison

(F statistic, unthresholded). F values (green to blue) indicate voxels

where the more complex model fits better than the more reduced

model. Right panel indicates random-field theory (RFT)-based,

cluster-corrected (p \ 0.05) difference maps indicating regions where

the more complex model provides a significant better goodness of fit

than the simpler model

The effect of age, diagnosis, and their interaction on vertex-based measures of cortical thickness 1161

123



differences in surface area and the interaction between

age 9 group.

Between-group differences in cortical thickness

and interactions with age terms

Based on the outcome of the nested model comparison, a

quadratic model was used to examine the effects of group,

age, and their interactions on measures of cortical thickness.

We found significant reductions in cortical thickness in

ASD across the cortex when controlling for the effects of

age (linear and quadratic terms), as well as for interactions

between group and age terms. Relative to controls, indi-

viduals with ASD had significantly reduced cortical thick-

ness (Table 2) in several large frontal lobe clusters (RFT-

based cluster-corrected, cluster threshold p \ 0.05), which

included (1) the right medial orbitofrontal and rostral

middle frontal lobe (approximate Brodmann area [BA]

10/11/12/46), (2) medial and lateral superior frontal regions

(BA8/9), and (3) in the pars triangularis of the dorsolateral

prefrontal cortex (BA44/45). Furthermore, we observed

reduced cortical thickness in ASD in a cluster located in the

bilateral postcentral gyrus (BA6), the bilateral superior

parietal cortex (BA7), the right lingual gyrus (BA19/37),

the right inferior and middle temporal lobe (BA20/21), and

in the left precentral gyrus (BA4). There were no brain

regions in which individuals with ASD showed a significant

increase in cortical thickness relative to controls (Fig. 3).

Four out of 10 clusters with a significant between-group

difference in cortical thickness also displayed a significant

Fig. 2 Nested model comparison for surface area. a Linear vs.

quadratic model. b Quadratic model vs. cubic model. Left panel

shows the difference map resulting from the model comparison

(F statistic, unthresholded). F values (green to blue) indicate voxels

where the more complex model fits better than the more reduced

model. Right panel indicates random-field theory (RFT)-based,

cluster-corrected (p \ 0.05) difference maps indicating regions where

the more complex model provides a significant better goodness of fit

than the simpler model
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linear and quadratic interaction effect of age 9 group (i.e.,

age 9 group, age2 9 group, respectively). The clusters in

the right superior frontal lobe and in the left superior

parietal cortex showed only a significant linear, but not

quadratic, age 9 group interaction. No significant

age 9 group interactions were observed in the right pars

triangularis, the left precentral gyrus, the right superior

parietal lobe, and in the right lingual gyrus. There were no

brain regions with a significant age 9 group interaction

term, but no significant between-group difference in cor-

tical thickness.

In regions with significant age 9 group interactions,

individuals with ASD tend to have reduced cortical thick-

ness during childhood, but increased cortical thickness in

adulthood relative to controls (Fig. 5a, b).

Between-group differences in surface area

and age 9 group interactions

Based on the outcome of the nested model comparison, a

linear model was used to examine the effects of group, age,

and their interactions on vertex-based measures of surface

area. Across groups, we found that vertex-based measures

of surface area increased significantly with increasing age

(i.e., from 7 to 25 years) overall, with strongest correla-

tions being observed in the bilateral anterior inferior tem-

poral lobes, the medial orbitofrontal cortex, the anterior

cingulate cortex, and the medial prefrontal cortex (see

Figure Supplementary Material). There were no signifi-

cantly clusters where measures of surface area decreased

with age.

Individuals with ASD had significant reductions in sur-

face area relative to controls, when controlling for the effect

of age and for the interaction between age 9 group. Regions

of reduced surface area in ASD included a large frontal

cluster (tmax = 3.07, Nvertices = 4,217, pcluster = 0.005),

including the right anterior cingulate gyrus (BA32/33) and

the right medial orbitofrontal and rostral middle frontal

lobe (BA10/12). We also observed reduced surface area

in ASD in the left temporal pole (BA38) (tmax = 3.04,

Nvertices = 3,864, pcluster = 0.023). There were no brain

regions in which individuals with ASD showed a significant

increase in surface area relative to controls (Fig. 4).

Furthermore, none of the regions with a significant

between-group difference in surface area also displayed

a significant age 9 group interaction. Instead, a signifi-

cant linear age 9 group interaction was observed in

the postcentral gyrus (BA6) of the left (tmax = 4.27,

Nvertices = 10,007, pcluster = 0.0013) and right hemisphere

(tmax = 3.10, Nvertices = 4,535, pcluster = 0.0025). In these

regions, individuals with ASD show reduced measures of

surface area during childhood and increased surface area

during adulthood compared with controls (see Fig. 5c).

