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Abstract In rats, phospholipase A2 (PLA2) activity was

found to be increased in the hippocampus immediately

after training and retrieval of a contextual fear conditioning

paradigm (step-down inhibitory avoidance [IA] task). In

the present study we investigated whether PLA2 is also

activated in the cerebral cortex of rats in association with

contextual fear learning and retrieval. We observed that IA

training induces a rapid (immediately after training) and

long-lasting (3 h after training) activation of PLA2 in both

frontal and parietal cortices. However, immediately after

retrieval (measured 24 h after training), PLA2 activity was

increased just in the parietal cortex. These findings suggest

that PLA2 activity is differentially required in the frontal

and parietal cortices for the mechanisms of contextual

learning and retrieval. Because reduced brain PLA2 activity

has been reported in Alzheimer disease, our results suggest

that stimulation of PLA2 activity may offer new treatment

strategies for this disease.
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Introduction

Phospholipase A2 (PLA2) is a family of hydrolytic

enzymes that catalyze the cleavage of fatty acids from the

sn-2 position of membrane glycerophospholipids to gen-

erate lysophospholipids and free fatty acids (Dennis 1994,

1997). PLA2-catalyzed hydrolysis of membrane phospha-

tidylcholine forms lysophosphatidylcholine and free

arachidonic acid (AA), which are important mediators in

signal transduction (Farooqui et al. 1997). The PLA2

family is classified into three main groups: secretory

(extracellular) Ca2?-dependent PLA2 (sPLA2), cytosolic

Ca2?-dependent PLA2 (cPLA2), and intracellular Ca2?-

independent PLA2 (iPLA2) (Dennis 1994). The mRNA

and/or activity of the three groups have been detected both

in human (Chen et al. 1994; Larsson Forsell et al. 1999;

Pickard et al. 1999; Gelb et al. 2000; Mancuso et al. 2000;

Suzuki et al. 2000) and rat brains (Owada et al. 1994;

Molloy et al. 1998; Kishimoto et al. 1999).

Previous studies from our laboratory showed reduced

PLA2 activity in postmortem parietal and frontal cortices of

Alzheimer disease (AD) patients (Gattaz et al. 1995, 1996).

These findings were supported by Ross et al. (1998), who

reported reduced cPLA2 and iPLA2 activities in post-

mortem parietal and temporal cortices of AD patients, as

well as decreased cPLA2 activity in the hippocampus.

Moreover, decreased iPLA2 activity was found in post-

mortem prefrontal cortex of frontal-variant AD patients

(Talbot et al. 2000).

Several studies in laboratory animals have shown that

PLA2 blockade impairs learning and memory, simulating

deficits that are found since the earliest phases of AD and

represent the most predominant cognitive changes in this

disease. For instance, intracerebral infusion of non-selec-

tive PLA2 inhibitors in chicks impaired learning of a

passive avoidance task (Holscher and Rose 1994). Addi-

tionally, intraperitoneal injection of a non-selective PLA2

inhibitor in rats impaired spatial learning tested in the

Morris water maze (Holscher et al. 1995). Furthermore,
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intracerebroventricular infusion in mice of a non-selective

PLA2 inhibitor or a dual cPLA2 and iPLA2 inhibitor

impaired memory formation of a step-through inhibitory

avoidance task (in which a context, tone, and foot shock are

presented together in an associative fashion) (Sato et al.

2007), and a selective iPLA2 inhibitor impaired spatial

learning tested in the Y-maze (Fujita et al. 2000). Recent

studies from our group showed that infusion of dual cPLA2

and iPLA2 inhibitors or a selective iPLA2 inhibitor into rat

hippocampal CA1 field impaired acquisition of short- and

long-term memory (Schaeffer and Gattaz 2005), and

retrieval of long-term memory (Schaeffer and Gattaz 2007)

of a contextual fear task (step-down inhibitory avoidance

[IA], in which fear conditioning is induced by a single

exposure to a context followed by an electric foot shock).

Memory training has been clinically performed and

reported to be effective in improving memory function in

elderly subjects with mild cognitive impairment (Rapp

et al. 2002; Belleville et al. 2006; Wenisch et al. 2007) and

early-stage AD (Clare et al. 2002; Abrisqueta-Gomez et al.

2004; Avila et al. 2004). Animal research has elucidated

some possible brain biochemical mechanisms related to

experience-dependent stimulation, and PLA2 activation

seems to be highly implicated here. For example, passive

avoidance training was followed by enhanced concentra-

tion of AA (Clements and Rose 1996) and prostaglandins

(cyclooxygenase products of AA metabolism) (Holscher

1995) in chick brains. Recent studies from our group

showed that training of rats in the IA task increased the

activity of endogenous PLA2 in the hippocampal CA1 field

(Schaeffer and Gattaz 2005). Additionally, our studies

showed that re-exposure of rats to context after training

(contextual memory retrieval) also stimulated PLA2

activity in the CA1 field (Schaeffer and Gattaz 2007). In

the present study we extended our previous findings in the

hippocampus, by investigating the effects of contextual

learning and retrieval on PLA2 activity in the cerebral

cortex of rats.

Materials and methods

One hundred and six male Wistar rats of 270–330 g

(Central Animal Laboratory House, Federal University of

São Paulo, Brazil) were used in the present study. All the

procedures described were approved by the institutional

animal ethics committee.

Inhibitory avoidance task

Step-down IA task was carried out as previously described

(Vianna et al. 2000). The animals were placed on an

8.0 cm wide, 5.0 cm high platform at the left of a 50 cm

wide, 25 cm deep, 25 cm high IA box (Albarsch, Brazil),

whose floor was an electrified grid made of a series of

parallel 1.0 mm caliber stainless steel bars spaced 1.0 cm

apart. In training sessions, immediately after stepping

down from the platform, placing the four paws on the grid,

the rats received a 0.4 mA, 4.0 s scrambled foot shock.

Latencies to step down were measured. Rats were tested for

retrieval 24 h after training. In test sessions, the rats were

allowed to stay on the platform up to a ceiling of 180 s, and

no foot shock was given. Latencies to step down were

measured. Test session step-down latency was taken as a

measure of retention.

Three different experiments were carried out.

1. In the first experiment, 31 rats were divided into (a)

trained animals: trained in the IA as described above

and killed by decapitation immediately after training

session; (b) naı̈ve controls: killed by decapitation

immediately after withdrawal from their home cages;

and (c) shocked controls: placed directly over the

electrified grid, given the foot shock, and immediately

killed by decapitation. All trained animals stepped

down the platform in the training session, showing a

mean step-down latency of 9 ± 6 s.

