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Abstract Neuroprotection has been proposed in neuro-

degenerative disorders, such as Parkinson’s and Alzhei-

mer’s diseases, to delay or halt disease progression or

reverse neuronal deterioration. The inhibitors of type B

monoamine oxidase (MAO), rasagiline and (-)deprenyl,

prevent neuronal loss in cellular and animal models of

neurodegenerative disorders by intervening in the death

signal pathway in mitochondria. In addition, rasagiline and

(-)deprenyl increase the expression of anti-apoptotic Bcl-2

protein family and neurotrophic factors. Neurotrophic

factors, especially glial cell line-derived neurotrophic fac-

tor (GDNF) and brain-derived derived neurotrophic factor

(BDNF), are required not only for growth and maintenance

of developing neurons, but also for function and plasticity

of distinct population of adult neurons. GDNF and BDNF

have been reported to reduce Parkinson and Alzheimer’s

diseases, respectively. GDNF protects the nigra-striatal

dopamine neurons in animal models of Parkinson’s dis-

ease, and its administration has been tried as a disease-

modifying therapy for parkinsonian patients. However, the

results of clinical trials have not been fully conclusive and

more practical ways to enhance GDNF levels in the tar-

geted neurons are essentially required for future clinical

application. Rasagiline and (-)deprenyl induced prefer-

entially GDNF and BDNF in cellular and non-human pri-

mate experiments, and (-)deprenyl increased BDNF level

in the cerebrospinal fluid of parkinsonian patients. In this

paper, we review the induction of GDNF and BDNF by

these MAO inhibitors as a strategy of neuroprotective

therapy. The induction of prosurvival genes is discussed in

relation to a possible disease-modifying therapy with MAO

inhibitors in neurodegenerative disorders.
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Abbreviations

AD Alzheimer’s disease

BBB Blood–brain barrier

BDNF Brain-derive neurotrophic factor

DA Dopamine

GDNF Glial cell line-derived neurotrophic factor

GFLs GDNF family of ligands

NGF Nerve growth factor

NT-3 Neurotrophic factor-3

NTF Neurotrophic factor

PD Parkinson’s disease

Introduction

Neuroprotective therapy is proposed to delay disease pro-

gression or reverse neuronal loss in Parkinson’s disease
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(PD), Alzheimer’s disease (AD) and other neurodegener-

ative disorders. The inhibitors of type B monoamine oxi-

dase (MAO-B), (-)deprenyl (selegiline) and rasagiline, are

among the most promising drug candidates for neuropro-

tection (Ebadi et al. 2006; Youdim et al. 2006; Naoi and

Maruyama 2009, 2010; Naoi et al. 2007; Riederer and

Laux 2011). MAO-B inhibitors prevent neuronal death in

the cellular and animal models through suppression of

death signaling and induction of pro-survival, anti-apop-

totic Bcl-2 and neurotrophic factor (NTF) genes.

NTFs are associated with the growth and survival of

neurons during development, and the synaptic function and

plasticity of adult neurons. NTFs are composed of four

major groups: neurotrophins [nerve growth factor (NGF),

brain-derived neurotrophic factor (BDNF), neurotrophin-3,

-4 (NT-3, 4)], glial cell line-derived neurotrophic factor

(GDNF) family of ligands (GFLs) [GDNF, neurturin,

artemin, persephin], neurotrophic cytokines (neurokines),

and a new family of cerebral dopamine (DA) neurotrophic

factor and mesencephalic astrocyte-derived neurotrophic

factors. NGF and BDNF are required for hippocampal

plasticity and their reduction is associated with degenera-

tion of cholinergic neurons and cognition impairment in

AD (Conner et al. 2009). On the other hand, GDNF was

reported to decrease in surviving neurons of the substantia

nigra in the brain of PD patients (Chauhan et al. 2001).

