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Abstract Alzheimer’s disease (AD) is a complex neuro-

degenerative disorder with a multifaceted pathogenesis.

There are at present three Food and Drug Administration-

approved drugs based on the ‘‘one drug, one target’’ para-

digm (donepezil, galantamine and rivastigmine) that

improve symptoms by inhibiting acetylcholinesterase.

However, apart from the beneficial palliative properties,

cholinergic drugs have shown little efficacy to prevent the

progression of the disease evidencing the unsuitability of this

strategy for the complex nature of AD. By contrast, the

multifactorial nature of this neurodegenerative disorder

supports the most current innovative therapeutic approach

based on the ‘‘one drug, multiple targets’’ paradigm, which

suggests the use of compounds with multiple activities at

different target sites. Accordingly, the also called multitar-

get-directed ligand (MTDL) approach has been the subject

of increasing attention by many research groups, which have

developed a variety of hybrid compounds acting on very

diverse targets. The therapeutic potential of monoamine

oxidase inhibitors (MAOI) in AD has been suggested due to

their demonstrated neuroprotective properties besides their

enhancing effect on monoaminergic transmission. Espe-

cially, those containing a propargylamine moiety are of

particular interest due to their reported beneficial actions.

Therefore, targeting MAO enzymes should be considered in

therapeutic interventions. This review makes a special

emphasis on MTDLs that commonly target MAO enzymes.

There is at present an urgent need for real disease-modifying

therapies for AD and the MTDL approach makes a break-

through for the development of new drugs capable of

addressing the biological complexity of this disorder.
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Abbreviations

AD Alzheimer’s disease

FDA Food and Drug Administration

AChE Acetylcholinesterase

MAO Monoamine oxidase

MTDL Multitarget-directed ligand

NFT Neurofibrillary tangles

SP Senile plaques

Ab Amyloid b
NMDA N-methyl-D-aspartate

FAD Flavin adenine dinucleotide

PD Parkinson’s disease

ROS Reactive oxygen species

OS Oxidative stress

Introduction

Among neurodegenerative disorders, Alzheimer’s disease

(AD) appears as the fourth leading cause of death and the

most common cause of dementia in the elderly population

afflicting more than seven million people worldwide

(Wimo et al. 2010). The predominant clinical manifestation

is progressive memory deterioration and changes in brain
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function, including disordered behaviour and impairment

in language and comprehension (Tsolaki et al. 2001),

which progressively worsen over 5–10 years (Bayer and

Reban 2004). Most of these cognitive symptoms result

from a depletion of basal forebrain cholinergic neurons

leading to decreased cholinergic neurotransmission (Perry

et al. 1977; Geula and Mesulam 1999). Besides the cog-

nitive deficits, patients frequently exhibit neuropsychiatric

symptoms such as depression, psychosis and agitation

(Ballard et al. 2008). From the histopathological viewpoint,

two characteristic hallmarks accompany these features: the

neurofibrillary tangles (NFT) which are intracellular

fibrillar deposits mainly composed of the microtubule-

associated protein tau (Goedert et al. 1989), and the senile

plaques (SP), formed by deposition of the aggregated

amyloid-b peptide (Ab) (Glenner and Murphy 1989).

Despite the significant advances in the last few decades,

the pathogenesis of AD is not yet fully understood.

Nevertheless, at present the scientific consensus is quite

firm in describing it as a multifactorial disease caused by

genetic, environmental and endogenous factors. These

factors include, beyond the excessive protein misfolding

and aggregation (Terry et al. 1964; Grundke-Iqbal et al.

1986) and the cholinergic dysfunction, oxidative stress

(Coyle and Puttfarcken 1993; Perry et al. 2000; Gella and

Durany 2009), mitochondrial dysfunction (Swerdlow and

Khan 2009), metal dyshomeostasis (Huang et al. 2004),

excitotoxic and neuroinflammatory processes (Mishizen-

Eberz et al. 2004). In addition, disturbances in other neu-

rotransmitter systems such as the monoaminergic have also

been reported to account for AD symptoms (Baker and

Reynolds 1989; Cross 1990).

Current anti-Alzheimer therapies

The most noticeable evidence pointing to the complexity of

AD is that to date no drug can prevent the neurodegener-

ative process. Pharmaceutical research has only been able

to develop drugs that, at best, slightly modulate the

symptoms in patients suffering from AD.

