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Abstract Schizophrenia is currently believed to result

from variations in multiple genes, each contributing a

subtle effect, which combines with each other and with

environmental stimuli to impact both early and late brain

development. At present, schizophrenia clinical heteroge-

neity as well as the difficulties in relating cognitive, emo-

tional and behavioral functions to brain substrates hinders

the identification of a disease-specific anatomical, physio-

logical, molecular or genetic abnormality. Mitochondria

play a pivotal role in many essential processes, such as

energy production, intracellular calcium buffering, trans-

mission of neurotransmitters, apoptosis and ROS produc-

tion, all either leading to cell death or playing a role in

synaptic plasticity. These processes have been well estab-

lished as underlying altered neuronal activity and thereby

abnormal neuronal circuitry and plasticity, ultimately

affecting behavioral outcomes. The present article reviews

evidence supporting a dysfunction of mitochondria in

schizophrenia, including mitochondrial hypoplasia,

impairments in the oxidative phosphorylation system

(OXPHOS) as well as altered mitochondrial-related gene

expression. Abnormalities in mitochondrial complex I,

which plays a major role in controlling OXPHOS activity,

are discussed. Among them are schizophrenia specific as

well as disease-state-specific alterations in complex I

activity in the peripheral tissue, which can be modulated by

DA. In addition, CNS and peripheral abnormalities in the

expression of three of complex I subunits, associated with

parallel alterations in their transcription factor, specificity

protein 1 (Sp1) are reviewed. Finally, this review discusses

the question of disease specificity of mitochondrial

pathologies and suggests that mitochondria dysfunction

could cause or arise from anomalities in processes involved

in brain connectivity.

Keywords Schizophrenia � Mitochondria � Complex I �
Dopamine � Specificity protein 1 (Sp1)

Introduction

Schizophrenia is a debilitating, chronic neurocognitive

disorder affecting mostly young adults with life prevalence

of about 1% worldwide. The disorder is characterized by

various abnormal cognitive, affective and motor behavioral

features. Its main symptoms involve multiple psychologi-

cal processes, such as perception (hallucinations), ideation,

reality testing (delusions), thought processes (loose asso-

ciations), feeling (flatness, inappropriate affect), behavior

(catatonia, disorganization), attention, concentration,

motivation (avolition, impaired intention and planning) and

judgment. These psychological and behavioral character-

istics are associated with a variety of impairments in

occupational and social functioning. No single symptom is

pathognomonic of schizophrenia; consequently, the disor-

der is noted for great heterogeneity across individuals and

for its variability within individuals over time (Dingman

and McGlashan 1986; McGlashan 1988; McGlashan and

Fenton 1992). Despite the tremendous advances in science

and medicine, schizophrenia clinical heterogeneity as well

as difficulties relating brain’s emergent properties to its

physiological substrates hinders the identification of
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disease-specific anatomical, physiological, molecular or

genetic abnormalities.

To date, the prevailing hypothesis for the etiology of

schizophrenia is that variations in multiple risk genes, each

contributing a subtle effect, interact with each other and

with environmental stimuli to impact both early and late

brain development. This hypothesis integrates data from

postmortem, imaging, epidemiological, physiological and

biological studies. Among them are associations between

schizophrenia and obstetric complications (Cannon et al.

2002), individual experience of internal or external

stressors (Phillips et al. 2007; van Winkel et al. 2008;

Zubin and Spring 1977), brain morphological and histo-

logical abnormalities (Harrison 1999; Jakob and Beckmann

1989; Wright et al. 2000) and altered expression of genes

involved in differentiation, migration, myelination, syna-

ptogenesis and cellular energy metabolism (Harrison and

Weinberger 2005; Karry et al. 2004; Muir et al. 2008;

Prabakaran et al. 2004; Stefansson et al. 2003). Abnormal

gene–environmental interaction during development and

later in life can be explained by pathobiological mecha-

nisms, which come ‘‘on top of the genetic basis’’ referred to

as epigenetic mechanisms (Feinberg 2007). Genes whose

activity may be necessary for normal brain function may be

silenced by epigenetic changes and vice versa, and this

could impact individual’s risk for adverse health outcomes

later in life (Tsankova et al. 2007); such a complex path-

ological interactions can eventually contribute to one of the

main features of schizophrenia, the abnormal activity of

brain circuits observed by imaging studies. A conceivable

mechanism affecting brain circuitry is abnormal intrinsic-

or extrinsic-dependent modulation of neuronal activity.

Neuronal activity or neuronal firing rate impinges on the

transmission of neurotransmitter, the neuronal net com-

munication and on the consequent intracellular processes

and vise versa. It is the core process by which the nervous

system adapts to changes in the environment. Neuronal

firing governs the interaction between synaptic strength

and efficacy, gene expression and protein activity, which

leads to changes in neurogenesis, cell migration as well as

a slow spatiotemporal dynamic morphogenesis and neu-

ronal plasticity. These processes are associated with

learning and memory, as well as with adaptive changes in

emotional, cognitive and sensorimotor function, all

abnormal in schizophrenia. Mitochondria are the energy

source for driving the biochemical processes involved in

various cell functions and take part in intracellular Ca2?

homeostasis and in the maintenance of the intracellular

ions concentration against the concentration gradient, both

fundamental for neuronal activity.