2. In the second experiment, 38 rats were divided into (a)

trained animals: trained in the IA and killed by

decapitation 3 h after training session; (b) naı̈ve

controls: killed by decapitation immediately after

withdrawal from their home cages; and (c) shocked

controls: placed directly over the electrified grid, given

the foot shock, and killed by decapitation 3 h later. All

trained animals stepped down the platform in the

training session, showing a mean step-down latency of

6 ± 4 s.

3. In the third experiment, 37 rats were divided into (a)

trained/tested animals: trained in the IA, tested for

retrieval 24 h later, and killed by decapitation imme-

diately after retrieval test session; (b) naı̈ve controls:

killed by decapitation immediately after withdrawal

from their home cages; and (c) trained controls: trained

in the IA and killed by decapitation 24 h later. All

trained animals stepped down the platform in the

training session. Animals in the trained group showed

a mean step-down latency of 8 ± 5 s, and animals in

the trained/tested group showed a mean step-down

latency of 7 ± 5 s. Animals in the trained/tested group

were also tested for retrieval 24 h after training,

showing a mean step-down latency of 112 ± 56 s.

Determination of PLA2 activity

For PLA2 activity determination, the rat brains were rap-

idly withdrawn and the frontal association cortex and
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parietal association cortex were bilaterally dissected

according to visual anatomical landmarks and the Atlas

of Paxinos and Watson (1998), and immediately stored at

-70�C until use. The brain tissue was homogenized in 20

volume of 5 mM Tris–HCl buffer (pH 7.4, 4�C) and stored

at -70�C. Prior to PLA2 assay, total protein levels were

determined for each aliquot by the Bio-Rad DC Protein

Assay (Bio-Rad, Hercules, CA, USA) modified from the

Lowry assay (Lowry et al. 1951). PLA2 activity was

determined by a radioenzymatic assay, as previously

described (Schaeffer and Gattaz 2005). Briefly, as enzyme

substrate we used L-a-1-palmitoyl-2-arachidonyl-phospha-

tidylcholine labelled with [1-14C] in the arachidonyl tail at

the sn-2 position (arachidonyl-1-14C-PC) (PerkinElmer,

Boston, MA, USA). We used optimal assay conditions for

measuring cPLA2 plus iPLA2 activity in rat brain homog-

enates, as previously determined by our group. Hence, the

assay samples (500 ll) contained 50 mM Tris–HCl (pH

8.5), 1 lM CaCl2, 300 lg of protein from homogenates,

and 0.06 lCi arachidonyl-1-14C-PC. After an incubation

time of 30 min at 37�C, the radioactivity of the liberated

[1-14C]arachidonic acid was measured in a liquid scintil-

lation counter (Tri-Carb 2100TR; Packard, Meriden, CT,

USA) and used for calculating the PLA2 activity, which is

expressed in pmol mg protein min-1. All determinations

of PLA2 activity were performed in triplicate.

Statistical analysis

One-way analysis of variance (ANOVA) was used to

compare the values among groups in each time interval.

Post hoc test consisted of the Bonferroni’s multiple com-

parison test. Pearson correlation coefficient was calculated

to determine the degree of association between PLA2

activity and scores on the memory retrieval test of indi-

vidual animals within the trained/tested group in the third

experiment. Two-tailed probabilities \ 0.05 were consid-

ered significant.

Results

PLA2 activity measured immediately after training

Frontal association cortex PLA2 activity was signifi-

cantly increased in trained animals (n = 9) by 32% as

compared to naı̈ve controls (n = 8), and by 20% as com-

pared to shocked controls (n = 10; P \ 0.001). Shocked

controls had similar values of PLA2 activity as naı̈ve

controls (P [ 0.05). P values were calculated using

Bonferroni’s test after ANOVA, F(2,24) = 26.57, P \ 0.001

(Fig. 1a).

Parietal association cortex PLA2 activity was signifi-

cantly increased in trained animals (n = 10) by 25% as

compared to naı̈ve controls (n = 11; P \ 0.001), and by

13% as compared to shocked controls (n = 9; P \ 0.05).

Shocked controls had similar values of PLA2 activity as

naı̈ve controls (P [ 0.05). P values were calculated using

Bonferroni’s test after ANOVA, F(2,27) = 14.03,

P \ 0.001 (Fig. 1b).

PLA2 activity measured 3 h after training

Frontal association cortex PLA2 activity was signifi-

cantly increased in trained animals (n = 11) by 18% as

compared to naı̈ve controls (n = 10; P \ 0.01), and by

13% as compared to shocked controls (n = 11; P \ 0.05).
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Fig. 1 PLA2 activity measured immediately after training. PLA2

activity (pmol mg protein min-1) is given as mean (±SEM). a In the

frontal cortex, PLA2 activity was increased in trained animals (n = 9)

by 32% as compared to naı̈ve controls (n = 8), and by 20% as

compared to shocked controls (n = 10). b In the parietal cortex, PLA2

activity was increased in trained animals (n = 10) by 25% as

compared to naı̈ve controls (n = 11), and by 13% as compared to

shocked controls (n = 9). Shocked and naı̈ve controls had similar

values of PLA2 activity in both studies. *P \ 0.05, ***P \ 0.001.

P values were calculated using Bonferroni’s test after ANOVA:

Frontal cortex: F(2,24) = 26.57, P \ 0.001; Parietal cortex:

F(2,27) = 14.03, P \ 0.001
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Shocked controls had similar values of PLA2 activity as

naı̈ve controls (P [ 0.5). P values were calculated using

Bonferroni’s test after ANOVA, F(2,29) = 7.87, P \ 0.01

(Fig. 2a).

Parietal association cortex PLA2 activity was signifi-

cantly increased in trained animals (n = 13) by 16% as

compared to naı̈ve controls (n = 13; P \ 0.001), and by

13% as compared to shocked controls (n = 12; P \ 0.01).

Shocked controls had similar values of PLA2 activity as

naı̈ve controls (P [ 0.5). P values were calculated using

Bonferroni’s test after ANOVA, F(2,35) = 12.82, P \ 0.001

(Fig. 2b).

