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Abstract Epidemiological studies suggest that nutritional

antioxidants may reduce the incidence of neurodegenerative

disorders and age-related cognitive decline. Specifically,

protection against oxidative stress and inflammation has

served as a rationale for promoting diets rich in vegetables

and fruits. The present study addresses secretory phospho-

lipase A2 (sPLA2) as a novel candidate effector of neuro-

protection conferred by anthocyanins and anthocyanidins.

Using a photometric assay, 15 compounds were screened for

their ability to inhibit PLA2. Of these, cyanidin, malvidin,

peonidin, petunidin, and delphinidin achieved Ki values

B18 lM, suggesting a modulatory role for berry polyphe-

nols in phospholipid metabolism.

Keywords Phospholipase A2 � Flavonoids �
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Introduction

Phospholipases A2 form a superfamily of esterases that

specifically cleave the acyl ester bond at the sn-2 position

of membrane phospholipids, generating free fatty acids and

lysophospholipids (Dennis 1994). These hydrolases are

involved in a complex network of signaling pathways,

linking receptor agonists, oxidants, and proinflammatory

cytokines to the release of arachidonic acid and to eicos-

anoid synthesis (Sun et al. 2004). Eisosanoids include

prostaglandins, thromboxanes, prostacyclins, and leukotri-

enes (Granstrom 1984), which act as inflammatory medi-

ators. Moreover, oxidative metabolism of arachidonic acid

and disruption of the mitochondrial respiratory chain,

mediated by phospholipase A2 (PLA2) cardiolipin hydro-

lysis, may contribute to the generation of reactive oxygen

species (ROS) and oxidative stress (Muralikrishna Adi-

bhatla and Hatcher 2006).

PLA2s may be grouped into at least three major classes,

Ca2?-dependent cytosolic PLA2 (cPLA2), Ca2?-indepen-

dent cytosolic PLA2 (iPLA2) and secretory PLA2 (sPLA2)

(Tibes and Friebe 1997), which are expressed in the central

nervous system (CNS) (Sun et al. 2004). Of these, sPLA2s

are major contributors to the excessive production of ara-

chidonic acid in inflammatory conditions (Yedgar et al.

2000) and comprise the 14 kDa ‘‘group V’’ PLA2 with high

affinity for phosphatidylcholine-rich plasma membranes

(Murakami and Kudo 2004). In mammalian brain, group V
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PLA2 is found primarily in cortical neurons (Nardicchi

et al. 2007) and in the hippocampus (Molloy et al. 1998).

Inhibitors of PLA2 hold promise in the treatment of brain

disorders that involve oxidative stress, changes in

phospholipid metabolism, accumulation of lipid peroxides,

and inflammation including ischemia, multiple sclerosis,

epilepsy, and Alzheimer’s disease (Farooqui et al. 2006).

Emerging neuroprotective properties of anthocyanins

from berry fruits (Kang et al. 2006; Joseph et al. 2007;

Shukitt-Hale et al. 2007; Tarozzi et al. 2007; Duffy et al.

2008), have renewed the interest in dietary compounds’

potential for PLA2 inhibition. Anthocyanins are polyphe-

nolic constituents of many fruits and vegetables that are

particularly abundant in bilberries, black raspberries, and

chokeberries, where they occur mostly as glycosides

(anthocyanins) at concentrations of 600, 700, and 1500 mg

per 100 g fresh weight, respectively (Nyman and Kumpu-

lainen 2001; Wu et al. 2006). On average, daily anthocy-

anin consumption may reach 180–215 mg in western

societies (Kuhnau 1976) but recent calculations from U.S.

American surveys have alerted to variability due to soci-

odemographic and lifestyle factors (Chun et al. 2007). In

animals, ingestion of anthocyanins has been associated

with reversal of age-related cognitive and motor deficits

(Joseph et al. 1999), with protection from ischemia-

induced damage (Sweeney et al. 2002; Wang et al. 2005),

and with decreased vulnerability to oxidative stress (Galli

et al. 2002).