The present article presents evidence for the role of

mitochondrial dysfunction in the pathophysiology of

schizophrenia. The accumulating data for abnormal brain

activity and energy metabolism, dysfunction of mitochon-

dria and specifically the aberrations in the first complex

(complex I) of its oxidative phosphorylation system

(OXPHOS) in schizophrenia will be reviewed. In addition,

evidence for dopamine interaction with mitochondrial

respiration via its interaction with complex I as well as for

the role of the ubiquitous transcription factor Sp1 in the

regulating the expression of complex I subunits, will be

presented. Finally, as dysregulation of mitochondrial

function has been reported in various neuropsychiatric

disorders, the question as to whether mitochondrial

impairment displays disease-specific characteristics or is

rather a general non-distinguishing secondary pathology

will be discussed.

Brain energy metabolism in schizophrenia

Alteration in brain energy metabolism strongly suggests

the involvement of mitochondria, the key players in cel-

lular energy production. Indeed, brain imaging studies

largely reveal decreased metabolism in the prefrontal cor-

tex, a major anatomical substrate of schizophrenia (Buchs-

baum 1990; Buchsbaum and Hazlett 1998; Carter et al.

1998; Hazlett et al. 2000; Manoach et al. 1999; Shenton

et al. 2001). Additional brain regions such as temporal and

parietal cortices, thalamus, basal ganglia and cerebellum

have also demonstrated alterations in brain metabolic rates,

although less consistent (Gur et al. 1987; Hazlett et al.

1999; Tamminga et al. 1992). More direct evidence for

mitochondrial dysfunction in schizophrenia is provided by

imaging studies using phosphorous or hydrogen magnetic

resonance spectroscopy (31P-MRS, and 1H-MRS, respec-

tively). Thus, reduced mitochondrial originated high-

energy phosphates, such as ATP and phosphocreatine

(PCr), was detected in the frontal lobe, the caudate nucleus

and the left temporal lobe of schizophrenic patients

(Fujimoto et al. 1992; Jayakumar et al. 2006; Jensen et al.

2006; Volz et al. 2000). Regional deficits have been

described in additional cellular factors whose metabolism

is strongly suggested to be linked to mitochondrial ATP

production including, phospholipids, phosphomonoesters

(PMEs), inorganic phosphate (Pi) (Fukuzako et al. 1999;

Reddy and Keshavan 2003) and N-acetylaspartate (NAA)

(Deicken et al. 2000; Harrison and Weinberger 2005;

Madhavarao et al. 2003), in neuroleptic-naive, first episode

and chronic schizophrenia subjects.

Alterations in brain metabolism in schizophrenia vary

with disease state and the predominance of either negative

or positive symptoms both during rest or cognitive task

performance (Ben-Shachar et al. 2007; Lahti et al. 2001;

Potkin et al. 2002; Wolkin et al. 1985). Antipsychotic

medication has been shown to partially contribute to
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altered brain metabolism particularly in the basal ganglia,

but less so in other brain regions. Thus, it has been shown

that drug-naive schizophrenic patients, both at first episode

and when chronically ill, demonstrated reduced blood flow

in the prefrontal, associative frontal, parietal and temporal

gyri and increased perfusion in the thalamus, cingulate

cortex and cerebellum, suggesting that these abnormalities

were neither progressive nor a consequence of medication

(Andreasen et al. 1997; Gur et al. 1987; Kim et al. 2000;

Kishimoto et al. 1998).

Mitochondria and neuronal activity

Mitochondria role in neuronal activity and thereby long-

term structural and functional changes, which modulate

synaptic connectivity associated with adaptive changes

in emotional and cognitive function, are inferred from

histochemical evidence demonstrating mitochondria

recruitment to location of high-active zones during neu-

rotransmitter release in response to an increase in syn-

aptic activity (Brodin et al. 1999). In addition, it has been

shown that mitochondria play a key role in the estab-

lishment of neuronal polarity by concentrating at the site

of axogenesis (Mattson 1999). This may be relevant to

neurite sprouting, elongation and growth cone motility of

axons as well as dendrites. More recent studies have

shown that the loss of mitochondria from axon terminal

in Drosophila results in defective synaptic transmission

(Guo et al. 2005; Stowers et al. 2002; Verstreken et al.