PLA2 activity measured immediately after retrieval

Frontal association cortex Trained/tested animals

(n = 12) had similar values of PLA2 activity as naı̈ve

(n = 11; P [ 0.05) and trained controls (n = 14;

P [ 0.05), and trained controls had similar values of PLA2

activity as naı̈ve controls (P [ 0.5). P values were calcu-

lated using Bonferroni’s test after ANOVA, F(2,34) = 3.29,

P = 0.05 (Fig. 3a).

Parietal association cortex PLA2 activity was signifi-

cantly increased in trained/tested animals (n = 12) by 27%

as compared to naı̈ve controls (n = 11; P = 0.01), and by

18% as compared to trained controls (n = 14; P \ 0.05).

Trained controls had similar values of PLA2 activity as

naı̈ve controls (P [ 0.5). P values were calculated using

Bonferroni’s test after ANOVA, F(2,34) = 6.24, P \ 0.01

(Fig. 3b).

Animals in the trained/tested group showed a mean step-

down latency of 7 ± 5 s in the training session. These

animals were also tested for retrieval 24 h after training,
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Fig. 2 PLA2 activity measured 3 h after training. PLA2 activity

(pmol mg protein min-1) is given as mean (±SEM). a In the frontal

cortex, PLA2 activity was increased in trained animals (n = 11) by

18% as compared to naı̈ve controls (n = 10), and by 13% as

compared to shocked controls (n = 11). b In the parietal cortex, PLA2

activity was increased in trained animals (n = 13) by 16% as

compared to naı̈ve controls (n = 13), and by 13% as compared to

shocked controls (n = 12). Shocked and naı̈ve controls had similar

values of PLA2 activity in both studies. *P \ 0.05, **P \ 0.01,

***P \ 0.001. P values were calculated using Bonferroni’s test after

ANOVA: Frontal cortex: F(2,29) = 7.87, P \ 0.01; Parietal cortex:

F(2,35) = 12.82, P \ 0.001
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Fig. 3 PLA2 activity measured immediately after retrieval. PLA2

activity (pmol mg protein min-1) is given as mean (±SEM). a In the

frontal cortex, trained/tested animals (n = 12) had similar values of

PLA2 activity as naı̈ve (n = 11) and trained controls (n = 14). b In

the parietal cortex, PLA2 activity was increased in trained/tested

animals (n = 12) by 27% as compared to naı̈ve controls (n = 11),

and by 18% as compared to trained controls (n = 14). Trained and

naı̈ve controls had similar values of PLA2 activity in both studies.

*P \ 0.05, **P \ 0.01. P values were calculated using Bonferroni’s

test after ANOVA: Frontal cortex: F(2,34) = 3.29, P = 0.05; Parietal

cortex: F(2,34) = 6.24, P \ 0.01
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showing a mean step-down latency of 112 ± 56 s, that is

16-fold higher than the mean training session step-down

latency. Pearson correlation test showed a positive corre-

lation between PLA2 activity in the parietal cortex and

scores on the memory retrieval test (i.e., test session step-

down latencies) of rats within the trained/tested group

(r = 0.65, P \ 0.05) (Fig. 4).

Discussion

In our previous studies (Schaeffer and Gattaz 2005, 2007)

we found that PLA2 activity was increased in the CA1 field

of rat hippocampus immediately after training and retrieval

of the step-down IA task. In the present study we extended

our investigation to the cerebral cortex of rats, and found

three major results. PLA2 activity was increased in both

frontal and parietal cortices of rats around the time of

training and 3 h after training in the IA. However, PLA2

activity was increased just in the parietal cortex of rats

immediately after retrieval of the IA (Table 1). It should be

noticed that, in both time intervals after training, PLA2

activity was significantly increased in animals trained in

the IA when compared to control animals that only

received the electric foot shock (shocked controls) associ-

ated with the learning paradigm, indicating that increments

in PLA2 were specifically caused by the IA training. In the

retrieval studies, we observed that the training effect on

PLA2 (in trained controls) disappeared after 24 h. How-

ever, the retrieval of the trained behavior in the IA task (in

trained/tested animals) increased again the enzyme activ-

ity, indicating that increments in PLA2 were specifically

caused by the IA testing. Moreover, behavioral analysis

revealed that animals in the trained/tested group showed a

test session step-down latency in the IA 16-fold higher than

the training session step-down latency, thus indicating

good retention levels and that learning has occurred in this

group. Most important, we found that increments in PLA2

activity in the parietal cortex immediately after retrieval

were highly correlated with scores on the memory retrieval

test (i.e., test session step-down latencies) of rats within the

trained/tested group. These findings support the suggestion

that increments in PLA2 activity immediately and 3 h after

training were caused by learning. Altogether, the findings

suggest that PLA2 activity is differentially required in the

frontal and parietal cortices of rats for the mechanisms of

learning and retrieval of new contextual experience.

Experience-dependent changes have been extensively

studied in rodent hippocampus and cerebral cortex in

connection with contextual fear memory, and several bio-

chemical mechanisms which are closely connected to
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Fig. 4 Correlation between PLA2 activity and scores on the memory

retrieval test. PLA2 activity (pmol mg protein min-1) and scores on

the memory retrieval test (i.e., test session step-down latencies, in

seconds) are given as mean. Pearson correlation test showed a

positive correlation between PLA2 activity in the parietal cortex and

scores on the memory retrieval test of rats within the trained/tested

group (n = 12; r = 0.65, *P \ 0.05)

Table 1 Biochemical mechanisms involved in memory formation and retrieval of step-down inhibitory avoidance task in rats

Memory formation Memory

retrieval
Around

training

30 min post-

training

1 h post-

training

1.5 h post-

training

2 h post-

training

3 h post-

training

6 h post-

training

Frontal cortex NMDA NMDA

AMPA AMPA AMPA

PKC PKC PKC

PLA2 PLA2

Parietal cortex NMDA NMDA NMDA NMDA

AMPA AMPA

mGluR

PKC PKC PKC PKC PKC

MAPK MAPK

PLA2 PLA2 PLA2
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PLA2 have been implicated here. In the rat hippocampus,