NTFs are proposed as therapeutic agents to protect

neurons in PD, AD, Huntington’s disease and amyotrophic

lateral sclerosis (Rangasamy et al. 2010; Aron and Klein

2011). GDNF protects neurons in animal and cellular

models of PD (Cohen et al. 2011), whereas BDNF protects

neurons in AD models (Nagahara et al. 2009). However,

clinical trials of NGF in AD failed to prove beneficial

effects and had to be abandoned because of adverse events.

Therefore, this review deals mainly with GDNF and its role

in PD. GDNF cannot be transported into the brain through

the blood–brain barrier (BBB), and several delivery

methods have been proposed. As an alterative practical

system, molecules permeable through the BBB, including

MAO-B inhibitors, are proposed to enhance the endoge-

nous synthesis of GFLs and nurotrophins.

This review presents the induction of neuroprotective

GDNF and BDNF by rasagiline and (-)deprenyl in cellular

models and the molecular mechanism underlying the gene

induction. Rasagiline increased GDNF expression in the

cerebrospinal fluid (CSF) of non-human primates after

systemic administration, whereas (-)deprenyl increased

BDNF in the CSF in parkinsonian patients. These results

suggest that GDNF or BDNF may be preferentially induced

by rasagiline or (-)deprenyl, respectively. The role of

MAO inhibitors in the induction of pro-survival genes is

discussed as a disease-modifying therapy for neurodegen-

erative disorders.

Neurotrophic factors in neuro-psychiatric disorders

After the findings on NGF (Levi-Montalcini and Ham-

burger 1951), NTFs have been expected to protect neurons

from degeneration and repair the deteriorated structure and

function of specific neurons in the brain. In normal aging

and AD, the expression of BDNF and its receptors

(TrkB.FL, TrkB.T1, TrkB.T2) was reported to decrease,

suggesting their role in cognitive function (Tapia-Aranci-

bia et al. 2008). BDNF supports the survival of cholinergic

neurons and also shows a neurotrophic effect on DA neu-

rons in PD models. Postmortem studies of patients with

depression showed reduced BDNF levels in the hippo-

campus and cerebral cortex (Altar 1999). In rat model of

depression, BDNF infused in the dentate gyrus of hippo-

campus produced an anti-depressant effect (Shirayama

et al. 2002). These results suggest the association of BDNF

with the pathophysiology of depression.

GDNF and neurturin promote survival of DA and other

neurons, and are proposed to protect neurons in PD (Hong

et al. 2008). In the brain of PD patients, GDNF was

reported to decrease (Chauhan et al. 2001) and GDNF

administration protected DA neurons in rodent and primate

models of PD (Zhang et al. 1997; Grondin et al. 2002;

Kells et al. 2010). Treatment of PD patients with GDNF

was performed by use of direct infusion into the putamen,

BBB-permeable GDNF derivatives, viral vector delivery

system with recombinant adeno-associated viruses or len-

tiviruses, or by transplantation of neural stem cells and

genetically modified astrocytes and fibroblasts (Hong et al.

2008; Aron and Klein 2011). The beneficial results of

GDNF treatment were reported in the phase I clinical trials

(Gill et al. 2003; Slevin et al. 2007), but the phase III trials

did not present concrete positive results (Lang et al. 2006).

The limited penetration of administered GDNF through the

BBB and into target neurons and the rapid clearance from

the brain may have caused the disappointing results.

GDNF regulates neuronal survival through activation of

cellular signaling, mRNA translation and new protein

synthesis. GDNF binds to a selective receptor, GFRa1-a4,

and activates GFRa-Ret complex, and its phosphorylation

activates the downstream signal pathway. GDNF binds also

to another receptor, the neuronal cell adhesion molecules

(NCAM), and activates focal adhesion kinase (FK) and Fyn

kinase. In addition, GDNF protects neurons by suppressing

death receptor–caspase pathway (Yu et al. 2008). GDNF

activates pro-survival pathways, including phosphatidyl-3-

kinase (PI3K)/Akt, Ras/extracellular-signal-regulated

kinase (ERK), Src kinase and phospholipase C-c (PLC-c)

