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Abstract It is usually assumed that kynurenic acid

(KYNA) modifies neuronal function because it antagonizes

the glycine site of the NMDA receptors and/or the neuronal

cholinergic a7 nicotine receptors. It is not clear, however,

whether the basal levels of KYNA found in brain extra-

cellular spaces are sufficient to interact with these targets.

Another reported target for KYNA is GPR35, an orphan

receptor negatively coupled to Gi proteins. GPR35 is

expressed both in neurons and other cells (including glia,

macrophages and monocytes). KYNA affinity for GPR35

in native systems has not been clarified and the low-affinity

data widely reported in the literature for the interaction

between KYNA and human or rat GPR35 have been

obtained in modified expression systems. Possibly by

interacting with GPR35, KYNA may also reduce glutamate

release in brain and pro-inflammatory cytokines release in

cell lines. The inhibition of inflammatory mediator release

from both glia and macrophages may explain why KYNA

has analgesic effects in inflammatory models. Furthermore,

it may also explain why, KYNA administration (200 mg/

kg ip 9 3 times) to mice treated with lethal doses of LPS,

significantly reduces the number of deaths. Finally, KYNA

has been reported as an agonist of aryl hydrocarbon

receptor (AHR), a nuclear protein involved in the regula-

tion of gene transcription and able to cause immunosup-

pression after binding with dioxin. Thus, KYNA has

receptors in the nervous and the immune systems and may

play interesting regulatory roles in cell function.
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Introduction

Once upon a time, kynurenic acid (KYNA) was consid-

ered one of the numerous inert tryptophan metabolites

present in mammalian urines. Its name means indeed

‘‘acid in dog urines’’ and it was coined by Liebeg in the

second half of the 19th century. Its molecular structure

was clarified and the compound was chemically synthe-

sized at the beginning of the XX century (Homer 1914).

The metabolic steps leading from tryptophan to KYNA

were identified in the course of studies performed during

the first half of the last century in order to clarify NAD or

NADH formation from tryptophan. They are: (1) opening

of the indole ring with formyl-kynurenine formation, (2)

rapid and almost complete hydrolysis of formyl-kynu-

renine into kynurenine, (3) transamination of kynurenine

into KYNA (Moroni 1999).

The first step of the pathway is catalyzed by either

tryptophan 2,3-dioxygenase (TDO) or indoleamine 2,3-

dioxygenase (IDO) (Hirata and Hayaishi 1975), the second

is catalyzed by formamidase, an abundant protein (Mehler

and Knox 1950) not particularly studied in mammals

(Dobrovolsky et al. 2005) and the third by a family of

kynurenine amino-transferases (KATs). These transami-

nases have a rather low affinity for their substrate (in the

mM range) and therefore kynurenine availability is the

main factor controlling the rate of KYNA formation and its

local concentration. The most studied KATs are KAT I
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(identical with glutamine transaminase K, EC 2.6.1.64) and

KAT II (identical with a-aminoadipate aminotransferase,

EC 2.6.1.7). KAT III and other transaminases such as

mitochondrial aspartate aminotransferase (EC 2.6.1.1) may

also form KYNA, but have not been particularly investi-

gated in this contest (Rossi et al. 2008). Gene targeting

studies have shown that KAT II knockout mice have

reduced brain KYNA levels and a number of behavioral

changes such as enhanced hippocampal plasticity and

improved cognitive behavior (Potter et al. 2010), suggest-

ing that in the brain, KAT II is the main responsible for

KYNA synthesis and that KYNA plays an important role in

modulating neural plasticity and cognition.

Current interest in ‘‘kynurenines’’ actions in brain

originated in the late 70s when Lapin and its group,

reported from Saint Petersburg (URSS) that systemic or

intracerebral administration of KYNA could dampen

quinolinic acid-induced seizures in mice and rats (Lapin

1976, 1980). The observation that two different tryptophan

metabolites such as quinolinic and kynurenic acids, formed

in the same metabolic pathway, could either cause or

antagonize convulsions seemed particularly interesting. In

the early 80s it was observed that while quinolinic acid

could stimulate, KYNA could selectively antagonize glu-

tamate receptors of NMDA type (Perkins and Stone 1982)

and in a similar manner, while quinolinic acid could cause

excitotoxicity (Schwarcz et al. 1983), KYNA could reduce

excitotoxic neuronal damage in rat brain (Foster et al.

1984). A few years later, it was shown that KYNA was

present in the central nervous system of different animal

species, including man, and that its extracellular or cere-

brospinal fluid concentrations ranged from 15 to 150 nM

(Moroni et al. 1988b; Turski et al. 1988; Swartz et al.