learning of the step-down IA was associated with eleva-

tions in the expression of NMDA NR1 subunit (Cammarota

et al. 2000), increased activation of protein kinase C

(PKC), Ca2?/calmodulin-dependent protein kinase II

(CaMK II), p38, p42 and p44 mitogen-activated protein

kinase (MAPK), and increased [3H]AMPA binding to the

AMPA glutamate receptor (Cammarota et al. 1995, 1996,

1997, 1998; Bernabeu et al. 1995, 1997; Alonso et al. 2002,

2003). Learning of the step-through IA was also associated

with increased activation of hippocampal PKC in rats

(Young et al. 2002). Moreover, re-exposure of mice to

context after training (contextual memory retrieval) stim-

ulated the activity of hippocampal p42 and p44MAPK

(Chen et al. 2005). Regarding the cerebral cortex, exposure

of rats to the step-down IA resulted in increased activation

of PKC in the frontal and parietal cortices at varying times

after training (immediately, 30 min, and 2 h) (Bernabeu

et al. 1995; Cammarota et al. 1997). Several pharmaco-

logical studies in rats have been conducted using the step-

down IA, adding to the findings above. In the parietal

cortex, blockade of NMDA receptors at varying times after

training in the IA (1, 1.5 and 3 h) impaired memory con-

solidation (Zanatta et al. 1996; Izquierdo et al. 1997). In

addition, blockade of AMPA receptors before or immedi-

ately after training in the IA disrupted memory acquisition

and consolidation (Izquierdo et al. 1998). Furthermore,

inhibition of MAPK activity immediately after training

(Walz et al. 2000), and of PKC activity between 3 and 6 h

after training in the IA impaired memory consolidation

(Bonini et al. 2005). Finally, blockade of NMDA, AMPA

and metabotropic glutamate receptors (mGluR), and in-

hibiton of MAPK impaired memory retrieval of the IA

(Quillfeldt et al. 1996; Izquierdo et al. 1997; Barros et al.

2000). In the prefrontal cortex, blockade of NMDA

receptors at different times after training in the IA

(immediately and 3 h) impaired memory consolidation

(Mello et al. 2000). Additionally, blockade of AMPA

receptors before training or at varying times after training

in the IA (immediately, 1.5 and 3 h) disrupted memory

acquisition and consolidation, respectively (Izquierdo et al.

1998, 2007). Blockade of AMPA receptors before or

immediately after training also disrupted memory of the

step-through IA (Liang et al. 1996). Data on the cerebral

cortex described in this paragraph are summarized in

Table 1.

As already mentioned, PLA2 activity is closely con-

nected to all biochemical mechanisms described above.

PLA2-dependent release of AA is a receptor-mediated

process. In this way, activation of postsynaptic NMDA

receptors raises postsynaptic [Ca2?]i and stimulates

cPLA2, which generates AA, as found in mouse cortical

neurons and rat hippocampal neurons and slices (Sanfeliu

et al. 1990; Pellerin and Wolfe 1991; Lazarewicz et al.

1992; Stella et al. 1995). Many studies have demonstrated

that PLA2 can be regulated by a variety of protein kinases.

For example, activation of cPLA2 is regulated by PKC

(Wijkander and Sundler 1991; Nemenoff et al. 1993),

p38MAPK (Zhou et al. 2003), p42MAPK (Lin et al. 1993;

Nemenoff et al. 1993; Gordon et al. 1996) and CaMKII

phosphorylation (Muthalif et al. 2001), and iPLA2 activa-

tion is regulated by PKC phosphorylation (Underwood

et al. 1998; Akiba et al. 1999). In turn, stimulation of PLA2

activity in the presence of Ca2? in rodent cortical and

hippocampal slices as well as membrane preparations

increased [3H]AMPA binding to the AMPA receptor and

[3H]glutamate binding to AMPA and mGluR (Massicotte

and Baudry 1990; Baudry et al. 1991; Massicotte et al.

1991; Tocco et al. 1992; Catania et al. 1993; Bernard et al.

1995; Chabot et al. 1998; Gaudreault et al. 2004), whereas

PLA2 inhibition and the Ca2? chelator EGTA reduced

agonist binding to AMPA and mGluR (Bernard et al. 1993,

1995; Catania et al. 1993). Additionally, PLA2 inhibition in

rat hippocampal slices prevented Ca2?-dependent forma-

tion of long-term potentiation (LTP; a synaptic model of

learning and memory) in the CA1 field, as well as the

increase of [3H]AMPA binding to the AMPA receptor that

characterizes LTP (Bernard et al. 1994). These findings

support the involvement of cPLA2-mediated AA release in

learning and memory. AA has been suggested to be also

released by activation of mGluRs. Selective blockade of

the mGluR5 subunit inhibited LTP in the CA1 field of rat

hippocampal slices, and AA administration restored LTP,

suggesting that during LTP group I mGluRs cause AA

release that may be mediated by stimulation of iPLA2

(Izumi et al. 2000). Further studies support a role for iPLA2

in LTP. Selective inhibition of the iPLA2-VIB isoenzyme

prevented LTP induction in the CA1 field of rat hippo-

campal slices, as well as the associated increase of

[3H]AMPA binding to the AMPA receptor and the up-

regulation of AMPA GluR1 subunit levels in crude syn-

aptic fractions (Martel et al. 2006). These findings support

the involvement of iPLA2-mediated AA release in learning

and memory. Finally, AA potentiated the current through

NMDA receptor channels in cerebellar granule cells, thus

amplifying increases in [Ca2?]i caused by glutamate

(Miller et al. 1992), and induced a long-lasting potentiation

of AMPA receptor currents by increasing Ca2? influx in

Xenopus oocytes expressing AMPA receptors containing

GluR1,3 subunits (Nishizaki et al. 1999).

It is noteworthy that sPLA2 enzymes (*13–18 kDa)

require millimolar [Ca2?] for catalytic activity (Farooqui

et al. 1999), the activation of 85 kDa cPLA2 is regulated

by nanomolar or micromolar [Ca2?]i (Yoshihara and

Watanabe 1990; Underwood et al. 1998), and iPLA2

enzymes (*88 kDa) do not require Ca2? for catalytic
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activity (Larsson et al. 1998; Mancuso et al. 2000; Tanaka

et al. 2000). We have previously optimized conditions for

measuring cPLA2 plus iPLA2 activity or just iPLA2

activity in rat brain homogenates (Schaeffer and Gattaz

2005). It was not possible to measure the activity of

cPLA2 alone, because iPLA2 enzymes, which do not

require Ca2? for catalytic activity, can also respond to the

optimal conditions for cPLA2, i.e., nanomolar or micro-

molar [Ca2?]i (Larsson et al. 1998; Mancuso et al. 2000;

Tanaka et al. 2000). In fact, in our previous study, using

optimized conditions for cPLA2 (micromolar [Ca2?] and

pH 8.5), we found a dominant activity of iPLA2, while

cPLA2 activity was about 11-fold lower than the iPLA2

activity. Accordingly, Yang et al. (1999) reported a

dominant iPLA2 activity over cPLA2 activity in the rat

hippocampus as well as whole brain. However, despite

the low activity of cPLA2 in the rat brain, there is evi-

dence for the involvement of cPLA2 in the formation of

LTP (Bernard et al. 1994; Weichel et al. 1999). There-

fore, because both cPLA2 and iPLA2 have been

implicated in mechanisms of synaptic plasticity and/or

learning and memory, we applied in the present study the

conditions for measuring cPLA2 plus iPLA2 activity

previously determined (Schaeffer and Gattaz 2005).

