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Abstract Although the exact cause of Parkinson’s disease

(PD) is still unknown, recent interest has been focused on the

role of iron in the nigral cell death in PD. Several studies have

shown that a selective and significant elevation in iron occurs

in the substantia nigra of patients with PD. However, the

mechanisms involved in iron accumulation also remain

unclear. In this article, we describe recent findings regarding

the mechanisms and potential toxic effects of iron accumu-

lation in hereditary and sporadic PD and animal models of

PD, including our genetic mouse model of PD. The review

provides an opportunity to revisit the possible roles of iron

accumulation in the pathogenic cascade(s) of PD.

Keywords Iron � Parkinson’s disease � Substantia nigra �
Dopaminergic neurons � 1-Methyl-4-phenyl-1,2,3,6-

tetrahydropyridine

Introduction

Several previous studies have reported the relationship

between iron accumulation and dopaminergic cell death in the

substantia nigra (SN) of the postmortem brains of patients

with Parkinson’s disease (PD; Earle 1968; Sofic et al. 1988;

Dexter et al. 1987, 1989). However, whether the high iron

content represents the initiation process or merely the result of

nigral degeneration remains to be elucidated. Here, we review

recent status regarding the mechanisms and potential toxic

effects of iron accumulation in hereditary and sporadic PD and

animal models of PD, including our data.

Iron toxicity

Since iron is a redox-active metal and can facilitate the

formation of cytotoxic hydroxyl radicals, superoxide

anions, and hydrogen peroxide, accumulation of iron in the

SN of patients with PD could be involved in neuronal

degeneration. However, in vitro studies demonstrated that

the toxic effects of iron are not limited to dopaminergic

neurons; for example, treatment with large amount

([50 lM) of iron results in the death of tyrosine hydroxy-

lase (TH)-negative non-dopaminergic cells. Hence, high

concentration of free iron seems to be injurious to all types

of neurons. On the other hand, significantly moderate

amount (*25 lM) of iron induces preferential damage to

dopaminergic neurons through interaction with dopamine

inside the cells (Mochizuki et al. 1993). Dopamine can be a

major source of reactive oxygen species (ROS) within the

nigral cells, since oxidation of dopamine by monoamine

oxidase releases hydrogen peroxide, which could in turn

produce more toxic hydroxyl radicals through Fenton’s

reaction mediated through the action of iron (Halliwell

1989). Neuromelanin (NM) is the major iron storage in the

substantia nigra dopaminergic neurons (Zecca et al. 1996,

2001, 2004a, b). Since neuromelanin chelates large amounts

of iron, it prevents the hydroxyl radical production by

Fenton’s reaction (Zecca et al. 2008a, b). These data dem-

onstrated that when neuromelanin is inside neurons, it is

neuroprotective. On the contrary, increased tissue iron

found in the parkinsonian SN may saturate iron-chelating

sites on NM, and a looser association between iron and NM

may result in an increased, rather than decreased, produc-

tion of free radical species. It is hypothesized that this

redox-active iron could be released and involved in a

Fenton-like reaction leading to an increased production of

oxidative radicals (Gerlach et al. 2003). Once neuromelanin
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is released from dying neurons in the extracellular envi-

ronment, it is able to activate microglia, increasing neuro-

inflammation and leading to the neuronal death (Zecca et al.

2008a, b; Zhang et al. 2011). Furthermore, overload of iron

in neuromelanin typically occurs in PD where an increase of

reactive/toxic iron bound to neuromelanin has been repor-

ted (Jellinger et al. 1992; Faucheux et al. 2003).