Discussion

We report the results of a cross-sectional structural neu-

roimaging study examining age-related differences in cor-

tical thickness and surface area in a large and well-

characterized sample of male adults with ASD, and mat-

ched neurotypical controls, between 7 and 25 years of age.

Based on prior knowledge of the typical developmental

trajectory of gray matter maturation, we examined linear,

quadratic, and cubic effects of age in order to identify the

statistical model that best predicted developmental trajec-

tories in our sample. We found that measures of cortical

thickness were best predicted by a quadratic model, which

included a linear and a quadratic age term, while a simple

linear model was best suited to predict measures of surface

area. When controlling for age effects, individuals with

ASD showed significant reductions in cortical thickness

across the cortex, and particularly in fronto-temporal

regions. In most of these regions, we also observed

Table 2 Clusters of significant

reductions in cortical thickness

in ASD relative to controls

while controlling for age effects

BA Brodmann area, L left,

R right, Vertices indicate the

number of vertices within the

cluster, t value maximum

t statistic within cluster,

p cluster-corrected p value, age/

age2 existence of significant

age 9 group interaction for

linear and quadratic term

Region Side BA Vertices t p Age (age2) 9 group

Medial orbitofrontal

and rostral middle frontal

R 10–12/46 4,447 3.86 0.00002 Age (age2)

Middle and inferior temporal R 20/21 4,447 3.79 0.00009 Age (age2)

Superior frontal R 8/9 2,717 4.75 0.00081 Age

Pars triangularis R 44/45 2,779 3.56 0.0026 –

Postcentral gyrus L 6 3,656 4.76 0.0006 Age (age2)

Postcentral gyrus R 6 3,046 3.96 0.0021 Age (age2)

Precentral gyrus L 4 2,143 4.19 0.031 –

Superior parietal R 7 3270 3.33 0.0008 –

Superior parietal L 7 2,939 3.79 0.0038 Age

Lingual gyrus R 19/37 2,717 3.81 0.0085 –
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Fig. 3 Between-group differences and age-by-group interactions for

measures of cortical thickness. a Clusters with significantly reduced

cortical thickness measures (RFT-based, cluster-corrected, p \ 0.05)

in ASD compared to controls while controlling for the effects of age

and age-related interactions (i.e., main effect of group). b Clusters

with significant interactions between age 9 group (RFT-based,

cluster-corrected, p \ 0.05). c Clusters with significant interactions

between age2 9 group (RFT-based, cluster-corrected, p \ 0.05)
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significant group 9 age and group 9 age2 interactions,

indicating that individuals with ASD tend to have thinner

cortices during childhood but increased cortical thickness

during adulthood. Last, we found that individuals with

ASD had significant reductions in surface area, in addition

to a significant age 9 group interaction. Thus, our study

confirms that there are region-specific between-group dif-

ferences in cortical thickness and surface area in ASD in

addition to age-related interactions and that the direction of

differences between groups (i.e., increased or decreased in

ASD) heavily depends on the particular age-group of the

investigated sample.

Our finding of reduced cortical thickness in ASD—when

controlling for age-related effects—agrees with previous

studies employing a similar approach in comparable

samples (e.g., Raznahan et al. 2010; Wallace et al. 2010;

Scheel et al. 2011). However, while previous studies report

that age-related cortical thinning is mostly restricted to

temporal and parietal regions, our study extends these

findings by also reporting extensive reductions in cortical

thickness in several areas of the frontal cortex. For exam-

ple, we found reduced cortical thickness in ASD in the

medial and rostral dorsolateral prefrontal cortices, which

play a crucial role in the typical development of social

cognition and empathy (Lombardo et al. 2007; Blakemore

2008). Moreover, these regions have also been linked to

atypical theory of mind (ToM) (Castelli et al. 2002) and

self-referential cognition in ASD (Lombardo et al. 2010).

One aspect that sets our study apart from others is that we

also considered quadratic interactions between group and

Fig. 4 Between-group differences and age-by-group interactions for

vertex-based measures of surface area. a Clusters with significantly

reduced surface area (RFT-based, cluster-corrected, p \ 0.05) in ASD

compared to controls while controlling for the effects of age and age-

related interactions (i.e., main effect of group). b Clusters indicating

significant interactions between age 9 group (RFT-based, cluster-

corrected, p \ 0.05)
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Fig. 5 Different types of age 9 group interactions. a Quadratic

interaction between age 9 group for cortical thickness in left medial

orbitofrontal cluster, extending into the rostral middle frontal lobe.

b Linear interaction between age 9 group for cortical thickness in the

left superior frontal lobe. c Linear interaction between age 9 group

for surface area in the right postcentral gyrus
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age in our statistical model, while previous investigations

modeled linear effects exclusively (Raznahan et al. 2010;

Wallace et al. 2010). It is known from longitudinal studies

examining brain maturation in healthy controls that the

neurodevelopmental trajectory of cortical thickness is

nonlinear in most regions across the cortex, but also

includes complex age terms (i.e., cubic and quadratic)

resulting in a typical inverted U-shape (Shaw et al. 2006).