Considering the methodological limitations, the findings

of the present study, taken together with previous studies

described above, allow four major conclusions. In the

parietal cortex, (1) activation of cPLA2 and/or iPLA2

around the time of training might modulate memory

formation through up-regulation of AMPA receptors via a

PKC (in the case of cPLA2 and iPLA2) and a MAPK-

dependent pathway (in the case of cPLA2); (2) activation

of cPLA2 and/or iPLA2 3 h after training might modulate

memory formation through up-regulation of NMDA

receptors via a PKC-dependent pathway; and (3) activa-

tion of PLA2 (likely cPLA2) around the time of testing

might modulate memory retrieval through up-regulation

of NMDA, AMPA, and mGluRs via a MAPK-dependent

pathway. In the frontal cortex, (4) activation of cPLA2

and/or iPLA2 around the time of training and 3 h after

training might modulate memory formation through up-

regulation of NMDA and AMPA receptors via a PKC-

dependent pathway. We are not aware of any study till

date, showing an involvement of sPLA2 in learning and/or

memory. Thus, we did not look at sPLA2 in the present

study.

In the context of AD, where reduced PLA2 activity has

been reported in the frontal and parietal cortices (Gattaz

et al. 1995, 1996; Ross et al. 1998; Talbot et al. 2000), the

present findings could suggest that reduced PLA2 activity

in the parietal cortex of AD patients might contribute to

impairment of context learning and memory retrieval.

Regarding the reduced PLA2 activity in the frontal cortex

of AD patients, it might have a role in the impairment of

context learning but not memory retrieval. Interestingly, a

very recent study conducted by our group showed that

cognitive training, consisting of a four-session memory

training intervention for 1 month, increased PLA2 activity

in platelets of healthy elderly individuals, suggesting that

memory training may have a modulating effect in PLA2-

mediated biological systems associated with cognitive

functions (Talib et al. 2008). Because reduced PLA2

activity has been reported in the frontal and parietal cor-

tices of AD patients, and lower platelet PLA2 activity was

correlated with the severity of cognitive decline in samples

of individuals with AD and mild cognitive impairment

(Gattaz et al. 2004), the findings of the present study

together with those of Talib et al. (2008) permit to spec-

ulate that stimulation of PLA2 activity might offer new

treatment strategies for the memory impairment seen in

AD. Collectively, the data support the use of cognitive

training as a promising non-pharmacological approach to

stimulate PLA2 at least in healthy elderly subjects for the

prevention of cognitive deficits.
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Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP;

Projects 02/13633-7, 05/52896-1, 05/52897-8). The Laboratory of

Neuroscience receives financial support from the Associação Bene-

ficente Alzira Denise Hertzog da Silva (ABADHS).

References

Abrisqueta-Gomez J, Canali F, Vieira VL, Aguiar AC, Ponce CS,

Brucki SM, Bueno OF (2004) A longitudinal study of a

neuropsychological rehabilitation program in Alzheimer’s dis-

ease. Arq Neuropsiquiatr 62:778–783

Akiba S, Mizunaga S, Kume K, Hayama M, Sato T (1999)

Involvement of group VI Ca2?-independent phospholipase A2

in protein kinase C-dependent arachidonic acid liberation in

zymosan-stimulated macrophage-like P388D1 cells. J Biol

Chem 274:19906–19912

Alonso M, Viola H, Izquierdo I, Medina JH (2002) Aversive

experiences are associated with a rapid and transient activation

of ERKs in the rat hippocampus. Neurobiol Learn Mem 77:119–

124

Alonso M, Bevilaqua LR, Izquierdo I, Medina JH, Cammarota M

(2003) Memory formation requires p38MAPK activity in the rat

hippocampus. Neuroreport 14:1989–1992

Avila R, Bottino CM, Carvalho IA, Santos CB, Seral C, Miotto EC

(2004) Neuropsychological rehabilitation of memory deficits and

activities of daily living in patients with Alzheimer’s disease: a

pilot study. Braz J Med Biol Res 37(11):1721–1729

Barros DM, Izquierdo LA, Mello e Souza T, Ardenghi PG, Pereira P,

Medina JH, Izquierdo I (2000) Molecular signalling pathways in

the cerebral cortex are required for retrieval of one-trial

avoidance learning in rats. Behav Brain Res 114:183–192

Baudry M, Massicotte G, Hauge S (1991) Opposite effects of

phospholipase A2 on [3H]AMPA binding in adult and neonatal

membranes. Brain Res Dev Brain Res 61:265–267

Belleville S, Gilbert B, Fontaine F, Gagnon L, Ménard E, Gauthier S

(2006) Improvement of episodic memory in persons with mild

Conditioning training and retrieval increase phospholipase A2 activity in the cerebral cortex of rats 47

123



cognitive impairment and healthy older adults: evidence from a

cognitive intervention program. Dement Geriatr Cogn Disord

22:486–499

Bernabeu R, Cammarota M, Izquierdo I, Medina JH (1997) Involve-

ment of hippocampal AMPA glutamate receptor changes and the

cAMP/protein kinase A/CREB-P signalling pathway in memory

consolidation of an avoidance task in rats. Braz J Med Biol Res

30:961–965

Bernabeu R, Izquierdo I, Cammarota M, Jerusalinsky D, Medina JH

(1995) Learning-specific, time-dependent increase in [3H]phor-

bol dibutyrate binding to protein kinase C in selected regions of

the rat brain. Brain Res 685:163–168

Bernard J, Lahsaini A, Baudry M, Massicotte G (1993) The

phospholipase A2 inhibitor bromophenacyl bromide prevents

the depolarization-induced increase in [3H]AMPA binding in rat

brain synaptoneurosomes. Brain Res 628:340–344

Bernard J, Lahsaini A, Massicotte G (1994) Potassium-induced long-

term potentiation in area CA1 of the hippocampus involves

phospholipase activation. Hippocampus 4:447–453

Bernard J, Chabot C, Gagne J, Baudry M, Massicotte G (1995)

Melittin increases AMPA receptor affinity in rat brain synapto-

neurosomes. Brain Res 671:195–200

Bonini JS, Cammarota M, Kerr DS, Bevilaqua LR, Izquierdo I (2005)

Inhibition of PKC in basolateral amygdala and posterior parietal

cortex impairs consolidation of inhibitory avoidance memory.