As oxidative stress and inflammation are modulated by

PLA2 activity (Farooqui et al. 2006) we hypothesized a role

for PLA2 in conferring neuroprotection by berry constitu-

ents. The present study investigates the in vitro impact

of anthocyanidins, anthocyanins’ aglycons, on PLA2-V

activity using enzyme kinetic parameters.

Materials and methods

Chemicals

1,2-Bis(heptanoylthio)-phosphatidylcholine, 5,50-dithiobis

(2-nitrobenzoic acid) (DTNB), thioetheramide phosphati-

dylcholine and recombinant human PLA2-V were obtained

from Cayman Europe (Tallinn, Estonia). CaCl2, KCl, and HCl

(25%) were purchased from Merck (Darmstadt, Germany),

TritonX-100 from ICN Biomedicals (Aurora, Ohio), Tris

from Carl Roth (Karlsruhe, Germany), and protocatechuic

acid from Sigma-Aldrich (Steinheim, Germany).

Cyanidin, cyanidin-3,5-O-diglucoside, cyanidin-3-O-

galactoside, cyanidin-3-O-glucoside, cyanidin-3-O-rutino-

side, delphinidin, malvidin, malvidin-3,5-O-diglucoside,

malvidin-3-O-galactoside, malvidin-3-O-glucoside, peoni-

din, pelargonidin, pelargonidin-3,5-O-diglucoside, petunidin,

and catechin were purchased from Extrasynthese (Genay,

France).

Flavonoids were dissolved and diluted with DMSO.

From the ethanolic solution of thioetheramide phosphati-

dylcholine, the solvent was evaporated under a stream of

nitrogen and a DMSO solution was reconstituted and

vortexed vigorously before further dilution.

PLA2 assay

Enzyme kinetics analysis was performed using a photo-

metric assay based on the Ellman method (Ellman et al.

1961). Briefly, hydrolysis of the sn-2 ester bond of the

substrate 1,2-bis(heptanoylthio)-glycerophosphocholine by

PLA2-V is followed by the exposure of free thiols. These

trigger the conversion of DTNB to 2-nitro-5-thiobenzoic

acid which is detected photometrically at 405 nm. Exper-

iments were performed at least twice in duplicate.

Prior to performing inhibition studies, linearity of prod-

uct formation was investigated with regard to incubation

time and various substrate, DTNB, and enzyme concen-

trations to optimize assay conditions. Thereupon, the assay

was carried out in an aqueous buffer solution (pH 7.5)

containing KCl, CaCl2, Tris and Triton-X 100 at final assay

concentrations of 94, 9, 24 mM, and 280 lM, respectively.

Immediately before the assay was performed, substrate and

PLA2-V were resuspended in assay buffer and DTNB was

dissolved in an aqueous solution of Tris–HCl (pH 8) with

enzyme and DTNB yielding final concentrations of 100 ng/ml

and 87 lM, respectively. For enzyme kinetic analysis, at least

five substrate concentrations between 0.15 and 1.2 mM were

used per concentration step. For non-linear regression analysis

of catechin and protocatechuic acid effects, substrate was

applied at a concentration of 0.3 mM.

Assays were performed in 96-well microtiter plates at room

temperature, containing DTNB, substrate solution plus the

respective test substance. Thioetheramide phosphatidylcho-

line was used as a reference PLA2 inhibitor and DMSO served

as a negative control. This solvent was shown to be inactive at

the concentration used in the assay (1.7% v/v). The phos-

pholipase reaction was initiated by adding PLA2-V, or assay

buffer for control measurements. With respect to enzyme

kinetic experiments, inhibition was measured at test com-

pound concentrations ranging from 4 to 80 lM for anthocy-

anidins, and from 32 nM to 5 lM for thioetheramide

phosphatidylcholine. Absorption at 405 nm was recorded at

intervals of 30 s between 5 and 10 min thereafter with a Tecan

Spectra Mini Photometer (Crailsheim, Germany).