The Food and Drug Administration (FDA)-approved

drugs for the treatment of the cognitive deficits of AD are

mainly based on the ‘‘Cholinergic Hypothesis of AD’’

(Davies and Maloney 1976) which gives a central role to

decreased cholinergic neurotransmission and thus proposes

the use of anticholinergic drugs as an approach for improv-

ing cognitive function (Bartus et al. 1982). These drugs

include rivastigmine (1), donepezil (2), galantamine (3) and

tacrine (4) (Fig. 1) (Birks et al. 2000; Birks and Harvey

2006; Loy and Schneider 2004; Waldholdz 1993). The latter

is now rarely used because of its hepatotoxicity. Memantine

(5) is an N-methyl-D-aspartate (NMDA) receptor antagonist

that improves glutamatergic neurotransmission and a unique

non-cholinergic approved drug (Fig. 1) (Areosa et al. 2005).

In the search for more effective therapies, a combination

of different anti-Alzheimer’s drugs has also been attempted.

The multidrug medication or drug ‘‘cocktail’’ therapy con-

sists in the use of multiple drugs targeting different sites of

action, the efficacy of which is determined by the additive

or synergistic effect of each medicine and relief of adverse

effects. Different strategies have been reported in clinical

trials investigating the potential of very diverse formula-

tions, including those combining rivastigmine (1), do-

nepezil (2) or galantamine (3) with memantine (5) (for

review see Patel and Grossberg 2011). Recent trials have

assessed, among others, the use of drugs exerting nerve

growth factor (NGF)-like activity (Alvarez et al. 2011),

histamine inverse agonists (Cho et al. 2011) and peroxisome

proliferators-activated receptor gamma (PPARc) agonists

(Harrington et al. 2011) in combination with anticholines-

terase drugs. Additional formulations envisage the incor-

poration of antioxidant molecules such as vitamin D, E and

C (Annweiller et al. 2001; Morris et al. 2005). Also, studies

with inhibitors of relevant enzymes such as b-secretase

(BACE) or phosphodiesterase-9 (PD9) are underway.

Although it has been suggested that the combination

provides long-term benefits linked to cognitive and func-

tional improvement, there is still much scepticism regard-

ing the likelihood of success of some of the cocktail

combinations, since to date clinical trials have given con-

troversial results, particularly those involving antioxidants,

due to methodological problems and poorly matched epi-

demiological studies. The current ongoing studies will help

to elucidate this question and develop better formulations.

Multitarget-directed ligands (MTDLs) strategy

Despite the recent advances in the knowledge of the several

factors involved in the aetiology of AD, slowing or halting

the neurodegenerative process has not yet been accom-

plished and neuroprotection is thus still considered an

unmet need. Several authors have pointed out that the lack

of effectiveness of the current anticholinergic therapies

may be related to the multifactorial and extremely complex

nature of AD, which makes one single drug hitting a single

pathway or target inadequate as treatment (Buccafusco and

Terry 2000; Youdim and Buccafusco 2005; Sterling et al.

2002). In this context, it is now widely accepted that a more

effective therapy would result from the use of compounds

able to target the multiple mechanisms underlying the

aetiology of AD (Fig. 2). This emerging paradigm, called

the MTDL approach, describes compounds whose multiple

biological profile is rationally designed to combat a par-

ticular disease (Cavalli et al. 2008).
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The MTDLs design strategy involves the incorporation

of distinct pharmacophores of different drugs in the same

structure to get hybrid molecules. Principally, each phar-

macophore of the hybrid drug should retain the ability to

interact with its specific site(s) on the target producing the

consequent pharmacological response. In the context of

AD, the most widely adopted approach is to combine the

structure of an FDA-approved cholinesterase inhibitor with

another drug whose biological properties would be useful

for the treatment. MTDLs approach has gained increasing

acceptance and has therefore been the subject of increasing

attention from many research groups, which have devel-

oped a wide variety of compounds acting on very diverse

type of targets, such as Ab peptide aggregation, c-secre-

tase, serotonin transporter, reactive oxygen species, cal-

cium channels and metals (Rodrı́guez-Franco et al. 2005;

Rosini et al. 2003; Van der Schyf et al. 2006; Elsinghorst

et al. 2007; Fang et al. 2008; Zheng et al. 2009).