1990). It was also shown that brain KYNA is mostly

synthesized in glial cells, has a relatively fast turnover rate

and significantly accumulates during the aging process

(Moroni et al. 1988a). In this brief review, we will report

some of the data on the possible mechanism(s) of KYNA

action with particular attention to the experiments per-

formed in our laboratory.

KYNA: mechanism of action in the brain

It has been repeatedly shown that KYNA is a potent

antagonist of the glycine allosteric site the NMDA receptor

complex and for several years it was assumed that the

interaction between KYNA and the NMDA receptor

complex could have a physiological role in brain function

(Stone 1993). However, it should be noted that the extra-

cellular concentrations of KYNA in mammalian brains are

in the low nM range while KYNA affinity for the glycine

site of the NMDA receptor complex is approximately

10–20 lM. It seems therefore possible that other targets are

responsible of the electrophysiological and behavioral

actions observed when brain KYNA levels are increased or

decreased. Indeed, a modest increase of KYNA extracel-

lular concentrations in brain has been associated with a

reduction of the rate of cell firing in the rat locus coeruleus

(Erhardt et al. 2000) and with a number of behavioral

effects (reduced locomotor activity, mild analgesia, control

of seizures and prevention of excitotoxic neuronal damage)

suggesting that nM concentrations of KYNA may reduce

the activity of brain excitatory transmission (Russi et al.

1989, 1992; Moroni et al. 1991; Vecsei and Beal 1991;

Vecsei et al. 1992; Carpenedo et al. 1994; Nemeth et al.

2004). It has also been demonstrated that a 2 or 3-fold

elevation of brain KYNA levels significantly reduces post-

ischemic brain damage in models of focal or global brain

ischemia in vivo and in organotypic hippocampal slice

cultures exposed to oxygen and glucose deprivation in vitro

(Cozzi et al. 1999; Carpenedo et al. 2002).

An increase of brain KYNA levels may be obtained by

administering direct or indirect precursors, transport

inhibitors or inhibitors of kynurenine 3-monooxygenase

(KMO) the most abundant of the kynurenine metabolizing

enzymes. No matter of the approach used, a mild increase

of brain KYNA concentration reduces excitatory trans-

mission and this may be evaluated with biochemical,

electrophysiological, histological or behavioral methods

(Bacciottini et al. 1987; Nozaki and Beal 1992; Chiarugi

et al. 1996). Recently, a very elegant study reported that

inhibition of kynurenine 3-monooxygenase in peripheral

organs, by increasing blood kynurenine levels and brain

KYNA content, significantly reduced neurodegeneration in

different transgenic models of Huntington’s and Alzhei-

mer’s diseases (Zwilling et al. 2011). Similar results have

been obtained in a drosophila model of Huntington chorea

(Campesan et al. 2011).

A possible explanation of all these findings is reported

in Fig. 1: KYNA, infused through a microdialysis cannula

in the rat caudate at low nM concentrations drastically

reduces extracellular brain glutamate content. This robust

decrease of excitatory transmitter levels in brain extra-

cellular spaces could explain most of behavioral, elec-

trophysiological and neuroprotective effects of KYNA.

The molecular mechanism(s) of these effects, however,

remain to be clarified. Since a reduction of glutamate

extracellular concentrations comparable with that caused

by KYNA (30–100 nM) may be obtained with type 2/3

metabotropic glutamate receptors (mGluR2/3) agonists,

we assumed that KYNA could interact with these sites.

However, KYNA does interact neither with native mGlu2/3

receptors nor with cloned receptors permanently expressed

in baby hamster kidney (BHK) cells (Carpenedo et al.

2001).
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It has also been demonstrated that KYNA antagonizes

a7 cholinergic nicotine receptors that are mostly located on

pre-synaptic terminals (Hilmas et al. 2001) and it has been

proposed that the reduced levels of glutamate in the

extracellular spaces found in KYNA treated animals are

due to inhibition of these receptors. However, KYNA

affinity for a7 receptors is still rather low (lM levels) and

certainly not in the range of the concentrations able to

reduce glutamate release (low nM). Furthermore, other a7

nicotine antagonists have some, but not all the actions of

KYNA on excitatory transmitter release (Carpenedo et al.

2001). Thus, the reduction of glutamate concentration in

the extracellular spaces cannot be exclusively ascribed to

KYNA interaction with a7 cholinergic nicotine receptors.