2005). Moreover, a role for axonal mitochondria (pre-

synaptic) in short-term facilitation (Kang et al. 2008) as

well as for dendritic mitochondria (post-synaptic) in

morphogenesis and plasticity of spines and synapses (Li

et al. 2004) was demonstrated in mice hippocampal slice

cultures. Substantial evidence for mitochondrial role in

neuronal activity and plasticity is depicted in studies of

the visual system in cat and rats, which serves as a

paradigm for neuronal plasticity, in as much as anatom-

ical and physiological development can be altered by

visual experience (Sherman and Spear 1982). Thus, in

rats exposed to complex environments, synaptogenesis

and an increase in the volume of the visual cortex are

associated with infiltration of new mitochondria and

capillaries (Black et al. 1991). In addition, it has been

reported that in the visual system several genes encoding

mitochondrial OXPHOS complexes (several subunits of

cytochrome oxidase, NADH dehydrogenase, ATPase and

of cytochrome b) are regulated by neuronal activity, and

their expression is correlated with the extent of plasticity

in the visual cortex (Hevner and Wong-Riley 1991;

Kaminska et al. 1997; Yang et al. 2001). Further support

for the role of mitochondria in mediating synaptic

activity is ensued from the findings that the inhibition

of succinate dehydrogenase, the second complex of the

OXPHOS, induces a long-term potentiation of the

NMDA-mediated synaptic excitation, which depends on

the activation of dopamine D2 receptors (Calabresi et al.

2001). Finally, mitochondrial permeability transition

pores and their constituents the porin proteins which have

a significant role in diverse cellular processes, including

regulation of mitochondrial ATP and calcium efflux, have

been found to have a dynamic functional role in

amending neuronal activity, learning and synaptic

plasticity (Albensi et al. 2000; Weeber et al. 2002). In

all, these studies render a growing body of evidence for

the important contribution of mitochondria to neuronal

activity and thereby both to short-term modulation and to

long-term phenomena in brain.

Mitochondria in schizophrenia

Mitochondrial morphometry

Mitochondrial morphological abnormalities in schizo-

phrenia have been demonstrated by microscopic analysis

of autopsy specimens. Electron microscopic analyses of

postmortem specimens from the anterior limbic cortex

and the caudate putamen nucleus showed mitochondrial

deformation and reduced density throughout the neuropil

in schizophrenic patients (Kung and Roberts 1999; Ura-

nova and Aganova 1989). Mitochondrial size in both

dendrites and axon terminals was smaller than normal in

drug-off patients and antipsychotic treatment appeared to

partially normalize mitochondrial density and volume. A

hypoplasia of mitochondria was observed in the substantia

nigra pars compacta, but not in the reticulata, in the

presynaptic terminals of tyrosine hydroxylase immunore-

active neurons. This was associated with deformed ter-

minals and altered connectivity (Kolomeet and Uranova

1999). In oligodendrocytes, the most affected glial cells in

schizophrenia and bipolar disorder, a significant reduction

of approximately 33% in both number and volume of

their mitochondria was observed in the caudate nucleus

and the prefrontal cortex in patients with schizophrenia

(Uranova et al. 2001). In astrocytes, a progressive dis-

turbance due to deficits in mitochondria was recently

suggested (Kolomeets and Uranova 2009). Despite the

small number of patients and the use of postmortem tis-

sue, which may suffer from inherent artifacts due to the

process of tissue collection, these structural findings hold

potential importance for the involvement of mitochondria

in schizophrenia, and are strengthened by the convergence

of additional lines of evidence discussed throughout this

review article.
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Mitochondrial oxidative phosphorylation system

Mitochondria are intracellular organelles that are com-

posed of four functionally specific compartments including

the relatively non-selective outer membrane, the inter-

membrane space, the highly selective inner membrane and

its cristae and the matrix. Mitochondria are the ‘‘power-

house’’ of the cell as they provide ATP, used as a source of

chemical energy. In addition to supplying cellular energy,

mitochondria are involved in many other cellular pro-

cesses, such as signaling, cellular differentiation, cell

death, as well as the control of the cell cycle and cell

growth. In excitatory cells, such as neurons and muscles

they are essential for cell activity, firing and contraction,

respectively. In addition, the mitochondria have their own

DNA (mtDNA), contributing to the mitochondrial prote-

ome, mostly encoded by the nuclear DNA (nDNA). Cel-

lular energy is primarily generated by mitochondrial

OXPHOS, a process requiring a coordinated action of four

respiratory enzyme complexes arranged in a specific ori-

entation in the inner mitochondrial membrane, termed also

the mitochondrial respiratory chain (Fig. 1). Electrons

generated from reduced electron carriers NADH and

FADH2, produced from oxidation of nutrients, such as

glucose, are ultimately transferred through the respiratory

chain to molecular oxygen. This process is coupled to

proton translocation across the inner membrane forming an

electrochemical gradient, which stores energy that is then

used for ATP synthesis by the fifth complex, ATP synthase.

Each complex of the OXPHOS system consists of multiple

components or subunits. Apart from complex II subunits,

which are exclusively encoded by the nuclear genome, the

subunits of the other four complexes are encoded either by

the nDNA, approximately 70 genes, which are randomly

distributed over the chromosomes with no obvious clus-

tering, or by the mtDNA which encodes 13 genes.