Data analysis

Following normalization, the absorption was plotted

against the incubation time. The resulting slope served as a
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measure of enzyme initial velocity (v) and was plotted

against the respective substrate concentration [S] to obtain

a substrate–velocity curve. Curves were then linearized by

creating a reciprocal plot, or Lineweaver–Burk plot (L–B

plot), which gave a family of intersecting lines for results

of inhibition and control experiments. From this plot, the

Michaelis–Menten constant (Km) and maximum velocity

(Vmax) were calculated, while the line intersection point

served to determine the mode of inhibition. The linear fit of

the negative control was extrapolated to the point of x-axis

intersection, with the negative abscissa intercept -1/Km

and the ordinate intercept equaling 1/Vmax.

Kinetic models considered for PLA2 inhibition by

anthocyanidins are outlined in supplementary Fig. 1. For

calculation of further kinetic constants, i.e., the dissociation

constant Ki, plus coefficients a and b for discrimination

between complete and partial inhibition, secondary dia-

grams were generated plotting slope L–B plot versus [I], 1/v

versus [I] (Dixon plot), [S]/v versus [I] (Cornish–Bowden

plot), 1/D y-axis intercept L–B plot versus 1/[I] and 1/D
slope L–B plot versus 1/[I]. For enzyme kinetics analysis,

we assumed rapid equilibrium of the enzyme–substrate

binding reaction, allowing us to use Km and Ks as equiva-

lents (Copeland 2000). Prism v. 4.00 (GraphPad Software,

CA, USA) and Microsoft Office Excel 2003 (Microsoft

Corporation, WA, USA) were used for non-linear regres-

sion and kinetic analysis. ISIS/Draw v. 2.1.4 (MDL Infor-

mation Systems, CA, USA) served to illustrate chemical

structures of anthocyanidins.

Results

Of the 15 compounds examined, anthocyanidins exhibited

the best inhibitory effects on PLA2 in a first round of

experiments (data not shown). Inhibitory properties of

anthocyanins, in contrast, were less pronounced and could

not be quantified as absorption interfered with the photo-

metric assay at millimolar concentrations. Catechin, the

flavan-3-ol analog of cyanidin, and protocatechuic acid, a

potential cyanidin metabolite, reached 50% inhibition at

concentrations of 2.5 and 3.3 mM, respectively. Further

investigations of enzyme kinetics were therefore restricted

to cyanidin, malvidin, peonidin, petunidin, delphinidin, and

pelargonidin (Fig. 1). For these agents, Km (0.3 mM) and

Vmax (14 lmol/min ml) were determined from L–B plots.

With regard to the mode of interaction with PLA2, only the

reference compound thioetheramide phosphatidylcholine

(Ki = 0.59 lM) exhibited complete competitive inhibition.

For malvidin (Ki = 6.4 lM), a hyperbolic slope L–B plot

versus [I] replot was obtained, indicating partial competi-

tive PLA2 inhibition at a = 1.8 and assuming b = 1. L–B

plots for pelargonidin (Ki = 325 lM) and delphinidin

(Ki = 18 lM) met criteria for mixed competitive and non-

competitive PLA2 inhibition. For both compounds, linearity

of the L–B plot slope versus [I] replot confirmed complete

inhibition at a values of 14.8 and 1.6 for delphinidin

and pelargonidin, respectively. Petunidin (Ki = 14 lM),

peonidin (Ki = 10 lM) and cyanidin (2.1 lM) were also

identified as mixed competitive and non-competitive

inhibitors from L–B plots. However, their L–B plot slope

versus [I] replots indicated a partial (hyperbolic) type of

inhibition. For these flavonoids, the ternary complex rate

coefficients a and b (supplementary Fig. 1) were calculated

from the linear plots of 1/D slope versus 1/[I] and 1/D
ordinate intercept versus 1/[I] (Segel 1993), yielding values

of 1.6, 1.6, and 2.9 (a) and 0.62, 0.79, and 0.7 (b) for

petunidin, peonidin, and cyanidin, respectively.

Discussion

The present study is the first to demonstrate sPLA2-V

inhibition by anthocyanidins in the low micromolar range

(Ki = 2.1–18 lM), with the exception of pelargonidin

(Ki = 325 lM). For cyanidin, inhibition approached that

of the reference sPLA2 inhibitor, thioetheramide phospha-

tidylcholine, with Ki values differing by a factor of 4.