pathway (Mograbi et al. 2001). GDNF suppresses mito-

chondria-dependent death pathway by inhibition of cas-

pase-3 activation, endoplasmic reticulum stress and

translocation of apoptogenic Bax, and by upregulation of
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anti-apoptotic Bcl-2 and Bcl-XL (Ghribi et al. 2001; Li

et al. 2007). GDNF also suppresses microglia activation

and subsequent increase in oxidative stress and inflamma-

tory reaction (Xing et al. 2010).

On the other hand, neurotophins activate one or more of

the tropomysin-related kinase (Trk) family of receptor

tyrosine kinase (TrkA, TrkB and TrkC) and also p75

neurotrophin receptor (p75NTR), a member of tumor

necrosis factor receptor superfamily (Reichardt 2006).

Neurotrophins activated signal pathways in the down-

stream of Trks, Ras, PI3-linase, PLC-c1 and MAP kinase.

Through p75NTR, neurotrophins activate nuclear factor-

jB (NF-jB) and Jun kinase, and promote NF-jB-depen-

dent neuronal survival.

Neuroprotection by rasagiline and (2)deprenyl

and induction of GDNF and BDNF

Rasagiline and (-)deprenyl protect neurons from cell death

through preventing oxidative stress and production of

neurotoxins from protoxicants, such as MPP? from MPTP.

In intrinsic apoptosis, rasagiline and (-)deprenyl directly

suppress the activation of mitochondrial death pathway

(Naoi and Maruyama, 2009, 2010). (-)Deprenyl, rasagi-

line and structurally related propargylamine derivatives of

MAO inhibitors protect neurons in animal models of PD

(Kupsch et al. 2001), multiple system atrophy (Stefanova

et al. 2008) and amyotrophic lateral sclerosis (Kupershmidt

et al. 2009).

These MAO-B inhibitors induce neuroprotective genes,

including anti-apoptotic Bcl-2 (Akao et al. 2002) and

GDNF (Maruyama et al. 2004), and anti-oxidant enzymes

and redox protein (Andoh et al. 2005; Nakaso et al. 2006).

Rasagiline and (-)deprenyl preferentially increase the

expression of mRNA and protein of GFLs or neurotro-

phins, respectively, in human dopaminergic neuroblastoma

SH-SY5Y cells (Maruyama et al., in preparation). The

amounts of GDNF and neurotrophins were quantified as

reported previously using the enzyme immunoassay (EIA)

(Maruyama et al. 2004). Figure 1 shows that rasagiline

increased GDNF protein in the cells more markedly than

(-)deprenyl and the increase was the highest at 10-7 M.

(-)Deprenyl induced BDNF expression and the increase

was marked at 10-9–10-8 M. Ladaostigil [TV3326,

(N-propargyl)-(3R)-aminoindan-5-yl]-ethyl methyl carba-

mate], a cholinesterase and MAO inhibitor, increased

BDNF levels to 10-5–10-4 M, but did not affect GDNF.

The (S)-enantiomers of rasagiline and deprenyl, desmeth-

yldeprenyl and aminoindan, a rasagiline metabolite, did not

affect the GDNF levels.

NTF induction by rasagiline has been confirmed in

animal experiments. Rasagiline and (–)deprenyl increased

mRNA levels of GDNF, NT-3 and NGF, and rasagiline

increased BDNF protein levels in rat midbrain (Weinreb

et al. 2009). We also proved NTF induction by rasagiline in

non-human primates. Rasagiline (0.1, 0.25 and 2 mg/day)

was systematically administered in Japanese monkeys

(n = 4) for 4 weeks by daily subcutaneous injection and

the cerebrospinal fluid (CSF) was taken once a week
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Fig. 1 Effects of (-)deprenyl, rasagiline and ladostigil on NTF

expression in SH-SY5Y cells. SH-SY5Y cells were incubated with

the MAO-B inhibitors for 24 h, in Hanks’ minimum essential medium

(MEM). GDNF (a) and BDNF (b) were quantified by the EIA.

