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Summary The aim of the present study was to investigate the effects of

stimulation of D2 receptors in the prefrontal cortex (PFC) on spontaneous

motor activity and the hyperactivity induced by the psychomimetic phen-

cyclidine (PCP). In addition, the effects of prefrontal D2 stimulation under

PCP treatment on dialysate concentrations of acetylcholine, choline, dopa-

mine, DOPAC and HVA in the nucleus accumbens were also investigated.

Sprague-Dawley male rats were implanted with guide cannulae to perform

bilateral injections into the medial PFC of the D2 agonist quinpirole (1.5

and 5mg=side). Horizontal and vertical spontaneous motor activity and the

motor activity induced by systemic injections of the PCP (5 mg=kg i.p.)

were monitored in the open field. PFC injections of quinpirole (1.5 and

5mg=side) significantly decreased horizontal and vertical spontaneous motor

activity in a dose-related manner. These effects were blocked by the D2

antagonist raclopride (5mg=side). Microinjections of quinpirole (1.5 and

5mg=side) into the PFC also significantly attenuated the hyperactivity pro-

duced by PCP (5 mg=kg i.p.). PCP also increased dialysate concentrations of

acetylcholine, and dopamine metabolites in the nucleus accumbens. These

increases were also reduced by injections of quinpirole (5mg=side) into the

PFC. These results suggest that the stimulation of prefrontal D2 receptors

plays an inhibitory role in regulating spontaneous and PCP-induced motor

activity and also in the neurochemical changes produced by PCP in the

nucleus accumbens.
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Introduction

Experimental evidence suggests that a functional interac-

tion between the prefrontal cortex (PFC) and the nucleus

accumbens exists playing a major role in cognitive and

motor behavior (Robbins, 2000; €OOng€uur and Price, 2000;

Tzschentke, 2001). In this context, ascending projections

to PFC from the mesocortical dopamine pathway have been

reported to regulate the activity of the mesolimbic dopami-

nergic system through descending PFC-nucleus accum-

bens=VTA projections (Doherty and Gratton, 1996; King

et al., 1997; Carr and Sesack, 2000; Del Arco and Mora,

2005). In particular, it has been shown that both stimula-

tion and depletion of dopamine transmission in the PFC

changes the release of dopamine in the nucleus accumbens

stimulated by stress or amphetamine injections (Doherty

and Gratton, 1996; King et al., 1997). This cortico-limbic

feedback interaction has been suggested to be involved in

locomotion (Kelly and Iversen, 1976; Clarke et al., 1988).

In fact, pharmacological studies show that stimulation of

dopamine receptors in the PFC exerts an inhibitory action

on motor behavior (Vezina et al., 1991; Duvauchelle et al.,

1992; Radcliffe and Erwin, 1996; Broersen et al., 1999;

Beyer and Steketee, 2000, 2001; Tzschentke, 2001) though

the role played by D1 and D2 dopamine receptors has not

been fully elucidated. Recently, we have shown that specific

stimulation of prefrontal D2 receptors reduces basal extra-

cellular concentrations of dopamine, its metabolites DOPAC

and HVA, and acetylcholine in the nucleus accumbens

(Del Arco and Mora, 2005). Since changes of dopamine and

acetylcholine activity in the nucleus accumbens have been

related to motor behavior (Kelly and Iversen, 1976; Ahlenius
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et al., 1987; de Rover et al., 2002), we have suggested an

inhibitory role for these receptors in spontaneous motor

activity. In line with this suggestion are recent results show-

ing that prefrontal D2 stimulation reduces locomotion

induced by cocaine injections (Beyer and Steketee, 2000).

The function of dopamine receptors in the PFC is the

focus of intensive research due to their implication in the

pathophysiology and treatment of psychiatric disorders

such as schizophrenia (Hokfelt et al., 1974; Lidow et al.,

1998; Goldman-Rakic et al., 2000; Seamans and Yang,

2004; Miyamoto et al., 2005). In this context, the locomo-

tor hyperactivity induced by the psychomimetic phencycli-

dine (PCP) in rodents represents a valid experimental

model to investigate the cortico-limbic dysfunction that

occur in this disorder (Jentsch and Roth, 1999; Takahata

and Moghaddam, 2003; Morris et al., 2005). It has been

suggested that the effects produced by PCP injections as

well as other NMDA antagonists (i.e. ketamine, MK-801)

in the PFC underlies the sub-cortical hyperactivity leading

to increases of dopamine extracellular concentrations in

the nucleus accumbens and hyper-locomotion in rodents

(Jentsch et al., 1998; Krystal et al., 2003). Since we have

previously shown that the specific stimulation of D2 recep-

tors in the PFC reduces the basal release of dopamine and

acetylcholine in the nucleus accumbens (Del Arco and

Mora, 2005), it would be of interest to investigate whether

direct injections of a D2 like receptor agonist into the PFC

also reduces the hyper-locomotion and the release of these

same neurotransmitters in the nucleus accumbens, pro-

duced by PCP injections.