Anthocyanidin–glycosides, in contrast, were weak PLA2-V

inhibitors for which Ki values could not be estimated as

anthocyanins’ absorption at higher concentrations inter-

fered with the photometric assay. Thus, with the exception

of pelargonidin, the aglycons of prevalent anthocyanins

from food sources are potent PLA2 inhibitors. Anthocy-

anidins can be formed from anthocyanins at the intestinal

level by epithelial cell and microflora b-glucosidases

(Tsuda et al. 1999; Keppler and Humpf 2005; Tarozzi et al.

2007), and have also been identified in brain (Talavera

et al. 2005; El Mohsen et al. 2006).

Other than anthocyanidins, a limited number of flavo-

noids have been tested for PLA2 inhibitory activity. Among

these, the flavonols quercetin, quercetagetin and kaempf-

erol-3-O-galactoside, plus the flavon scutellarein inhibited

PLA2-II with IC50 values ranging from 2 to 18 lM (Lin-

dahl and Tagesson 1993; Gil et al. 1994). For PLA2-V, the

flavonol derivate papyriflavonol A and the biflavonoids

amentoflavone and ochnaflavone showed 50% inhibition at

concentrations between 5 and 42 lM (Kwak et al. 2003;

Moon et al. 2007), but Ki values are lacking.

Four of the six tested anthocyanidins exerted only partial

inhibition of PLA2, as has also been observed for PLA2-I

with the flavonol quercetin and its 3-rutinoside rutin

(Lindahl and Tagesson 1993; Lindahl and Tagesson 1997).

With regard to structural features, similar Ki values for

most anthocyanidins investigated argue against a major

role of anthocyanidins’ B-ring substitution pattern in
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predicting sPLA2-V inhibitory potential. To judge by weak

inhibitory activity of catechin, the flavan-3-ol analogon of

cyanidin (IC50 = 2.5 mM), anthocyanidins’ unsaturated

C-ring or their electric charge may prove more informative.

With respect to the type of PLA2 inhibition, however,

B-ring substitution patterns deserve further study.

As natural anthocyanins are reportedly unstable in the

intestinal environment, the role of phenolic acid metabo-

lites generated by intestinal microflora and metabolic

degradation is of particular interest (Aura et al. 2005;

McGhie and Walton 2007; Vitaglione et al. 2007). How-

ever, follow-up experiments conducted with protocatechuic

acid, a potential cyanidin metabolite, elicited only very

weak sPLA2-V inhibition (IC50 = 3.2 mM). Bioavailabil-

ity of individual parent compounds therefore deserves

further study prior to assuming in vivo inhibitory effects.

For those agents that exhibit in vitro activities in the low

micromolar range, a number of possible CNS functional-

ities may be discussed. Recent studies implicate increased

PLA2 activity and PLA2-generated mediators in the acute

inflammatory response of the brain, e.g., to ischemia

(Farooqui et al. 2006), in kainic acid-induced neurotoxicity

(Thwin et al. 2003), and in chronic pathologies associated

with Alzheimer’s disease, Parkinson’s disease and multiple

sclerosis (Farooqui et al. 2006), schizophrenia (Tavares

et al. 2003; Barbosa et al. 2007), and bipolar affective

disorder (Ross et al. 2006). It is believed that PLA2 cellular

effects manifest at multiple levels: Phospholipid break-

down increases membrane permeability and, consequently,

Ca2? influx, lipolysis, and proteolysis (Farooqui et al.

1997). Lysophospholipids, in turn, may exert detergent-like

effects on neuronal membranes (Farooqui et al. 1999) and

act as precursors of the platelet-activating factor (PAF), a

strong mediator of the inflammatory process (Yedgar et al.

2000). Free fatty acids released from phospholipids can

alter mitochondrial polarization state (Pompeia et al. 2000),

cause mitochondrial dysfunction and may trigger an

uncontrolled arachidonic acid cascade, followed by syn-

thesis of inflammatory mediators, production of ROS

(Farooqui et al. 1997) and neurotoxic 4-hydroxynonenal

(Farooqui and Horrocks 2006). Released arachidonic acid,

finally, may alter membrane fluidity (Villacara et al. 1989),

inhibit glutamate uptake (Barbour et al. 1989), and mod-

ulate activities of protein kinases (Katsuki and Okuda

1995).