Pharmacol Biochem Behav 80:63–67

Cammarota M, Izquierdo I, Wolfman C, Levi de Stein M, Bernabeu

R, Jerusalinsky D, Medina JH (1995) Inhibitory avoidance

training induces rapid and selective changes in 3[H]AMPA

receptor binding in the rat hippocampal formation. Neurobiol

Learn Mem 64:257–264

Cammarota M, Bernabeu R, Izquierdo I, Medina JH (1996) Revers-

ible changes in hippocampal 3H-AMPA binding following

inhibitory avoidance training in the rat. Neurobiol Learn Mem

66:85–88

Cammarota M, Paratcha G, Levi de Stein M, Bernabeu R, Izquierdo I,

Medina JH (1997) B-50/GAP-43 phosphorylation and PKC

activity are increased in rat hippocampal synaptosomal mem-

branes after an inhibitory avoidance training. Neurochem Res

22:499–505

Cammarota M, Bernabeu R, Levi De Stein M, Izquierdo I, Medina JH

(1998) Learning-specific, time-dependent increases in hippo-

campal Ca2?/calmodulin-dependent protein kinase II activity

and AMPA GluR1 subunit immunoreactivity. Eur J NeuroSci

10:2669–2676

Cammarota M, de Stein ML, Paratcha G, Bevilaqua LR, Izquierdo I,

Medina JH (2000) Rapid and transient learning-associated

increase in NMDA NR1 subunit in the rat hippocampus.

Neurochem Res 25:567–572

Catania MV, Hollingsworth Z, Penney JB, Young AB (1993)

Phospholipase A2 modulates different subtypes of excitatory

amino acid receptors: autoradiographic evidence. J Neurochem

60:236–245

Chabot C, Gagne J, Giguere C, Bernard J, Baudry M, Massicotte G

(1998) Bidirectional modulation of AMPA receptor properties

by exogenous phospholipase A2 in the hippocampus. Hippo-

campus 8:299–309

Chen J, Engle SJ, Seilhamer JJ, Tischfield JA (1994) Cloning and

recombinant expression of a novel human low molecular weight

Ca2?-dependent phospholipase A2. J Biol Chem 269:2365–2368

Chen X, Garelick MG, Wang H, Lil V, Athos J, Storm DR (2005) PI3

kinase signaling is required for retrieval and extinction of

contextual memory. Nat Neurosci 8:925–931

Clare L, Wilson BA, Carter G, Roth I, Hodges JR (2002) Relearning

face-name associations in early Alzheimer’s disease. Neuropsy-

chology 16:538–547

Clements MP, Rose SP (1996) Time-dependent increase in release of

arachidonic acid following passive avoidance training in the day-

old chick. J Neurochem 67:1317–1323

Dennis EA (1994) Diversity of group types, regulation, and function

of phospholipase A2. J Biol Chem 269:13057–13060

Dennis EA (1997) The growing phospholipase A2 superfamily of

signal transduction enzymes. Trends Biochem Sci 22:1–2

Farooqui AA, Yang HC, Rosenberger TA, Horrocks LA (1997)

Phospholipase A2 and its role in brain tissue. J Neurochem

69:889–901

Farooqui AA, Litsky ML, Farooqui T, Horrocks LA (1999) Inhibitors

of intracellular phospholipase A2 activity: their neurochemical

effects and therapeutical importance for neurological disorders.

Brain Res Bull 49:139–153

Fujita S, Ikegaya Y, Nishiyama N, Matsuki N (2000) Ca2?-

independent phospholipase A2 inhibitor impairs spatial memory

of mice. Jpn J Pharmacol 83:277–278

Gattaz WF, Maras A, Cairns NJ, Levy R, Forstl H (1995) Decreased

phospholipase A2 activity in Alzheimer brains. Biol Psychiatry

37:13–17

Gattaz WF, Cairns NJ, Levy R, Forstl H, Braus DF, Maras A (1996)

Decreased phospholipase A2 activity in the brain and in platelets

of patients with Alzheimer’s disease. Eur Arch Psychiatry Clin

Neurosci 246:129–131

Gattaz WF, Forlenza OV, Talib LL, Barbosa NR, Bottino CM (2004)

Platelet phospholipase A2 activity in Alzheimer’s disease and

mild cognitive impairment. J Neural Transm 111:591–601

Gaudreault SB, Chabot C, Gratton JP, Poirier J (2004) The caveolin

scaffolding domain modifies 2-amino-3-hydroxy-5-methyl-4-

isoxazole propionate receptor binding properties by inhibiting

phospholipase A2 activity. J Biol Chem 279:356–362

Gelb MH, Valentin E, Ghomashchi F, Lazdunski M, Lambeau G

(2000) Cloning and recombinant expression of a structurally

novel human secreted phospholipase A2. J Biol Chem

275:39823–39826

Gordon RD, Leighton IA, Campbell DG, Cohen P, Creaney A, Wilton

DC, Masters DJ, Ritchie GA, Mott R, Taylor IW, Bundell KR,

Douglas L, Morten J, Needham M (1996) Cloning and expres-

sion of cystolic phospholipase A2 (cPLA2) and a naturally

occurring variant. Phosphorylation of Ser505 of recombinant

cPLA2 by p42 mitogen-activated protein kinase results in an

increase in specific activity. Eur J Biochem 238:690–697

Holscher C (1995) Prostaglandins play a role in memory consolida-

tion in the chick. Eur J Pharmacol 294:253–259

Holscher C, Rose SP (1994) Inhibitors of phospholipase A2 produce

amnesia for a passive avoidance task in the chick. Behav Neural

Biol 61:225–232

Holscher C, Canevari L, Richter-Levin G (1995) Inhibitors of PLA2

and NO synthase cooperate in producing amnesia of a spatial

task. Neuroreport 6:730–732

Izquierdo I, Quillfeldt JA, Zanatta MS, Quevedo J, Schaeffer E,

Schmitz PK, Medina JH (1997) Sequential role of hippocampus

and amygdala, entorhinal cortex and parietal cortex in formation

and retrieval of memory for IA in rats. Eur J NeuroSci 9:786–

793

Izquierdo I, Izquierdo LA, Barros DM, Mello e Souza T, de Souza

MM, Quevedo J, Rodrigues C, Sant’Anna MK, Madruga M,

Medina JH (1998) Differential involvement of cortical receptor

mechanisms in working, short-term and long-term memory.