The aim of the present study was to investigate, by

means of local bilateral injections of the D2 like agonist

quinpirole, the role of prefrontal D2 dopamine receptors in

modulating spontaneous, and PCP-induced motor activity

and cholinergic and dopaminergic activity in the nucleus

accumbens. More specifically, this study is aimed to inves-

tigate first, the effects of stimulation of D2 receptors in the

PFC on spontaneous motor activity; and second, the effects

of the stimulation of prefrontal D2 receptors on the motor

activity induced by acute intraperitoneal injections of PCP

(5 mg=kg). Furthermore, the effects of prefrontal D2 stimu-

lation on dialysate concentrations of acetylcholine, choline,

dopamine, DOPAC and HVA, in the nucleus accumbens

induced by PCP injections were also investigated.

Materials and methods

Animals

The present study was conducted on Sprague Dawley male rats (2–

3 months, 250–350 weight). Animals were housed into groups of four in

plexiglas cages (55�35�20 cm) in temperature controlled rooms (21�C),

with a 12-h light=dark cycle and provided with food and water ad libitum.

Experiments were carried out in accordance with the regulation of both

Swedish (CNF, Dnr. S49=01) and Spanish (RD 1201=2005) National Boards

for Laboratory Animals.

Microinjections into the prefrontal cortex

Animals were anaesthetised with 1.5% halothane=98.5% air mixture

(delivered at 1 ml=min) and stereotaxically implanted in the brain with

bilateral guide cannulae to reach the medial prefrontal cortex (mPFC) with

the following co-ordinates: þ3.2 mm rostral; 0.8 mm medial, from bregma;

and �2.5 mm from the top of the skull, with the incisive bar set at �3.3 mm

(Paxinos and Watson, 1998). Guide cannulae, 23-gauge stainless-steel

(Plastic ONE, USA) were fixed to the skull surface with dental acrylic

and two stainless-steel anchorage screws. Dummy cannulae, 28-gauge stain-

less-steel, were inserted into the guide to keep it clean and prevent occlu-

sion. Six to seven days after surgery, bilateral intra-mPFC injections were

performed by means of injection cannulae, 28 gauge stainless-steel, protrud-

ing 1.5 mm below the tip of the guide and attached to a micro-pump (CMA

microdialysis, Stockholm, Sweden) at a flow rate of 0.4ml=min. A total

volume of 0.5ml=side was injected (75 s injections) maintaining the injec-

tion-cannulae in place for 60 s to allow the diffusion of the drug=vehicle.

The potent D2=D3 agonist (Malmberg and Mohell, 1995) quinpirole

hydrochloride (1.5 and 5mg=side) (Tocris, Cookson, UK) and antagonist

raclopride (1.5 and 5mg=side) (Tocris, Cookson, UK), were freshly dis-

solved in a modified Ringer solution (1.2 mM CaCl2, 2.7 mM KCl,

148 mM NaCl and 0.85 mM MgCl2; pH 6.0) before local injections in the

PFC. These drugs were used in view of the high density of D2 vs. the

absence of D3 receptors in the rat PFC (Bentivoglio and Morelli, 2005).

Phencyclidine (PCP 5 mg=kg i.p.) (SIGMA, Sweden) was injected systemi-

cally (1 ml=kg, i.p.). This dose of PCP has been reported to require an intact

PFC to produce its effects on motor behavior (Jentsch et al., 1998). Each rat

received no more than 4 balanced injections in the PFC with a minimum of

72 h in between injections.

Motor activity

Motor activity experiments were carried out in four automated open field

arenas (Del Arco et al., 2004). The open field apparatus consisted of a

Plexiglas box (70�70�45 cm) equipped with two horizontal rows of eight

infrared light sensitive photocell beams located at 5 and 15 cm, respectively,

from the basement, allowing the detection of horizontal and vertical (rear-

ing) motor activity. Interruptions of the photocell beams (activity counts)

were registered automatically by a regular computer. Spontaneous motor

activity: injections were performed into the PFC and then rats were placed

immediately in the open field (non-habituated rats). PCP-induced motor

activity: PCP intraperitoneal injections were performed after a 60 min habi-

tuation period (habituated rats), and immediately after the intra-prefrontal

injections. Open field activities were recorded every 5 min during a period

of 60 or 120 min, and carried out between 12:00 and 18:00 pm. Rats were

placed in the experimental rooms 1 h prior to testing. The arena was wiped

with 70% ethanol followed by water between rats.