Besides interacting as an antagonist with the glycine site

of the NMDA receptor and with cholinergic a7 nicotine

receptors, KYNA has been proposed as the endogenous

agonist of GPR35, a Gi-protein coupled receptor (Wang

et al. 2006). Another KYNA suggested target is the aryl

hydrocarbon receptor (AHR), a nuclear receptor able to

recognize aromatic hydrocarbons and 2,3,7,8-tetrachloro-

dibezo-p-dioxin (DiNatale et al. 2010) (see Table 1).

Finally, large concentrations of KYNA (in the range of

100–300 lM) may have direct antioxidant properties and

are able to inhibit oxidative stress because of free radical

scavenging activity (Lugo-Huitron et al. 2011). It is

unlikely that concentrations above 100 lM may be

locally reached under either physiological or pathological

conditions.

KYNA actions in glia and other non-neuronal cells

As mentioned above, KYNA may activate GPR35, a pro-

tein present in the brain but especially abundant in the

dorsal root ganglia and in cells of the immune system.

Activation of GPR35 inhibits LPS-induced TNFa release

from macrophages (Wang et al. 2006) and a number of

other Ca2?-dependent release processes which may include

inhibition of transmitter release (Ohshiro et al. 2008).

Again, it should be mentioned that KYNA affinity for

cloned human or rat GPR35 is relatively low (EC50

between 10 and 100 lM) and certainly rather distant from

the concentrations that, when added to the microdialysis

probe, drastically reduce glutamate levels in brain extra-

cellular spaces. In our opinion, however, the published

affinity of KYNA for mammalian GPR35 is artificially

low. The available data have been generated in transfected

systems in which the protein has been linked with tags and

with fluorescent peptides (Jenkins et al. 2011; Milligan

2011) or after transfection with modified G-proteins (Zhao

et al. 2010; Jenkins et al. 2011). Therefore, we investigated

KYNA effects in cell types expressing native GPR35

associated to Gi-proteins on the release of molecules

involved in neuroinflammation and neurorepair processes

(Fig. 2). We previously reported that in microglial cell
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Fig. 1 Effects of local administration of KYNA through the micro-

dialysis cannula in the rat caudate on extracellular glutamate levels.

KYNA was added to the dialysis fluid 1 h after the beginning of the

experiments and its application continued for 3 h. Each point is the

mean value plus or minus of at least six animals. **P \ 0.01 versus

saline. Basal glutamate levels were: 210 ± 50 pmol/15 min. (data

from Carpenedo et al. 2001)

Table 1 Possible kynurenic acid targets

Antagonism IC50 (lM) References

Glycine site NMDA receptor 10–30 (Kessler et al. 1989)

Nicotinic a7 1–8 (Hilmas et al. 2001)

Glutamate site of AMPA

or NMDA

300 (Perkins and

Stone 1982)

Agonism

GPR35 0.1–30 (Wang et al. 2006)

AHR NA (DiNatale et al. 2010)

NA not available

↓↓↓

↓

↓↓

Fig. 2 Hypothesis on the mechanism of the action of KYNA and its

interaction with GPR35: inhibition of transmitter and inflammatory

mediator release
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lines and in transformed fibroblasts (NIH 3T3 cells),

KYNA inhibits the heath shock- or starvation-induced

release of active compounds such as FGF-a or interleukin-1

with an IC50 of approximately 0.1 lM (Di Serio et al.

2005). We also observed that KYNA reduces, in a con-

centration-dependent manner, the LPS-induced secretion of

high-mobility group box 1 protein (HMGB1) without

causing obvious changes in its expression in a murine

macrophage cell line (RAW264.7) (Moroni et al. 2007).

HMGB1 is a 215 amino acid polypeptide belonging to the

alarmin group and secreted through non-classical mecha-

nisms similar to those mediating FGF or interleukin-1

release (Tarantini et al. 2001). In astrocytes, microglial

cells and neurons exposed to ischemic challenges, HMGB1

is released and cause activation of Receptor for Advanced

Glycation End products (RAGE) contributing to post-

ischemic brain damage (Faraco et al. 2007). It may be

proposed, therefore, that a reduced HMGB1 release from

cells of the neurovascular unit could be one of the mech-

anisms of KYNA neuroprotective actions in stroke models.