In this review, we will describe the reasons for considering

monoamine oxidase (MAO) an interesting potential target in

the design of MTDLs. We will also focus on the current

status of reported multifunctional compounds targeting

MAO. Particularly, we will focus on propargylamine-derived

compounds as promising neuroprotective agents with a

potential disease-modifying activity towards AD. As men-

tioned before, a wide amount of interesting MTDLs have

been designed to combat AD. Many of them do not include

MAO enzymes as target, so, although interesting, this is an

extensive field which is beyond the scope of this review.

Therapeutic potential of MAO inhibitors

Monoamine oxidase (MAO, E.C.1.4.3.4) is an FAD-containing

enzyme that catalyses the oxidative deamination of a variety

of biogenic and xenobiotic amines (Youdim et al. 1988),

Fig. 1 Chemical structures of

the currently available FDA-

approved drugs for AD

treatment. Action mechanisms

are indicated in parenthesis.

AChEI acetylcholinesterase

inhibitor, BuChEI
butyrylcholinesterase inhibitor,

NMDAR N-methyl-D-aspartate

receptors, nAChR nicotinic

acetylcholine receptors

Fig. 2 Pathways leading to the

discovery of new drugs. On the

left, the ‘‘one target–one

molecule’’ paradigm

(donepezil) and on the right, the

‘‘multitarget-directed ligand’’

(MTDL) approach. AChE
acetylcholinesterase, ChEs
cholinesterases, MAOs
monoamine oxidases, Ab
amyloid-b protein. Adapted

from Cavalli et al. 2008
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including monoamine neurotransmitters such as serotonin,

noradrenaline and dopamine, in a reaction shown below:

RCH2NH2 þ H2O þ O2 ! RCHO þ NH3 þ H2O2:

The final products of the reaction are the corresponding

aldehyde, hydrogen peroxide and ammonia (in case of

primary amines) or a substituted amine (in case of

secondary and tertiary amines) (Tipton et al. 2004).

MAO exists as two distinct enzymatic isoforms, MAO-A

and MAO-B, based on their substrate and inhibitor

specificities (Johnston 1968).

The beneficial properties of monoamine oxidase inhib-

itors (MAOIs) have been extensively reported. Thus,

selective inhibitors for MAO-A have been shown to be

effective antidepressants, whereas MAO-B inhibitors are

useful for the treatment of Parkinson’s disease (PD)

(Cesura and Pletscher 1992). The neuroprotective effect of

MAOIs in these disorders may result not only from the

increased amine neurotransmission, but also from preven-

tion of neurotoxic product formation, which promotes

reactive oxygen species (ROS) generation and may ulti-

mately contribute to increased neuronal damage (Lam-

ensdorf et al. 2000; Kristal et al. 2001; Burke et al. 2004).

Despite some disadvantages found in using MAOIs in

clinical practice, such as hepatotoxicity and the so-called

‘‘cheese-effect’’, which describes the hypertensive crisis

produced by the consumption of tyramine-rich food,

especially cheese (Callingham 1993), MAO enzymes

remain in the focus of drug design targeting neurodegen-

erative disorders (Carradori et al. 2012; Binda et al. 2011).

Nevertheless, it seems at present unlikely that the neuro-

protective activities of MAOIs are exclusively related to

the ability to decrease the production of free radicals and

toxic aldehydes via the inhibition of enzymatic activity.

With regard to this, several studies have suggested that

they are rather related to the anti-apoptotic properties of the

propargyl group present in these molecules (Tatton et al.

2003; Weinreb et al. 2006; Naoi et al. 2007).

Propargylamines are molecules containing a propargyl

moiety that typically inhibits MAO-B including the well-

characterised compounds selegiline (l-deprenyl) (6), ra-

sagiline (7) and PF9601N (8) (Fig. 3). While selegiline was

the first selective MAO-BI used clinically for the treatment

of Parkinson’s disease, rasagiline (7) and PF9601N (8)

belong to a second generation of MAO-BIs that, unlike

selegiline (6), do not generate amphetamine derivatives

when metabolised (Chen et al. 2007; Valoti 2007). These

compounds possess anti-apoptotic properties independent

of their ability to inhibit MAO-B.