Behav Pharmacol 9:421–427

Izquierdo LA, Barros DM, da Costa JC, Furini C, Zinn C, Cammarota

M, Bevilaqua LR, Izquierdo I (2007) A link between role of two

prefrontal areas in immediate memory and in long-term memory

consolidation. Neurobiol Learn Mem 88:160–166

Izumi Y, Zarrin AR, Zorumski CF (2000) Arachidonic acid rescues

hippocampal long-term potentiation blocked by group I

48 E. L. Schaeffer et al.

123



metabotropic glutamate receptor antagonists. Neuroscience

100:485–491

Kishimoto K, Matsumura K, Kataoka Y, Morii H, Watanabe Y (1999)

Localization of cytosolic phospholipase A2 messenger RNA

mainly in neurons in the rat brain. Neuroscience 92:1061–1077

Larsson Forsell PK, Kennedy BP, Claesson HE (1999) The human

calcium-independent phospholipase A2 gene multiple enzymes

with distinct properties from a single gene. Eur J Biochem

262:575–585

Larsson PK, Claesson HE, Kennedy BP (1998) Multiple splice

variants of the human calcium-independent phospholipase A2

and their effect on enzyme activity. J Biol Chem 273:207–214

Lazarewicz JW, Salinska E, Wroblewski JT (1992) NMDA receptor-

mediated arachidonic acid release in neurons: role in signal

transduction and pathological aspects. Adv Exp Med Biol

318:73–89

Liang KC, Hu SJ, Chang SC (1996) Formation and retrieval of

inhibitory avoidance memory: differential roles of glutamate

receptors in the amygdala and medial prefrontal cortex. Chin J

Physiol 39:155–166

Lin LL, Wartmann M, Lin AY, Knopf JL, Seth A, Davis RJ (1993)

cPLA2 is phosphorylated and activated by MAP kinase. Cell

72:269–278

Lowry OH, Rowebrough NJ, Farr LA, Randall RJ (1951) Protein

measurement with the Folin phenol reagent. J Biol Chem

193:265–275

Mancuso DJ, Jenkins CM, Gross RW (2000) The genomic organi-

zation, complete mRNA sequence, cloning, and expression of a

novel human intracellular membrane-associated calcium-inde-

pendent phospholipase A2. J Biol Chem 275:9937–9945

Martel MA, Patenaude C, Menard C, Alaux S, Cummings BS,

Massicotte G (2006) A novel role for calcium-independent

phospholipase A in a-amino-3-hydroxy-5-methylisoxazole-pro-

pionate receptor regulation during long-term potentiation. Eur J

NeuroSci 23:505–513

Massicotte G, Baudry M (1990) Modulation of DL-a-amino-3-

hydroxy-5-methylisoxazole-4-propionate (AMPA)/quisqualate

receptors by phospholipase A2 treatment. Neurosci Lett

118:245–248

Massicotte G, Vanderklish P, Lynch G, Baudry M (1991) Modulation

of DL-a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/

quisqualate receptors by phospholipase A2: a necessary step in

long-term potentiation? Proc Natl Acad Sci USA 88:1893–1897

Mello E, Souza T, Vianna MR, Rodrigues C, Quevedo J, Moleta BA,

Izquierdo I (2000) Involvement of the medial precentral

prefrontal cortex in memory consolidation for inhibitory avoid-

ance learning in rats. Pharmacol Biochem Behav 66:615–622

Miller B, Sarantis M, Traynelis SF, Attwell D (1992) Potentiation of

NMDA receptor currents by arachidonic acid. Nature 355:722–

725

Molloy GY, Rattray M, Williams RJ (1998) Genes encoding multiple

forms of phospholipase A2 are expressed in rat brain. Neurosci

Lett 258:139–142

Muthalif MM, Hefner Y, Canaan S, Harper J, Zhou H, Parmentier JH,

Aebersold R, Gelb MH, Malik KU (2001) Functional interaction

of calcium-/calmodulin-dependent protein kinase II and cyto-

solic phospholipase A(2). J Biol Chem 276:39653–39660

Nemenoff RA, Winitz S, Qian NX, Van Putten V, Johnson GL,

Heasley LE (1993) Phosphorylation and activation of a high

molecular weight form of phospholipase A2 by p42 microtubule-

associated protein 2 kinase and protein kinase C. J Biol Chem

268:1960–1964

Nishizaki T, Matsuoka T, Nomura T, Enikolopov G, Sumikawa K

(1999) Arachidonic acid potentiates currents through Ca2?-

permeable AMPA receptors by interacting with a CaMKII

pathway. Molec Brain Res 67:184–189

Owada Y, Tominaga T, Yoshimoto T, Kondo H (1994) Molecular

cloning of rat cDNA for cytosolic phospholipase A2 and the

increased gene expression in the dentate gyrus following

transient forebrain ischemia. Brain Res Mol Brain Res 25:364–

368

Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates.

Academic Press, San Diego

Pellerin L, Wolfe LS (1991) Release of arachidonic acid by NMDA-

receptor activation in the rat hippocampus. Neurochem Res

16:983–989

Pickard RT, Strifler BA, Kramer RM, Sharp JD (1999) Molecular

cloning of two new human paralogs of 85-kDa cytosolic

phospholipase A2. J Biol Chem 274:8823–8831

Quillfeldt JA, Zanatta MS, Schmitz PK, Quevedo J, Schaeffer E,

Lima JB, Medina JH, Izquierdo I (1996) Different brain areas are

involved in memory expression at different times from training.