Thus, our quadratic model, which included a quadratic and

linear age term, is expected to be statistically more pow-

erful in comparison with the simple linear model and may

explain our finding of cortical thinning in the frontal lobe in

ASD. Also, our sample of 77 individuals per group

(Ntotal = 154) that are well matched in terms of age, FSIQ,

and gender offers increased statistical power in comparison

with existing studies, which mostly investigated smaller

samples of individuals. Due to the large sample size, we

were also able to examine complex interactions between

group 9 age and group 9 age2. Such complex

age 9 group interactions were predominantly observed in

the anterior temporal and prefrontal lobe where individuals

with ASD tent to have reductions in cortical thickness

during childhood, but increased cortical thickness during

adulthood. Thus, it is important to consider such complex

age 9 group interactions when interpreting between-group

differences in neuroanatomy in ASD.

Furthermore, we observed a significant reduction in

vertex-based measures of surface area in the medial

orbitofrontal and anterior temporal lobe in ASD. Anterior

temporal lobe abnormalities have previously been linked to

the core symptoms of ASD, which center on deficits in

language, emotional, and social behavior. For instance, the

temporal pole is crucial for high-level social cognitive

processes, such as mentalizing (e.g., ToM) and semantic

processing (Patterson et al. 2007). Functional MRI studies

on ASD also suggest that the recruitment of the anterior

temporal lobe is atypical across social cognitive tasks with

mentalizing demands such as irony processing (Wang et al.

2009), emotional introspection (Silani et al. 2008), attrib-

uting mental states to geometric shapes (Castelli et al.

2002), and language tasks with semantic demands (Gaffrey

et al. 2007). Also, we observed reductions in surface area

of the anterior cingulate in ASD, which is part of the

extended neural system processing emotions (Pessoa

2008), and also plays a major role in general executive

functioning that mediate the capacity to shift attention

between social and non-social goals and representation

(Mundy et al. 2010). Our finding of reduced surface area in

these brain regions thus further corroborates their impor-

tance in mediating autism-related neurocognitive impair-

ments, particularly in the social domain.

However, while the typical neurodevelopmental trajec-

tory of cortical thickness is well established across the

early human life span (see Shaw et al. 2006), there is

currently no comparable data indicating the growth tra-

jectory of vertex-based measures of surface area. Here, we

found that age 9 group interactions for surface area were

best modeled by a simple linear model, thus suggesting

that the neurodevelopmental trajectory of surface area may

be different from the neurodevelopmental trajectory of

cortical thickness. This agrees with the previous notion

that differences in cortical thickness and surface area in

ASD may represent neurobiologically distinct mechanisms

that are mediated by different sets of genes (Panizzon et al.

2009), distinct phylogenies (Rakic 1995), and also relate to

different aspects of the neural architecture. For instance, it

has been suggested that both measures originate from

different types of progenitor cells, which divide in the

ventricular zone to produce glial cells and neurons. Cor-

tical thickness has been related primarily to intermediate

progenitor cells (neurogenic transient amplifying cells in

the developing cerebral cortex) (Pontious et al. 2008),

which divide symmetrically at basal (non-surface) posi-

tions of the ventricular surface and only produce neurons

(Noctor et al. 2004; Miyata et al. 2004). These neurons

then migrate along radial glial fibers to form ontogenetic

columns (i.e., radial units). According to the radial unit

hypothesis (RUH) (Rakic 1995), cortical thickness depends

on the neuronal output from each radial unit—amplified by

intermediate progenitor cells—and therefore reflects the

number of neurons produced in each unit. On the other

hand, surface area has mainly been related to radial unit

progenitor cells, which divide at the apical (ventricular)

surface. The early proliferation of radial unit progenitor

cells leads to an increase in the number of proliferation

units, which in turn results in an increase in SA (Pontious

et al. 2008). In other words, surface area is related to the

number of ontogenetic columns. Our findings therefore

suggest that the brain in ASD differs from neurotypical

controls in terms of neuronal numbers and the number of

cortical minicolumns, which has also been demonstrated

by histological studies (e.g., Courchesne et al. 2011;

Casanova et al. 2006). In addition to these abnormalities

that influence early brain maturation, atypical growth

curves of the brain in ASD may also result from abnor-

malities to mechanisms mediating late brain maturation.