Several groups have studied the enzymatic activity of

different complexes of the OXPHOS in schizophrenia

postmortem brain specimens. However, functional mea-

surements in postmortem brain specimens have to be taken

with reservations, as enzymatic activity is particularly

sensitive to postmortem delay (Mizino et al. 1990; Prince

et al. 1998), and its detection is less sensitive in whole

tissue than in isolated mitochondria. Nevertheless,

depending on the brain area studied several groups reported

an increase or a decrease as well as no change in cyto-

chrome c oxidase (complex IV) activity (Cavelier et al.

1995; Maurer et al. 2001; Prince et al. 1999), the enzyme

which was suggested as an endogenous metabolic marker

for neuronal activity (Wong-Riley 1989). Interestingly,

another study demonstrated a strong negative correlation

between complex IV activity and emotional and intellec-

tual impairments in schizophrenia, but not motor

impairment, solely in the putamen (Prince et al. 2000).

There are controversial findings regarding the activity of

complex I activity in the brains of schizophrenics. A sig-

nificant reduction in NADH-cytochrome c reductase

(complexes I–III) activity was observed in one study in the

frontal cortex and in two others in the temporal cortex and

in the basal ganglia (Maurer et al. 2001; Prince et al. 1999;

Whatley et al. 1996).

Genetic studies also implicate mitochondria abnormali-

ties in schizophrenia. For example, missense variants in

mitochondrial DNA (mtDNA), one of which encodes for

the ND4 subunit of mitochondrial complex I, are present in

schizophrenic patients while absent in healthy controls

(Martorell et al. 2006) and an increase in the prevalence of

the mtDNA HV lineage cluster in schizophrenia was

observed (Amar et al. 2007). Increased number of synon-

ymous base substitution in mtDNA in the prefrontal cortex

of schizophrenic patients was recently reported (Rollins

et al. 2009). In addition, association studies revealed a

significant association of a haplotype, consisting of two

SNPs in NDUFV2, a nuclear encoded subunit of complex I,

with schizophrenia (Kato et al. 2001; Washizuka et al.

2006). Taken together, these genetic studies suggest com-

plex I as a risk factor in this disorder.

Accumulating molecular data point to abnormalities in

mitochondrial mRNA and protein expression, in schizo-

phrenia (Altar et al. 2005; Ben-Shachar 2002; Ben-Shachar

et al. 1999; Dror et al. 2002; Karry et al. 2004; Maurer

et al. 2001; Middleton et al. 2002; Prabakaran et al. 2004).

Studies using transcriptomic, proteomic and metabolomic

approaches on human brain tissue, mostly the prefrontal

cortex and one study in the hippocampus have demon-

strated a specific robust change in gene and protein

expression associated with mitochondrial function in

schizophrenia (Middleton et al. 2002; Mulcrone et al. 1995;

Prabakaran et al. 2004; Shao et al. 2008). The evidence for

the alterations in nuclear-encoded mitochondrial gene

expression obtained by microarrays is not unequivocal as

some studies demonstrated that sample pH as well as sta-

tistical complications including multiple comparisons may

have a strong effect on the results (Shao et al. 2008; Vawter

et al. 2006).

Complex I (NADH: ubiquinone oxidoreductase)

in schizophrenia

Among the enzyme complexes that compose the OXPHOS,

complex I has the most complex structure (45 subunits) and

the least understood mechanism of electron transfer and

proton translocation (Hatefi 1985). Complex I plays a

major role in controlling oxidative phosphorylation in

mitochondria and its abnormal activity can lead to
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mitochondrial dysfunction (Davey et al. 1998). It is,

therefore, not surprising that many human mitochondrial

diseases result from complex I deficiencies, including

Leber’s hereditary optic neuropathy, severe and fetal lactic

acidosis and various neuromuscular myopathies.

Peripheral abnormalities in mitochondrial

complex I activity

It was previously suggested that complex I activity is

reduced in platelets and lymphocytes of a small sample of

schizophrenic patients chronically treated with antipsy-

chotics (Burkhardt et al. 1993; Whatley et al. 1998). We have

further substantiated the implication of complex I in

schizophrenia in several more recent studies. In 113

schizophrenic patients, we showed disease-state-dependent

alterations in complex I activity, with no change in complex

IV activity. Thus, platelet complex I activity was signifi-

cantly reduced (53% of controls) in patients with residual

schizophrenia, while significantly increased (190% of con-

trols) both in patients in an acute psychotic episode and those

in a chronic active state, as compared to 37 healthy control

subjects (Dror et al. 2002). Moreover, in 27 patients with

affective disorders, either major depression or bipolar dis-

order (the depressed type), complex I activity did not differ

from that of the control group (Ben-Shachar et al. 1999),

suggesting that the alterations in complex I activity may also

be disease specific. Further support for the relationship

between the clinical state and complex I activity in schizo-

phrenia can be inferred from the highly significant positive

correlation (r = 0.7, p \ 0.0001) of complex I activity, with

the severity of patients’ positive symptom scores, as well as a

tendency towards a negative correlation with the negative

symptom scores, as assessed by the positive and negative

symptom scale (PANSS) (Dror et al. 2002). Interestingly, in

the acute active state, increased complex I activity was

observed in both 25 medicated and 25 unmedicated patients

(Ben-Shachar et al. 1999) suggesting that at least at this state

of the disease medication did not affect complex I activity.