Neurobiol Learn Mem 66:97–101

Rapp S, Brenes G, Marsh AP (2002) Memory enhancement training

for older adults with mild cognitive impairment: a preliminary

study. Aging Ment Health 6:5–11

Ross BM, Moszczynska A, Erlich J, Kish SJ (1998) Phospholipid-

metabolizing enzymes in Alzheimer’s disease: increased lyso-

phospholipid acyltransferase activity and decreased

phospholipase A2 activity. J Neurochem 70:786–793

Sanfeliu C, Hunt A, Patel AJ (1990) Exposure to N-methyl-D-

aspartate increases release of arachidonic acid in primary

cultures of rat hippocampal neurons and not in astrocytes. Brain

Res 526:241–248

Sato T, Ishida T, Irifune M, Tanaka K, Hirate K, Nakamura N,

Nishikawa T (2007) Effect of NC-1900, an active fragment

analog of arginine vasopressin, and inhibitors of arachidonic acid

metabolism on performance of a passive avoidance task in mice.

Eur J Pharmacol 560:36–41

Schaeffer EL, Gattaz WF (2005) Inhibition of calcium-independent

phospholipase A2 activity in rat hippocampus impairs acquisition

of short- and long-term memory. Psychopharmacology (Berl)

181:392–400

Schaeffer EL, Gattaz WF (2007) Requirement of hippocampal

phospholipase A2 activity for long-term memory retrieval in

rats. J Neural Transm 114:379–385

Stella N, Pellerin L, Magistretti PJ (1995) Modulation of the

glutamate-evoked release of arachidonic acid from mouse

cortical neurons: involvement of a pH-sensitive membrane

phospholipase A2. J Neurosci 15:3307–3317

Suzuki N, Ishizaki J, Yokota Y, Higashino K, Ono T, Ikeda M, Fujii

N, Kawamoto K, Hanasaki K (2000) Structures, enzymatic

properties, and expression of novel human and mouse secretory

phospholipase A2s. J Biol Chem 275:5785–5793

Talbot K, Young RA, Jolly-Tornetta C, Lee VM, Trojanowski JQ,

Wolf BA (2000) A frontal variant of Alzheimer’s disease

exhibits decreased calcium-independent phospholipase A2 activ-

ity in the prefrontal cortex. Neurochem Int 37:17–31

Talib LL, Yassuda MS, Diniz BSO, Forlenza OV, Gattaz WF (2008)

Cognitive training increases platelet PLA2 activity in healthy

elderly subjects. Prostaglandins Leukot Essent Fatty Acids

78:265–269

Tanaka H, Takeya R, Sumimoto H (2000) A novel intracellular

membrane-bound calcium-independent phospholipase A2. Bio-

chem Biophys Res Commun 272:320–326

Tocco G, Massicotte G, Standley S, Thompson RF, Baudry M (1992)

Phospholipase A2-induced changes in AMPA receptor: an

autoradiographic study. Neuroreport 3:515–518

Underwood KW, Song C, Kriz RW, Chang XJ, Knopf JL, Lin LL

(1998) A novel calcium-independent phospholipase A2, cPLA2-

c, that is prenylated and contains homology to cPLA2. J Biol

Chem 273:21926–21932

Conditioning training and retrieval increase phospholipase A2 activity in the cerebral cortex of rats 49

123



Vianna MR, Barros DM, Silva T, Choi H, Madche C, Rodrigues C,

Medina JH, Izquierdo I (2000) Pharmacological demonstration

of the differential involvement of protein kinase C isoforms in

short- and long-term memory formation and retrieval of one-trial

avoidance in rats. Psychopharmacology (Berl) 150:77–84

Walz R, Roesler R, Quevedo J, Sant’Anna MK, Madruga M,

Rodrigues C, Gottfried C, Medina JH, Izquierdo I (2000) Time-

dependent impairment of inhibitory avoidance retention in rats

by posttraining infusion of a mitogen-activated protein kinase

kinase inhibitor into cortical and limbic structures. Neurobiol

Learn Mem 73:11–20

Weichel O, Hilgert M, Chatterjee SS, Lehr M, Klein J (1999)

Bilobalide, a constituent of Ginkgo biloba, inhibits NMDA-

induced phospholipase A2 activation and phospholipid break-

down in rat hippocampus. Naunyn Schmiedebergs Arch

Pharmacol 360:609–615

Wenisch E, Cantegreil-Kallen I, De Rotrou J, Garrigue P, Moulin F,

Batouche F, Richard A, De Sant’Anna M, Rigaud AS (2007)

Cognitive stimulation intervention for elders with mild cognitive

impairment compared with normal aged subjects: preliminary

results. Aging Clin Exp Res 19:316–322

Wijkander J, Sundler R (1991) An 100-kDa arachidonate-mobilizing

phospholipase A2 in mouse spleen and the macrophage cell line

J774. Purification, substrate interaction and phosphorylation by

protein kinase C. Eur J Biochem 202:873–880

Yang HC, Mosior M, Ni B, Dennis EA (1999) Regional distribution,

ontogeny, purification, and characterization of the Ca2?-inde-

pendent phospholipase A2 from rat brain. J Neurochem 73:1278–

1287

Yoshihara Y, Watanabe Y (1990) Translocation of phospholipase A2

from cytosol to membranes in rat brain induced by calcium ions.

Biochem Biophys Res Commun 170:484–490

Young E, Cesena T, Meiri KF, Perrone-Bizzozero NI (2002) Changes

in protein kinase C (PKC) activity, isozyme translocation, and

GAP-43 phosphorylation in the rat hippocampal formation after

a single-trial contextual fear conditioning paradigm. Hippocam-

pus 12:457–464

Zanatta MS, Schaeffer E, Schmitz PK, Medina JH, Quevedo J,

Quillfeldt JA, Izquierdo I (1996) Sequential involvement of

NMDA receptor-dependent processes in hippocampus, amyg-

dala, entorhinal cortex and parietal cortex in memory processing.

Behav Pharmacol 7:341–345

Zhou H, Das S, Murthy KS (2003) Erk1/2- and p38 MAP kinase-

dependent phosphorylation and activation of cPLA2 by m3 and

m2 receptors. Am J Physiol Gastrointest Liver Physiol

284:G472–G480

50 E. L. Schaeffer et al.

123


	Conditioning training and retrieval increase phospholipase �A2 activity in the cerebral cortex of rats
	Abstract
	Introduction
	Materials and methods
	Inhibitory avoidance task
	Determination of PLA2 activity
	Statistical analysis

	Results
	PLA2 activity measured immediately after training
	PLA2 activity measured 3 h after training
	PLA2 activity measured immediately after retrieval

	Discussion
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