a-Synuclein plays a central role in the pathogenic cascades

in hereditary and sporadic cases of PD. Indeed, a-synuclein is

the major component of Lewy bodies (Spillantini et al. 1997),

the pathological hallmark of PD, and point mutations in the

a-synuclein gene (PARK1). Duplication or triplication of

a-synuclein locus (PARK4) is potentially pathogenetic in rare

cases of familial PD (Dawson and Dawson 2003; Singleton

et al. 2003). On the other hand, low concentrations of certain

metals, such as iron, can directly induce a-synuclein fibril

formation (Uversky et al. 2001). Ostrerova-Golts et al. (2000)

also reported that iron and free radical generators, such as

dopamine and hydrogen peroxide, can stimulate the pro-

duction of intracellular aggregates that contain a-synuclein

and ubiquitin. In addition to stimulating aggregate formation,

a-synuclein also appears to be neurotoxic. Iron may act in

concert with a-synuclein and dopamine to induce the for-

mation of Lewy body pathology and cell death in PD. In this

regard, a-synuclein phosphorylation, which is also caused by

iron, is due to CK2 upregulation (Takahashi et al. 2007).

Several studies have demonstrated the presence of brain

inflammation in PD patients, with marked proliferation of

reactive microglial cells (McGeer et al. 1988). Moreover, the

loss of dopaminergic neurons is also associated with high

levels of cytokines, ROS and nitric oxide (NO). These find-

ings suggest that inflammatory reaction and infection can

potentially be involved in the pathogenesis of PD (Furuya

et al. 2004). Such inflammation reaction can also result in

increased iron contents in dopaminergic neurons of PD. In

addition to these neurons, the proinflammatory cytokines

expressed in PD brains can also have profound and divergent

effects on iron homeostasis in astrocytes and microglia

(Rathore et al. 2012). In particular, proinflammatory TNF-a
caused an increase in iron uptake and retention by both

astrocytes and microglia, while anti-inflammatory cytokine

TGF-b1 promoted iron efflux from astrocytes but caused iron

retention in microglia (Rathore et al. 2012).

Iron accumulation in PD and PD animal models

Whether iron accumulation is a primary event in PD has

been controversial. Several autopsy and radiological stud-

ies have reported iron storage in the SN of PD (Dexter et al.

1994; Berg 2006; Wypijewska et al. 2010). Other groups

reported an increase in iron content in the early stages of

PD and incidental Lewy body disease (Becker et al. 1995;

Zecca et al. 2004a, b). Furthermore, locus coeruleus, a

catecholaminergic brain region which degenerates in PD,

has very low iron levels compared to SN (Zecca et al.

2004a, b). On the other hand, other works have shown the

lack of such changes in nigral iron in pre-symptomatic PD

or incidental Lewy body disease (Uitti et al. 1989; Gala-

zka-Friedman et al. 1996). These results suggest that iron

storage is not a primary event in PD. At this stage, it is

difficult to determine whether excess iron is a primary

cause of PD by clinical examination of PD patients.

Moreover, it is possible that increased iron levels in certain

brain regions could result from the altered vascularization

that is observed in patients with PD (Faucheux et al. 1999).

Experimental animal models of PD

Several studies have examined iron contents in various

experimental models of PD in order to determine whether

iron accumulation in the SN is an early or late event. We

also used a hemi-parkinsonism model in monkeys, which

was prepared by unilateral injection of l-methyl-4-phenyl-

l,2,3,6-tetrahydropyridine (MPTP) into the caudate or

putamen, and compared iron content in the SN and other

basal ganglia by immunohistochemistry (Mochizuki et al.

1994). The results showed that injection of MPTP into the

caudate or putamen resulted in marked increase in ferric

iron-reaction products in the ipsilateral SN pars compacta.

The results indicated that injury to the nigrostriatal system

following MPTP injection can induce iron accumulation in

the SN. We also confirmed the expression of ferritin in the

same model by immunohistochemistry using antibody

against L-ferritin (Goto et al. 1996). Interestingly, there was

no significant difference in the immunostaining for ferritin

in the pars compacta of the SN between the injected and

non-injected sides. The normal ferritin immunostaining on

the MPTP-injected side suggests that iron accumulation is

not related to altered metabolism of L-ferritin in this model.