Diverse mechanisms have been suggested to be involved

in the neuroprotective properties of propargylamine-con-

taining compounds (Fig. 4). One of these mechanisms

involves a significant antioxidant potency arising from the

increase in the activities of superoxide dismutase (SOD)

and catalase (CAT) enzymes (Carrillo et al. 2000), besides

the prevention of the MAO reaction products formation,

which are potentially neurotoxic since they contribute to

oxidative stress and the formation of ROS. Moreover, the

anti-apoptotic activity of these molecules has been attrib-

uted to their ability to prevent the fall in mitochondrial

membrane potential (Wm) and the blockade of the per-

meability transition pore (PTP) opening as a consequence

of the up-regulation of Bcl-2 family protein (Youdim and

Weinstock 2001; Mayurama et al. 2001) and activation of

protein kinase C (PKC) and mitogen-activated protein

kinase (MAPK) (Yogev-Falach et al. 2002). These

pathways may be additionally involved in the effect of

propargylamines on the enhanced release of the non-amy-

loidogenic a-secretase form of soluble amyloid precursor

protein (sAPPa), which precludes the formation of amyloid

derivatives promoting the non-amyloidogenic pathway of

APP processing (Youdim and Weinstock 2001). Further

neuroprotective effects have been related to the induced

increase in the expression of neurotrophic factors such as

BDNF and GDNF (Bar-Am et al. 2005).

Targeting MAO in AD

Renewed interest has regarded MAO inhibition as a

potential target in AD. MAO-B increases with age and its

activity is found elevated in AD patients, particularly

around SP, resulting in an elevation of brain levels of

neurotoxic free radicals and thus contributing to OS (Saura

et al. 1997; Riederer et al. 2004). This appears early in the

disease and so some authors have suggested that fighting

OS is an imperative requirement in the therapy against AD

(Gella and Bolea 2011).

Fig. 3 Chemical structures of some propargylamine-derived MAOIs

with neuroprotective properties. The propargylamine moiety is

highlighted with dotted lines
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Moreover, the involvement of monoaminergic neuro-

transmitter systems, particularly dopaminergic, has been

strongly related to the high incidence of depression found

in AD patients (Ballard et al. 2008; Gualtiery and Morgan

2008). Indeed, many authors have recently suggested that

depression can be considered as a risk factor for AD (for

review see Caraci et al. 2010). Interestingly, SP and NFT

are more pronounced in the hippocampus of AD patients

with depression than those without depression (Rapp et al.

2008). All these data suggest that dual inhibition of MAO-

A and MAO-B, rather than MAO-B alone, may be of

therapeutic value and, based on this premise, several

authors have proposed in the last decade the use of MAO

inhibitors as potential drugs for AD (Thomas 2000; Rie-

derer et al. 2004; Youdim and Buccafusco 2005; Youdim

et al. 2006). In agreement with these observations, a clin-

ical trial assessing the beneficial properties of MAO-B

inhibitor, Selegiline, showed a cognition-improved efficacy

in subjects treated with donepezil, suggesting a synergistic

effect (Tsunekawa et al. 2008). In addition, there is at

present another ongoing clinical trial assessing MAO-B

inhibition after repeated dosing with Selegiline in patients

with AD and in healthy control subjects (http://clinical

trials.gov/NCT01701089).

The development of MTDLs showing an MAO inhibitory

activity as a key biological feature represents an interesting

field of research for providing promising compounds for use

as disease-modifying agents in AD, due to their neuropro-

tective properties, besides their capacity to increase amine

neurotransmission. This field is still in its childhood since, in

contrast to what occurs with other targets (e.g. AChE,

amyloid b), MAO inhibition has not yet substantially cap-

tured the attention of scientists. Nevertheless, as described in

the present review, in spite of the small number of com-

pounds developed, they show a high therapeutic potential

and thus demonstrate the suitability of the strategy. We will

report the most advanced and promising compounds.

MTDLs targeting MAO and AChE

An initial work on multipotent MAO/ChE inhibitors was

designed by combining a tricyclic indole carbamate moiety

of the AChEI physostigmine with the typical propargyl-

amine group of MAOIs (Fink et al. 1996) to give com-

pounds with good dual inhibitory activities. Compound 9

(Fig. 5) showed the most interesting profile with a revers-

ible behaviour towards MAO-A and, hence, lacking the

Fig. 4 Schematic representation of the sites of action of propargylamine-derived compounds as potential targets for AD treatment
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adverse side effects observed by irreversible inhibitors.