Interpretation of the observed effects of medication on

complex I are far from straightforward given findings that

complex I activity can be inhibited by antipsychotic medi-

cations in vitro (Balijepalli et al. 1999; Burkhardt et al.

1993). The latter may explain the reduction in complex I

activity in the residual state, while the increase in complex I

observed in patients with positive symptomology can more

likely be an inherent feature of schizophrenia or psychosis.

The increase in complex I activity in the active group of

patients could imply the presence of a temporary (in acute

state) or a long-lasting state (in chronic active patients) of

partial ‘non-responsiveness’ to antipsychotic treatment.

Alongside antipsychotic drugs, other endogenous factors,

that are altered in association with disease state or treatment,

may exist that can modulate complex I activity. One such

candidate is dopamine whose neuronal release was reported

to decrease by partial inhibition of complex I activity (Bao

et al. 2005).

Dopamine and complex I activity

Alterations in the dopaminergic system are strongly

implicated in schizophrenia (Carlsson 1988). This is pri-

marily based on the high correlation between the thera-

peutic efficacy of antipsychotic drugs and their potency as

Fig. 1 Schematic representation of the mitochondrial respiratory

chain. Electrons, generated from reduced electron carriers NADH and

FADH2, produced from oxidation of nutrients such as glucose, are

ultimately transferred through the respiratory chain to molecular

oxygen. This process is coupled to proton translocation across the

inner membrane forming an electrochemical gradient, which stores

energy that is then used for ATP synthesis by the fifth complex, ATP

synthase. Complex I NADH-ubiquinone oxidoreductase, CoQ coen-

zyme Q, complex II succinate ubiquinone oxidoreductase, complex III
ubiquinonferricytochrome c oxidoreductase, Cyt c cytochrome c,

complex IV cytochrome c oxidase, complex V ATP synthase or

ATPase
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dopamine receptors blockers (Seeman 1987), and the

ability of dopamine agonists to induce acute psychotic

symptoms, with marked resemblance to schizophrenia.

Based on PET studies examining blood flow to the brain

during a cognitive task, it has been suggested that acute

psychotic episodes (positive symptoms) are associated with

a hyperdopaminergic state in the mesolimbic regions, while

negative symptoms are associated with a hypodopaminer-

gic state in the mesocortical projections to the frontal

cortex (Davis et al. 1991). A more direct approach such as

PET studies of dopamine synthesis, receptor density and

amphetamine challenged release in schizophrenic brains,

which were conducted in either first episode, drug-free

patients or patients in an acute exacerbation, implicated a

dysfunction in dopamine metabolism, storage, release or

uptake mechanisms in the mesolimbic systems in schizo-

phrenia (Breier et al. 1997; Laruelle et al. 1999). Further

support for the modulation of dopamine activity in this

disorder can be inferred from the findings implicating

catechol-o-methyl transferase (COMT), the postsynaptic

enzyme that methylates released dopamine to its final

metabolite the homovanillic acid, as a risk factor in

schizophrenia (Shifman et al. 2002; Weinberger et al.

2001).

A wide range of experimental data suggests that DA

can inhibit the mitochondrial respiratory system. Thus,

elevated rat brain DA concentrations following chronic

administration of L-DOPA or D-methamphetamine resul-

ted in a reduction in the activity of complex I and ATP

levels in the striatum (Chan et al. 1994; Przedborski et al.

1993). In isolated intact rat, brain mitochondria DA

inhibited ATP coupled state III respiration (Berman and

Hatings 1999) and suppressed pyruvate- and succinate-

dependent electron transport (Cohen et al. 1997). We have

shown that in a neuronal cell line DA induced a reduction

in cellular ATP levels without affecting cell viability

(Ben-Shachar et al. 2004), and in disrupted mitochondria,

from both rat brain and human platelets, DA reversibly

inhibited complex I activity but not that of complexes II,

IV or V of the respiratory system (Ben-Shachar et al.

1995; Khan et al. 2005). This inhibition had functional

consequences as mitochondrial membrane potential

(DWm) and complex I driven respiration measured in

intact neuronal cell line was impaired by intracellular

increase in DA concentrations (Brenner-Lavie et al. 2008,

2009). One may argue that DA has to cross the highly

selective inner membrane of the mitochondria to be able

to inhibit complex I. Indeed, we have recently shown that

DA is taken up by synaptosomal-free, intact, coupled

and respiring mitochondria, in a saturable, ATP and

Na?-dependent manner.

The relevance of DA–complex I interaction to schizo-

phrenia is inferred by the findings that DA was twice as

much potent in inhibiting complex I activity in mitochon-

dria isolated from schizophrenic patients than in those of

healthy subjects (Brenner-Lavie et al. 2008). Interestingly,

DA inhibition of complex I activity in patients with

affective disorders, both with major depression and bipolar

disorder (the depressed type) was similar to the control.