Neuroinflammation, oxidative stress, and altered

phospholipid metabolism are involved in the pathophysi-

ology of neurodegenerative diseases such as Alzheimer’s

disease, Parkinson’s disease, Huntington’s disease, and

multiple sclerosis, leading to neuronal loss via a complex

sequence of events that comprise an upregulation of com-

plement, cytokines, and acute phase reactants among other

mediators (Gilgun-Sherki et al. 2001; Minghetti 2005;

Farooqui et al. 2006; Farooqui et al. 2007). In this context,

there is growing support for strategies that prevent

inflammatory reactions during neurodegeneration. Mixed

results have been achieved by inhibiting selective pathways

of eicosanoid production, i.e. the lipoxygenase (LOX)

and cyclooxygenase (COX) pathways (Yedgar et al. 2000).

Control of arachidonic acid production currently holds
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Cyanidin (a) partial mixed 2.1 2.9 0.70

Malvidin (b) partial competitive 6.4 1.8

Peonidin (c) partial mixed 10 1.6 0.79 
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Fig. 1 Chemical structures of

anthocyanidins under study and

kinetic parameters of PLA2

inhibition. Thioetheramide

phosphatidylcholine (PC)

served as a reference inhibitor
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promise in the treatment of phospholipid pathologies. A

challenge in maintaining basal levels of arachidonic acid,

lysophospholipids, and PAF, however, is posed by the

multiplicity of PLA2s, the interplay among downstream

mediators and the recognition that many PLA2 function-

alities are also essential for normal cell function (Balsinde

et al. 1999).

Moreover, with regard to the etiology of most disorders,

it remains to be established whether phospholipid break-

down is present early in neurodegenerative disease or

whether it is only an epiphenomenon of cell death (Klein

2000). Pending an improved understanding of cause and

effect, the utility of candidate PLA2 inhibitors in counter-

acting phospholipid degradation is difficult to predict by

in vitro data.

Should PLA2 inhibition occur at the concentrations

achieved by dietary intake of anthocyanins, this may help

explain certain fruits’ role in lowering age-related neuro-

degenerative disease (Ramassamy 2006; Joseph et al.

2007). In support of this notion, ingestion of blueberry

constituents enhanced hippocampal plasticity (Casadesus

et al. 2004), memory (Goyarzu et al. 2004), and motor

performance (Joseph et al. 1999), plus induced changes in

CNS signal transduction and receptor sensitivity (Joseph

et al. 1999). Anthocyanins and their corresponding agly-

cons are found in animal brains within minutes after oral

uptake (Andres-Lacueva et al. 2005; El Mohsen et al.

2006). In animals fed with blueberries, anthocyanin con-

centrations in brain correlated with cognitive performance

(Andres-Lacueva et al. 2005). Although oxidative stress

(Cantuti-Castelvetri et al. 2003) and inflammatory reac-

tions (Perry et al. 2007) both contribute to age-related

pathologies, antioxidant activity alone does not explain the

potency of berry constituents in protecting against neuro-

degeneration (Shukitt-Hale et al. 2008). Anthocyanin

effects on phospholipid metabolism may help explain such

benefits as does inhibition of lipid peroxidation (Wang

et al. 1999) and modulation of inflammatory mediators

COX I and II (Seeram et al. 2001).

The present findings on anthocyanidins’ sPLA2-V

inhibitory functionality encourage further investigations

addressing other PLA2 isoforms. To date, dietary supple-

mentation with anthocyanins is considered safe and unli-

kely to interfere with drug metabolism (Dreiseitel et al.

2008).

Partial inhibition of PLA2-V by most compounds under

study may prove advantageous in vivo in that basal levels

of phospholipid-derived mediators could be maintained for

normal brain function.

Taken together, beneficial effects of fruit antioxidants

on aging and neurodegeneration warrant investigations at

multiple levels. Our findings on sPLA2-V inhibition by

anthocyanidins provide further evidence to rationalize

antioxidative and antiinflammatory activities. More studies

are invited to explore PLA2 isoform specificity of these

properties, and to define their behavioral correlates.
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