For instance, it has been shown that the brain continues to

mature until late childhood and/or early adolescence, par-

ticularly in temporal and frontal lobes (Giedd et al. 1999).

Late brain maturation seems to be driven by a combination

of progressive and recessive events including synaptic

proliferation, synaptic pruning, and myelination (Huttenl-

ocher and Dabholkar 1997; Paus 2005). Thus, atypical

neurodevelopment in ASD may be driven by different

aspects of pathology occurring during early and/or late

brain maturation.
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Notably, age 9 group interactions in surface area were

not observed in regions where we also found a significant

between-group difference. For example, we found signifi-

cant age 9 group interactions in the bilateral postcentral

gyrus (BA6) where surface area did not differ between

individuals in ASD and controls overall. Our study is also

the first study to report significant age 9 group interactions

for vertex-based estimates of cortical thickness while oth-

ers, using a similar approach, did not report any significant

interactions (e.g., Raznahan et al. 2010; Wallace et al.

2013). This discrepancy may partially be due to differences

in sample size and issues of matching and clinical char-

acterization between groups. For instance, participants with

ASD were not matched to controls on FSIQ in the study by

Raznahan et al. (2010), and not all participants with ASD

were diagnosed using ADOS or ADI-R diagnostic criteria

(Raznahan et al. 2010). However, significant between-

group differences in surface area and age 9 group inter-

actions have previously been noted by Doyle-Thomas et al.

(2013), who found that surface area in the right cingulate

was significantly different in ASD, and decreased more

rapidly with age in ASD than in controls (Doyle-Thomas

et al. 2013). It is thus important for future studies to

examine surface area at different stages of development in

order to elicit reliable and interpretable differences in ASD.

Our findings should be interpreted in light of a number

of methodological considerations. First, we investigated

surface-based neuroanatomy in a sample of high-func-

tioning male individuals with ASD (and neurotypical

controls), whose diagnostic status was confirmed using the

ADI-R. The ADI-R rather than ADOS scores were chosen

as exclusion criteria because current symptoms assessed in

adult samples can often be masked by coping strategies

developed across the life span and can also be alleviated by

treatments/interventions (e.g., social skills training).

Hence, it is not uncommon for individuals to meet ADI-R

(i.e., diagnosis of childhood autism) but not ADOS diag-

nostic criteria during adulthood. Our sample thus repre-

sents a subpopulation of the autistic phenotype, and our

results may not generalize to other groups on the autism

spectrum (e.g., individuals with intellectual disability) or

females with ASD. Second, we employed a cross-sectional

design to investigate age-related differences in brain

anatomy between groups. While this design enabled us to

investigate neuroanatomy across a relatively large age

range, it did not allow us to determine neurodevelopmental

trajectories for cortical thickness and surface area within

individuals. Longitudinal studies are therefore needed to

replicate our findings by also taking into account intra-

individual variations, and to identify the individual growth

trajectories for cortical thickness and surface area. Also, we

did not covary for total brain volume as it is a rather

‘convoluted’ measure, which can be further subdivided into

distinct neuroanatomical features, e.g., total gray matter

volume is a product of total surface area and cortical

thickness. Moreover, total brain volume is the sum of total

gray and total white matter and thus contains a third

component (i.e., white matter) that may not necessarily be

correlated with the dependent variable (e.g., one would not

expect a significant between-group difference in regional

cortical thickness to be driven by differences in total white

matter volume). Accordingly, including total brain volume

as a covariate may remove not only global effects directly

related to the dependent variable, but also eliminate

unspecific and indirect effects that would alter the scientific

question under investigation. Last, did we not compare the

neurodevelopmental trajectories for cortical thickness and

surface area directly, but rather indirectly via the nested

model comparison. Future research is, however, required to

directly compare the individual growth curves for both

measures (e.g., via cross-correlation analysis) in order to

establish their distinct genetic and neurobiological

underpinnings.

To sum up, our cross-sectional study suggests that there

are age-related changes in cortical thickness and surface

area of the brain across childhood and early adulthood in

ASD. We observed significant reductions in cortical

thickness and surface area in ASD relative to controls when

controlling for the effect(s) of age mainly in fronto-tem-

poral regions. In these regions, we also found significant

interactions between group and age terms (linear and

quadratic) predominantly for measures of cortical thick-

ness. Our findings thus support the hypothesis that the brain

in ASD undergoes an atypical trajectory of brain matura-

tions and that the regions maturing last during typical brain

development are also the regions most affected in ASD.
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