Although this approach was not developed further due to

the low oral activity and poor brain penetration found, this

work provided a structural starting point for further

development of combined MAO/ChE inhibitors.

A very successful approach of combined MAO/ChE

inhibition came from the combination of the carbamate

moiety of rivastigmine (1) with the indoleamine present in

rasagiline (7), a well-known MAO-B inhibitor, leading to

the compound ladostigil (10) (Fig. 5) (Sterling et al. 2002).

Ladostigil (10) is able to inhibit both AChE and butyr-

ylcholinesterase (BuChE) for a longer time than the parent

compound rivastigmine. This is of particular interest in

view of the renewed interest in dual cholinergic inhibitors

as therapeutic agents for AD to elicit a larger protective

response (Greig et al. 2005). In addition, ladostigil (10)

selectively inhibits brain MAO-A and MAO-B resulting in

an increase in noradrenaline, dopamine and serotonine

levels, and thus exerting an antidepressant action. An

important aspect of ladostigil (10) is that it is selective for

brain enzymes and so it is devoid of the classical side

effects observed after peripheral MAO inhibition. Lad-

ostigil (10) has also been shown to retain the neuropro-

tective and anti-apoptotic properties observed in the parent

compound and propargylamine-derived rasagiline (Wein-

stock et al. 2003; Yogev-Falach et al. 2002; Sagi et al.

2003). Besides, ladostigil (10) also possesses a cognition-

enhancing activity and is the most advanced MTDL on its

category as demonstrated by the promising results obtained

from a phase 2 clinical trial (Youdim et al. 2006).

Two other clinical trials are underway to investigate its

safety and efficacy in mild to moderate AD (http://clinical

trials.gov/NCT01354691, http://clinicaltrials.gov/NCT014

29623).

More recently, a novel series of multipotent propargyl-

amine-derived ChE/MAO inhibitors with a very promising

profile has been reported (Bolea et al. 2011). The design

strategy was to combine the N-benzylpiperidine moiety of

donepezil (2) with the indolyl propargylamine of PF9601N

(8), which is a potent propargylamine-containing MAO-B

inhibitor possessing several demonstrated neuroprotective

properties (Prat et al. 2000; Cutillas et al. 2002; Pérez and

Unzeta 2003; Pérez et al. 2003; Battaglia et al. 2006; Sanz

et al. 2008, 2009). Among the large number of evaluated

derivatives, compound 11 (Fig. 5) shows a very interesting

and promising profile, since it potently inhibits both MAO-

A and MAO-B. Interestingly, 11 is able to inhibit both

AChE and BuChE enzymes, though the parent compound,

donepezil, is not active for BuChE. In addition, besides

behaving as a good ChE/MAO inhibitor, 11 is also able to

inhibit Ab1-42 self-induced aggregation as well as AChE-

induced Ab1-40 aggregation. These results demonstrate that

11 is able to interact with the peripheral anionic site of

AChE which mediates the amyloid-b (Ab) peptide pro-

aggregating action of AChE (Inestrosa et al. 1996; De

Ferrari et al. 2001; Dinamarca et al. 2010). Recent studies

show that 11 retains the anti-apoptotic and antioxidant

properties observed by the parent compound PF9601N and

possesses a favourable blood–brain barrier crossing capa-

bility. These findings suggest that 11 is a new promising

multitarget drug candidate that can be taken under consid-

eration for the treatment of the multifactorial nature of AD.