Furthermore, in intact EBV-transformed lymphocytes

derived from schizophrenic patients, DA-induced inhibi-

tion of mitochondrial respiration was also two times more

potent than in those derived from healthy controls

(unpublished data).

Complex I subunit’s expression in schizophrenia

Complex I abnormal activity in schizophrenia can stem

from impaired expression of its subunits. In our studies,

we have focused on three nuclear encoded subunits, the

51-kDa- (NDUFV1) and the 24-kDa (NDUFV2) subunits,

both iron–sulfur flavoproteins having catalytic properties,

including the site for transhydrogenation from NADH to

NAD?, and the 75 kDa (NDUFS1), the largest iron–

sulfur transmembranous structural protein (Hatefi 1985).

All three subunits form one functional subunit of the

complex (Belogrudov and Hatefi 1996; Clason et al.

2007; Fecke et al. 1994; Ohnishi et al. 1985; Ragan et al.

1982; Zickermann et al. 2007). These three subunits were

chosen out of the 45 subunits of complex I, as they

constitute the suggested interaction site of complex I and

DA (Ben-Shachar et al. 2004). In lymphocytes of

schizophrenic patients, mRNA and protein levels of

NDUFV1 and NDUFV2 subunits were significantly

increased, with no change in NDUFS1 subunit, regardless

of the state of the disease. Interestingly, in juvenile

neuroleptic-naive schizophrenic patients an increase was

observed in lymphocytes mRNA levels of the NDUFS1

subunit (Mehler-Wex et al. 2006). In brain, alterations in

complex I subunits’ expression showed regional-specific

alterations. Thus, a significant reduction in mRNA and

protein levels of NDUFV1 and NDUFV2 subunits, but

not of NDUFS1, was observed in the prefrontal cortex,

in line with the hypofrontality observed in schizophrenia. In

contrast, both subunits exhibited a significant increase

in the parieto-occipital cortex shown to be involved in

cognitive process of mental visual imagery (Barnes et al.

2000), which may be associated with psychotic halluci-

nations and paranoid delusions characteristic of schizo-

phrenia (Aleman et al. 2002; Baethge et al. 2005; Frith

and Dolan 1997). Abnormalities in the expression of

complex I subunits were also observed in an additional

anatomical substrate of schizophrenia the striatum, yet no

change was observed in the cerebellum, which as will be

discussed later, showed significant alterations in patients

with affective disorders. The abnormalities in complex I
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subunits’ expression were associated with the distortion

of the high and significant correlation between the three

subunits of complex I in normal healthy subjects (Ben-

Shachar and Karry 2007). The stoichiometry of

NDUFV1, NDUFV2 and NDUFS1 is 1 mol of each

subunit for 1 mol of the complex (Belogrudov and Hatefi

1994) suggesting that the deviation from this ratio

observed in schizophrenia can lead to abnormal complex

I activity. DA was shown to affect complex I activity, but

preliminary studies in neuronal cell line do not support

the involvement of DA in the altered expression of

complex I subunits (Brenner-Lavie et al. 2009). One

possible mechanism for the impairments in complex I

subunits’ transcripts is an abnormal regulation by a

transcription factor.

Sp1 and complex I subunit’s expression

Specificity protein 1 (Sp1) is the prototype of a family of

zinc finger (Cys2/Hys2) DNA-binding transcription factors

that binds to and acts through G-rich elements such as

GC-box. It is generally accepted that this extremely ver-

satile protein is involved in the expression of many dif-

ferent genes and can be regulated at the level of

transcription and post-translational modifications such as

phosphorylation and/or glycosylation (Suske 1999). Sp1 is

involved in the regulation of many genes that have been

implicated in schizophrenia such as reelin, GAD67,

MAOA/B, NMDA-receptor subunits NR1 and NR2A/B,

GABA A and DA receptors D1A and D2/3 (Chen et al.

2002; Liu et al. 2003; Ma et al. 2004; Okamoto et al.

2002; Shih et al. 1993; Szabo et al. 1996). In addition,

Sp1 is involved in the regulation and coordination of

nuclear-encoded mitochondrial genes including some

which encode for OXPHOS proteins (Goffart and Wiesner

2003; Zaid et al. 1999). In line with the latter is our

previous study, which has shown that Sp1 regulates the

transcription of complex I subunits (Ben-Shachar and

Karry 2007). In schizophrenia, Sp1 was abnormally

expressed in both brain and periphery. Its mRNA alter-

ation pattern paralleled that of NDUFV1 and NDUFV2,

decreasing in the prefrontal cortex and the striatum, while

increasing in the parieto-occipital cortex and in lympho-

cytes of schizophrenic patients as compared to controls.