Temlett et al. (1994) measured the total free iron concen-

tration using unilaterally MPTP-treated African green

monkeys, which showed obvious contralateral hemipar-

kinsonism. They confirmed the excess iron accumulation in

damaged dopaminergic neurons in MPTP-treated monkeys.

He et al. (2003) also investigated changes in iron content in

the SN at day 1 to month 18 after MPTP injection, and the

relationship between iron accumulation and dopaminergic

cell death progression in monkeys with parkinsonism

induced by injection of MPTP. They demonstrated the

presence of apoptosis in the ipsilateral SN at 1 day after

MPTP injection, and a significant decrease in the number

of TH-positive cells from 1 week onward. However, iron

content was significantly increased in the ipsilateral SN

from 4.5 to 18 months after MPTP injection, and the iron
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increase correlated significantly with the extent of dopa-

minergic cell death. Dopaminergic cell death induced by

MPTP administration might lead to iron accumulation in

the monkey SN, and increased iron might contribute to the

progression of nigral degeneration.

Iron accumulation in familial Parkinson’s disease

Various genetic causes of parkinsonism have been identi-

fied. Iron accumulation in SN has been reported in several

postmortem studies. Our group has also demonstrated the

presence of more intense iron staining in parkin-deficit PD,

PARK2, than in control subjects and sporadic cases of PD,

as well as the presence of differences in the pattern of

distribution of iron staining between PARK2 and sporadic

PD (Takanashi et al. 2001). What is the mechanism of iron

accumulation in the presence of parkin deficit? The major

transport protein responsible for iron uptake is divalent

metal transporter 1 (DMT1). Recent studies demonstrated

that the 1B species is regulated post-translationally by

degradation via the proteasomal pathway. Roth et al.

(2010) demonstrated that parkin is the E3 ligase responsi-

ble for ubiquitination of the 1B species of DMT1. Parkin

deficit may increase iron entry into neurons through an

increase of DMT1. Jimenez Del Rio et al. (2004) also

confirmed that the parkin mutation from PARK2 increases

the susceptibility to dopamine and iron-mediated apoptosis

in lymphocytes, probably due to its failure to dispose

unfolded proteins provoked by oxidative stress.

PLA2G6 was reported to be the causative gene of early-

onset PARK14-linked dystonia-parkinsonism. PLA2G6

encodes group VIA phospholipase A2 (calcium-indepen-

dent phospholipase A2b; iPLA2b). The affected patients

had parkinsonism, mental retardation/dementia, psychosis,

dystonia, and hyperreflexia. Magnetic resonance images

showed iron accumulation in the SN and striatum. PLA2G6

mutations have been detected in nearly all cases of classic

infantile neuroaxonal dystrophy (INAD), but in only a

small group of cases of idiopathic neurodegeneration with

brain iron accumulation (Morgan et al. 2006). INAD is a

severe psychomotor disorder with early onset and rapid

progression of hypotonia, hyperreflexia, and tetraparesis.

Spheroids are found in both the central and peripheral

nervous systems in INAD, and iron accumulation in the

brain is found in a subset of these patients. Beck et al.

(2011) already established PLA2G6-/- mice as a model of

INAD, and reported the presence of motor disturbances in

these mice. They confirmed the presence of mitochondrial

damage and spheroid formation in the motor neurons of the

spinal cord in the INAD model. We also find iron accu-

mulation in the SN of the same mice (manuscript in

preparation). Genetic models of PD may enhance our

understanding of the relationship between iron accumula-

tion and dopaminergic cell death.

Conclusion

Several findings have provided a potential involvement of

iron accumulation in the nigral cell death in PD. However,

it has been controversial whether the iron accumulation is a

primary causative event or merely a secondary change

related to the dopaminergic neuronal degeneration. Several

animal models including familial PD may provide mech-

anistic aspects of iron accumulation in the SN and pave a

new way for clinical interventions.
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