MTDLs targeting MAO and iron

Excessive iron occurs at degenerative neuronal sites in AD

(Mattson 2004). It has been reported that iron contributes to

Fig. 5 Chemical structures of

propargylamine-containing

multitarget-directed ligands

(MTDLs) with dual MAO/ChE

inhibitory activity
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Ab aggregation, which in turn contributes to neuronal

degeneration through the induction of oxidative stress

(Yoshiije et al. 2001). A link between high iron concen-

tration and MAO activity and their involvement in ROS

production has also been reported (Shoham and Youdim

2000). To address these problems, Youdim and collabo-

rators have developed compounds with a bi-functional

action on iron chelation and MAO inhibition obtained by

combining the iron-chelating and antioxidant scaffold of

VK28 with the N-propargylamine moiety of rasagiline (7)

(Zheng et al. 2010). The most interesting compounds

obtained were M30 (12) and HLA20 (13) (Fig. 6) pos-

sessing iron-chelating activity similar to that of VK28, but

holding higher brain permeability (Zheng et al. 2005). M30

(12) and HLA20 (13) possess neuroprotective properties

comparable to rasagiline (7) and potently inhibit the iron-

induced membrane lipid peroxidation features (Youdim

et al. 2004; Zheng et al. 2010). More importantly, M30 (12)

has been shown to selectively inhibit brain MAO (A and B)

enzymes and to increase serotonin, dopamine and adrena-

line neurotransmission, which confers to this multipotent

compound an antidepressant action besides preventing the

potentiation of tyramine-induced cardiovascular activity

(Gal et al. 2005). Interestingly, M30 (12) inhibits the Ab
aggregation induced by metals and reduces Ab formation

(Amit et al. 2008; Avramovich-Tirosh et al. 2007).

Targeting MAO, AChE and iron

The success of this strategy has led the authors to the recent

development of more advanced site-activated chelators by

incorporating into the structure of M30 (12) or HLA20 (13)

the carbamate moiety of rivastigmine (1), producing

compounds M30D (14) and HLA20A (15), respectively

(Fig. 6). This approach holds several advantages over the

preceding compounds, since besides the MAO inhibition

and iron-chelating activities, M30D (15) and HLA20A (15)

possess an interesting AChE inhibitory capacity (Zheng

et al. 2010). The special characteristic of this approach is

that the iron chelation capacity becomes activated after

inhibition of AChE to release the active chelators M30 (12)

and HL20 (13).

Some of the mentioned compounds were designed to

bind to two different targets (MAO/AChE or MAO/iron).

However, subsequent pharmacological evaluation of these

molecules shows that some of them are even ‘‘more mul-

titarget’’ than expected since they are also able to inhibit

other processes such as Ab aggregation or exert anti-

apoptotic and neuroprotective effects by acting on diverse

signalling pathways. Due to the multifactorial nature of

AD, future improved formulations may deal with the

development of compounds able to act simultaneously on

more than three targets, including AChE, MAO, iron and

other redox-active metals (e.g. Cu2?, Zn2?), Ab, calcium,

BACE and tau, besides exerting anti-apoptotic, neuropro-

tective and neurorescue properties.

Concluding remarks

Drug development in the Alzheimer’s disease field presents

a great challenge, since despite the considerable amount of

new molecules reported in literature, effective disease-

modifying drugs have not yet been discovered. The mul-

tifactorial nature of AD supports the emerging innovative

approach consisting of the design and synthesis of multi-

potent compounds specially conceived to incorporate in

Fig. 6 Chemical structures of propargylamine-containing multitarget-directed ligands (MTDLs) with dual MAO/iron chelation activities (M30

and HLA20) and MAO/iron chelation/ChE inhibitory activitiy (M30D and HLA20D)
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their structure the active moieties of already known drugs

to obtain the desired effect (Buccafusco and Terry 2000).

The reported compounds appear as good lead molecules

for the development of further better combinations,

which must be warranted to fully address the complexity of

AD.

Oxidative stress has been reported to be an early event

in the pathogenesis of AD, and thus targeting the source of

ROS early in the disease progression is a matter of interest.

In this context, MAO appears as a key target to be con-

sidered when designing MTDLs against AD, not only due

to the increased amine neurotransmission, but also because

of the reduction of the neurotoxic products of its catalytic

activity. Particularly, propargylamine-containing com-

pounds may possess additional benefits due to the dem-

onstrated neuroprotective properties.

In the search for better anti-AD formulations, other

promising compounds not targeting MAO enzymes have

been described in literature (Bolognesi et al. 2009; Viayna

et al. 2010). Mounting evidence suggests that the incor-

poration of a propargylamine moiety in the structure of

these compounds may further improve their effectiveness.

Hence, MAO inhibition represents an emerging and

promising feature when designing MTDLs to have better

outcomes in the complex nature of AD than the current

selective drugs.
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