Moreover, a high and significant correlation between Sp1

and complex I subunits existed in normal subjects, but not

in patients, further substantiating the role of Sp1 in the

abnormal expression of complex I subunits. In addition,

being involved in the transcription of many genes either

as the main activator/repressor or in combination with

additional transcription factors, and subjected to envi-

ronmental stimuli, Sp1 can contribute to the polygenic

and clinically heterogeneous nature of schizophrenia.

Disease specificity of mitochondrial dysfunction

The studies described hitherto presented mitochondrial

abnormalities in schizophrenia.

However, numerous studies have implicated mitochon-

drial dysfunction, in general, and complex I, in particular, in

neurodegenerative and in additional psychiatric disorders.

Consequently, raising the question as to whether mito-

chondrial impairment displays disease-specific character-

istics or is rather a general non-distinguishing pathology of

these disorders. Mitochondrial impairment in neurodegen-

erative disorders has been reviewed by numerous studies

(Berman and Hastings 1999; Chaturvedi and Beal 2008;

Van Laar et al. 2008) and is beyond the scope of this review.

However, in connection with this review, it is noteworthy

that DA–mitochondrial interaction may provide a partial

mechanistic explanation for the difference in mitochondrial

pathology between DA-associated neurodegenerative and

psychiatric disorders. Two mechanisms have been sug-

gested for DA interference with mitochondrial respiration.

The first, which involves DA enzymatic catabolism or

autooxidation to highly reactive oxygen species (ROS) and

has been suggested to underlie cell death, is more likely

associated with neurodegenerative DA disorders such as

Parkinson’s disease (Berman and Hastings 1999; Izumi

et al. 2005; LaVoie and Hastings 1999; Van Laar et al.

2008). The second mechanism involves a direct reversible

inhibition of complex I activity, which can disrupt mito-

chondrial activity leading to abnormal neuronal transmis-

sion rather than cell death, can better explain the pathology

of non-degenerative DA disorders such as schizophrenia

(Ben-Shachar et al. 2004) (Fig. 2).

Mitochondrial dysfunction in additional mental disor-

ders has been investigated using a wide array of experi-

mental techniques ranging from imaging studies through

ultrastructural methods to genetic and molecular means

(Ben-Shachar and Karry 2008; Shao et al. 2008). Thus, in

bipolar patients, mostly in medicated patients, 31P- and
1H-MRS imaging studies identified changes in different

cellular factors tightly connected with mitochondrial

function, including PCr, PMEs, intracellular pH, lactate

and NAA in the prefrontal cortex, temporal cortex and in

the hippocampus (Bertolino et al. 2003; Kato 2005, 2007;

Stork and Renshaw 2005). In major depression, the current

literature on MRS studies is sparse with large diversity

between studies, some reporting no change, while others a

decrease or even an increase in mitochondrial linked cel-

lular factors in patients (Coupland et al. 2005; Kumar et al.

2002; Yildiz-Yesiloglu and Ankerst 2006). For example, a

decrease in ATP and an increase in PME and in pH in the

frontal cortex were reported (Kato et al. 1992; Volz et al.

2000). Mitochondrial gene expression studies were also

performed in patients with affective disorder with some,
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yet not all, reporting alterations in mitochondrial-related

genes and proteins. In bipolar disorder, a reduction in the

expression level of mitochondrial-related genes in hippo-

campal and prefrontal postmortem specimens was observed

(Iwamoto et al. 2005; Vawter et al. 2006), with one paper

demonstrating reductions in genes of the OXPHOS in the

prefrontal cortex (Konradi et al. 2004), while another

reporting an increase in complex I subunits NDUFV1 and

Fig. 2 Schematic presentation of the hypothesized interplay between

mitochondrial complex I, DA and Sp1 in schizophrenia. a Under

normal conditions, there exists a balanced bidirectional communica-

tion between the neuron and its mitochondria, which can affect and be

affected by mitochondrial respiration. DA and Sp1 are examples of

cellular factors that can modulate complex I activity and its subunit’s

transcription, respectively. Complex I plays a major role in control-

ling oxidative phosphorylation and, therefore, any change in its

activity may impinge on mitochondrial function and thereby on

neuronal activity, which under normal conditions is re-balanced.

b Under pathological conditions associated with increased DA

transmission two different mechanisms can be exacerbated. One, in

which DA enzymatic catabolism or autooxidation results in increased

intra- and extracellular highly reactive oxygen species. This mech-

anism has been suggested to underlie cell death and is more likely

associated with neurodegenerative DA disorders, such as Parkinson’s

disease. The other, involves increased DA-induced inhibition of

complex I activity and Sp1-dependent abnormal expression of

complex I subunits. This can result in mitochondrial dysfunction

leading to abnormal neuronal transmission rather than cell death.

Such a mechanism can underlie malfunction of cognitive emotional

and motor behaviors and better explain the pathology of non-

degenerative DA disorders such as schizophrenia. The extent of

complex I activity, DA concentration, ROS formation and Sp1

activity are represented by the intensity of their symbols and thickness
of arrows
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NDUFV2 in the parieto-occipital cortex (Karry et al.