Experiments were repeated at least three to four times in triplicate or

quadruplicate measurements, and the column and bar represent the

mean and SD. Differences were statistically evaluated by analysis of

variance (ANOVA) followed by Scheffe’s F test. * and **

significantly different from control, p \ 0.05 and 0.01
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(Maruyama et al., in preparation). The levels of GDNF and

neurotrophins (NGF, BDNF, NT-3) in the CSF were

quantified by the EIA assay. As shown in Fig. 2, rasagiline

at 0.25 mg/day significantly increased GDNF levels. Ra-

sagiline at 0.25 and 0.1 mg/day induced also NGF, BDNF

and NT-3, but at 1 mg/day did not increase these four NTF

levels in the CSF. Increased levels of NTF, caused by ra-

sagiline, returned to the basal values after 1 week’s

washout.

NTF induction by (-)deprenyl was investigated in

parkinsonian patients; (-)deprenyl increased BDNF levels

in the CSF (Maruyama et al., in preparation). Eight

patients, who were diagnosed as having PD on the basis of

neurological examinations and neuroimaging in Kushiro

Rosai Hospital (Kushiro, Hokkaido, Japan), were subjected

to this experiment. Before and after treatment with

(-)deprenyl (5 mg/day, for 2–8 weeks orally), the lumbar

CSF was taken and NTF contents were quantified by EIA

assay. In five patients, BDNF levels increased markedly

(Fig. 3). The mean and SD of the BDNF levels in the CSF

before and after the treatment were 1.93 ± 1.06 and

7.17 ± 4.98 pg/ml and the difference was significant,

p \ 0.025, using Student’s two-tailed t test. GDNF was not

increased by (-)deprenyl in a majority of the patients, but

increased markedly in three patients with the basal levels

lower than 4 pg/ml. The average GDNF values were not

changed by (-)deprenyl treatment: 3.56 ± 2.59 versus

3.63 ± 3.43 pg/ml.

The role of MAO in the induction of pro-survival genes

by MAO-B inhibitors

The role of MAO in the induction of pro-survival genes,

including NTFs and anti-apoptotic Bcl-2, by rasagiline and

(-)deprenyl has not been clarified. These MAO-B inhibi-

tors increase neuroprotective genes at concentrations quite

lower than those required for the inhibition of enzymatic

activity, suggesting that gene induction does not depend on

inhibition. Rasagiline and (-)deprenyl increase pro-sur-

vival genes in cells expressing only MAO-A, but not

MAO-B, such as SH-SY5Y and PC12 cells. Only the

(R)-isomer of rasagiline and deprenyl can increase Bcl-2

and NTFs, suggesting the presence of the binding site that
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Fig. 2 Effects of systematic administration of rasagiline on NFT

levels in the CSF from Japanese monkeys. Rasagiline (2, 0.25 and

0.1 mg/day) and saline as control were subcutaneously administered

in Japanese monkeys (n = 4 for each groups), and the lumbar CSF

was taken from anesthetized monkeys four times, once in every week.

White and black boxes, black and white circles represent the NFT

levels in monkey group treated with saline or 0.1, 0.25 and 2 mg/day

rasagiline, respectively. a, b, c, and d: GDNF, BDNF, NGF and NT-3

levels. NTF levels were quantified by the EIA and the point and bar
represent the mean of triplicate measurements of four samples.