Since KYNA attenuates the release of several pro-

inflammatory cytokines including TNFa and HMGB1 from

macrophages as well as this release is considered a key

event in the pathological process leading to irreversible

septic shock, we next studied the effects of KYNA

administration on LPS-induced death in mice. KYNA

administration (200 mg/kg 9 3) resulted in elevated

plasma KYNA levels (Moroni et al. 2007) and in drastic

reductions of total death rate (Fig. 3). The effect was rather

specific, since xanthurenic acid, a metabolite having

physical and chemicals properties comparable to those of

KYNA was inactive (Moroni et al. 2007). Figure 4 shows

that KYNA-treated mice had a drastically reduced serum

TNFa level after the LPS challenge. It has also been shown

that LPS itself and pro-inflammatory cytokines released

during the first phase of septic shock may induce the

expression of nitric oxide synthase and cause the accu-

mulation of large quantities of nitric oxide (NO) in plasma/

serum. This accumulation seems to play a crucial role in

LPS-induced death (Thiemermann and Vane 1990; Julou-

Schaeffer et al. 1990). KYNA drastically reduced the

accumulation of NO in the serum of LPS treated mice

(Fig. 4). This effect was not mediated by NMDA receptors

because neither MK-801, a non-competitive antagonist, nor

AP5, a competitive antagonist, used at fully active dosages,

reduced LPS mortality.

In separate experiments we found that KYNA concen-

trations reached in plasma of treated animals were in the

low lM range. KYNA administration seems therefore a

rather simple and feasible approach to reduce the number

of deaths in a septic shock model. GPR35, activation, and
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the reduced output of inflammatory mediators, is a rea-

sonable explanation of those results. The possibility of

obtaining high-affinity agonists and antagonists for GPR35

seems another obvious strategy to be followed for the

control of the pathological events associated with acute

systemic inflammation and to reduce the number of death

in septic shock.

Since GPR35 is largely expressed in the rodent dorsal

root ganglia we also investigated the possibility of acti-

vating this receptor to reduce pain in inflammatory states.

We used the ‘‘writhing test’’ induced by acetic acid ip.

injection in mice as a model of inflammatory pain and we

observed that there is an inverse correlation between

plasma KYNA levels and the number of writhes induced

by acetic acid. In a similar manner behave other GPR35

agonists suggesting that GPR35 could be a good target to

dampen inflammatory pain states (Cosi et al. 2011).

KYNA and aryl hydrocarbon receptor (AHR)

It has been recently reported that KYNA may be one of the

endogenous ligands of the aryl hydrocarbon receptor

(AHR), a ligand activated transcription factor of the basic

helix-loop-helix (bHLH) Per/ARNT/Sim family (Denison

and Nagy 2003). Until recently, AHR was considered a

xenobiotic receptor regulated through the binding of sev-

eral exogenous compounds such as 2,3,7,8-tetrachlo-

rodibenzo-p-dioxin, a toxic chemical that powerfully

suppresses antibody and cellular immune responses, mod-

ulates the synthesis of inflammatory mediators, stimulates

carcinogenesis and promotes tumor outgrowth (DiNatale

et al. 2010). Interestingly, it has been recently shown that

kynurenine is also able to activate AHR responses (Nguyen

et al. 2010; Opitz et al. 2011). The relative affinity of

kynurenine or KYNA for this receptor is not available. In

fact while in hepatic cells in cultures, DiNatale et al. (2010)

report that KYNA is a rather potent agonist, Opitz et al.

(2011), working in gliomas and other tumor cells, suggest

that kynurenine is more active than KYNA in performing

this task. Possibly AHR is able to interact with several

‘‘kynurenines’’ and to promote the generation of immune-

suppressive T cells that support cancer development

(Mezrich et al. 2010). The binding of the ‘‘kynurenines’’ to

AHR causes the receptor to move into the nucleus where it

binds target genes and activates their transcription leading

to tumor progression (Stevens et al. 2009). These findings

open a number of questions on the activities that kynu-

renine metabolites have in cancer biology and in immu-

nology. In other words, KYNA-induced activation of AHR

and the effects that may derive from increased kynurenine/

KYNA availability may increase the risk of developing

malignancies? This should be considered when procedures

aimed at increasing blood and brain levels of these tryp-

tophan metabolites are proposed. On the other end, the

anti-inflammatory actions of kynurenines and KYNA due

to a controlled activation of AHR may be exploited for the

treatment of autoimmunity or other immune disorders?

Conclusion

Multiple mechanisms may mediate KYNA actions in brain

and periphery. While most of the laboratories assume that

KYNA actions may be mostly explained because of its

antagonism with both the glycine site of the NMDA

receptors and the cholinergic a7 nicotine receptors, a

number of other targets have been recently proposed and

should be taken into consideration.
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