2004). In major depression, although most studies did not

show cortical modifications in mitochondrial-related genes,

some reports suggest alterations in the expression of

nuclear as well as in mitochondrial DNA-encoded genes in

the prefrontal cortex (Karry et al. 2004; Vawter et al.

2006). In addition, it was demonstrated that muscle mito-

chondria in depressive patients produced less ATP and that

the activity of the OXPHOS complexes I ? III and II ? III

was impaired (Burnett et al. 2005). Finally, genetic studies,

as mentioned above have implicated single nucleotide

polymorphisms (SNPs) in complex I subunits ND3 and

NDUFV2 in bipolar disorder (Martorell et al. 2006;

McMahon et al. 2000).

These findings are in line with the hypothesis that

mitochondrial alterations are secondary to other patholo-

gies observed in these disorders. However, one should

consider the effect of medication, since most studies have

been conducted in medicated patients. As described above,

antipsychotic drugs affect brain energy metabolism, mito-

chondrial respiration as well as complex I activity. The

same is true for mood stabilizers and antidepressant drugs

(Daley et al. 2005; Kato 2007; Souza et al. 1994; Weinbach

et al. 1986). Thus, medication can blunt the differences in

the core pathology of the mitochondria, which could be

different between diseases. An additional explanation for

limited specificity of the findings may be the known

overlap of symptoms between the different disorders.

Moreover, despite these cofounders and the similarities in

the pathological processes in brain energy metabolism and

mitochondrial function, the abnormalities observed are not

identical in all three mental disorders. Our recent findings

concerning brain mitochondrial complex I (Karry et al.

2004) may constitute one possible demonstration of dis-

ease-specific impairments in three major mental disorders,

schizophrenia and bipolar disorder and major depression

(Ben-Shachar and Karry 2008). We have shown that

complex I subunits NDUFV1, NDUFV2 and NDUFS1

were altered in all three psychiatric disorders, albeit in a

disease-specific neuroanatomical pattern. In schizophrenia,

but not in affective disorders, a selective reduction in

mRNA and protein levels of complex I subunits was

observed in the prefrontal cortex and the striatum as

described above. However, in both affective disorder

reductions were observed specifically in the cerebellum

with the major depression group demonstrating more

consistent alterations. Bipolar disorder, displayed anatom-

ical overlaps also with schizophrenia, as an increase in the

expression of complex I subunits was observed in the pa-

rieto-occipital cortex of both disorders. This is in line with

the similarities in clinical symptoms of bipolar disorder and

the other two disorders. In lymphocytes, mitochondrial

respiration, complex I activity and its interaction with DA

showed schizophrenia-specific impairments with no change

between patients with bipolar disorder or major depression

and healthy subjects (Brenner-Lavie et al. 2008) (and

unpublished data). Taken together, these results suggest

that although the similarities in clinical symptoms and in

treatment, between these three mental disorders are

reflected in their pathophysiology, the pattern, or the extent

of the biological impairment can differentiate between

disorders. The prevailing concept is that brain circuitry

rather than individual brain region that impacts behavioral

outcomes, likewise the characteristics of a specific

pathology rather than its nature may contribute to different

symptom spectrum of these disorders.

Conclusions

The accumulating evidence reviewed by the present article

on mitochondrial dysfunction and its abnormal interaction

with DA and Sp1 in schizophrenia, substantiate a role for

mitochondria in the complex process underlying the

pathology of this disorder. Indeed, mitochondria have been

implicated in the pathophysiology of schizophrenia and of

several additional neuropsychiatric disorders. However, it

is noteworthy that mitochondria display disease-specific

abnormalities that may contribute to the evolution of the

various symptom clusters. Mitochondria are responsible for

many essential processes, such as energy production,

intracellular calcium buffering, transmission of neuro-

transmitters, apoptosis and ROS production, all leading

either to cell death or playing a role in synaptic plasticity.

Synaptic plasticity underlies learning and memory that

dictate adaptive or compensatory changes in emotional,

cognitive or sensorimotor integration in response to inter-

nal or external stimuli. Consequently, impairment in pro-

cesses regulating neuronal plasticity and remodeling of

synapses can lead to the symptomology characteristic of

schizophrenia.

The question as to the cause–effect relationship between

the above processes remains. On the one hand, mitochon-

drial activities can be regulated by the metabolic needs of

neurons, by neurotransmitters release, as well as by their

receptor-induced ionic efflux and signal transduction. Thus,

mitochondrial alterations in schizophrenia could be sec-

ondary to other pathologies observed in this disorder.

Concomitantly, mitochondrial regulated factors can induce

backwards effects on these same processes, leading to

alterations in gene expression protein synthesis and neu-

ronal activity. It is, therefore, difficult to posit mitochon-

drial role as an up/down stream process. Suffice it to say

presently that mitochondria play a pivotal role in the

pathophysiology of schizophrenia. Finally, the aforemen-

tioned two-way interactions can be acting synergistically to
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remodel synaptic connectivity in response to endogenous

and/or exogenous environmental inputs.
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