*, significantly different from the basal levels, p \ 0.05, using

Student’s two-tailed t test. [The Ethical Committee of Kyoto

University Primate Research Institute, Inuyama, Aichi, Japan,

approved the research project and the experiment protocol]
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initiates signal pathway to induce pro-survival genes. We

found that MAO-A is required for the induction of pro-

survival Bcl-2 (Inaba-Hasegawa et al. 2012). The reduction

of MAO-A expression with short-interfering (si)RNA

suppressed the Bcl-2 induction by rasagiline, (-)deprenyl

and befloxatone, a reversible MAO-A inhibitor. The

involvement of MAO-A was also indicated by Bcl-2

induction of moclobemide, another reversible MAO-A

inhibitor (Chiou et al. 2006). These results suggest that

compounds with affinity to MAO-A also might induce

neuroprotective genes.

The intracellular signal pathway to induce pro-survival

genes may be common for Bcl-2 and NTFs. The ERK 1/2-

NF-jB pathway mediates the induction of GDNF and Bcl-

2 (Maruyama et al. 2004; Inaba-Hasegawa et al. 2012). The

GDNF gene has multiple transcription factor binding sites

at the promoter sequence, such as camp response element

(CRE) binding protein (CREB), which may function as a

transcription factor in regulating GDNF expression. CREB

phosphorylation is induced by activation of distinct signal

systems: protein kinase C (PKC), calmodulin kinase II

(CaMKII) and ERK 1/2 and serine/threonine kinase Akt.

Rasagiline activates these signal pathways and upregulates

the endogenous NTF synthesis (Weinreb et al. 2007).

We found that the type of MAO may be associated with

the preferential induction of GDNF or BDNF by rasagiline

and (-)deprenyl (Inaba-Hasegawa et al., in preparation).

Rasagiline and (-)deprenyl induced GDNF preferentially

in neuroblastoma MAO-A-expressing SH-SY5Y cells and

neurotrophin human glioblastoma MAO-B-expressing

U118MG cells. These results suggest that the two classes

of NTFs may be induced in the targeted cell types,

depending on the presence of MAO-A or MAO-B. MAO-A

and MAO-B are distributed in distinct neuron populations

and brain regions. MAO-A is expressed in the catechol-

aminergic and dopaminergic cell groups, whereas MAO-B

is present in the serotonergic and histaminergic neurons, as

well as astrocytes (Bortolato et al. 2008). The compounds

which can selectively induce GFLs and neurotrophins may

be applied as neuroprotective therapy targeted at distinct

neuronal or glial population in the brain.

MAO inhibitors may bind to MAO at the site without

inhibiting the activity, or to other amine oxidase, D1, D2

receptors or other protein in neuronal cells (see references

in the review, Naoi and Maruyama 2009). In addition to

MAO inhibitors, NTFs are induced by compounds

increasing DA transmission (DA agonists, L-DOPA), anti-

depressants, anti-psychotics, anti-dementia drugs, immu-

nophilin ligands and neurotrophic hormones (melatonin,

estrogen, vitamin D3) (Saavedra et al. 2008). DA, nor-

adrenaline and adrenaline increase the mRNA and protein

levels of NT-3 in primary cultured astrocytes (Mele et al.

2010). The studies on the target protein and binding site of

these compounds may bring us clues to develop novel

neuroprotective agents.

The criteria for considering neuroprotective drug can-

didates in PD have been proposed: scientific rationale;

penetration of the BBB; safety and tolerability and effi-

ciency in animal PD models; an indication of benefit in

clinical studies for parkinsonian patients (Ravina et al.

2003). The effects on disease progression have been pres-

ently determined symptomatically using the United PD

Rating Scale (UPDRS) or PD Quality of Life (PDQUAL)

score. Using imaging with position emission tomography

(PET) and single photon emission tomography (SPECT),

the integrity of the DA system in the nigra striatum may be

monitored (Booij and Berendsee 2011). However, these

methods are not sensitive or specific to quantify the effects

on progressive neuronal loss in neurodegenerative disor-

ders. As a surrogate marker, NTF levels may indicate the

potency of agents to delay, halt or repair neuronal loss in

neurodegenerative disorders.
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