Microdialysis experiments

All microdialysis experiments were conducted during the dark period of the

light=dark cycle [rats were housed under inverted light=dark cycle (lights

on=off at 8:00 pm=8:00 am)]. Under Equithesin (2 mg=kg i.p.) anaesthesia

rats were stereotaxically implanted with double bilateral guide-cannulae to

accommodate microdialysis probes in the nucleus accumbens and to per-

form microinjections into the mPFC, according to the following co-ordi-

nates from bregma: þ3.2 mm rostral; 0.8 mm medial; �2.5 mm from the top
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of the skull for mPFC; and þ1.4 mm rostral; þ1.6 mm medial; þ4.5 mm

from the top of the skull for the nucleus accumbens, with the incisive bar

set at �3.3 mm (Paxinos and Watson, 1998). Six to seven days after surgery

microdialysis experiments were carried out in freely moving animals.

Microinjections were performed following the same protocol as described

above. Microdialysis probes, constructed in our own workshop, were of

concentric design with an active dialysis membrane (5000 Da, Hospal,

Barcelona, Spain) of 2 mm in length. The probes were perfused with arti-

ficial CSF consisting of (in mM): NaCl 137; CaCl2 1.2; KCl 3; MgSO4 1;

NaH2PO4 0.5; Na2HPO4 2; glucose 3; containing the acetyl cholinesterase

inhibitor neostigmine 1mM. pH¼ 7.3), at a flow rate of 2ml=min. After

basal concentrations of neurotransmitters were established (3 h perfusion

period), 20 min samples were collected and immediately stored at �80�C

until analyzed. The first three samples were used as a control.

Acetylcholine and dopamine analysis

Acetylcholine and choline, and catecholamines (dopamine and its metabo-

lites DOPAC and HVA) contents of samples were analyzed by reverse-phase

HPLC and electrochemical detection (Hernández et al., 2003).

Acetylcholine and choline. Samples were injected in an auto sampler

(Hewlett Packard, series 1100, Madrid, Spain) running in a microbore col-

umn of 10mm particles and 530�1 mm (Unijet microbore Ach=Ch anal-

ytical column. BAS, West Lafayette, IN). The mobile phase consisted of

50 mM phosphate buffer, 0.5 mM EDTA, and ProClin 150 microbiocide

Reagent 5 ml=l (BAS), pH¼ 8.5 adjusted with NaOH 1 N). The mobile

phase was not re-circulated and the flow rate maintained at 0.15 ml=min.

These conditions allowed Acetylcholine and Choline to be detected at 6.7

and 8.5 min, respectively.

Acetylcholine was hydrolyzed by acetylcholinesterase to choline in a

post-column enzyme reactor (Unijet microbore Ach=Ch IMER, BAS);

Choline was oxidized by choline oxidase to produce hydrogen peroxide

that was detected by an electrochemical detector (Hewlett Packard 1049A,

Madrid, Spain) equipped with a platinum electrode at þ500 mV. The limit

of detection for acetylcholine and choline (8ml samples) was 5 nM.

Dopamine and metabolites. Samples were injected in a Rheodyne injector

(20ml loop) running in a C18 column of 4mm particles, and 3.9�150 mm

(Nova-Pak, Waters, Milford, MA). The mobile phase consisted of 0.1 M

acetate-citrate buffer (pH 4.35 adjusted with HCl and NaOH 1 N), 1 mM

EDTA, 4.7 mM sodium octyl sulphonate, and 15% methanol. The mobile

phase was re-circulated at a flow rate of 1 ml=min. These conditions allowed

catecholamines to be detected at the following retention times: 2.1 min

DOPAC, 3.7 min HVA, and 5.5 min dopamine.

The compounds were measured by a coulometric detector (Coulochem

II model 5200, ESA). Conditioning cell (ESA 5021) was set at 0 mV

and analytical cells (ESA 5011) at þ275 mV (cell 1) and �250 mV

(cell 2). Chromatograms were processed using the Millenium software

(Waters). The limit of detection for dopamine (20 ml samples) was 0.15

nanomolar.

Histology

All animals were anaesthetised with an overdose of sodium pentobarbital

(120 mg=kg i.p.) and perfused intracardially with 0.9% saline followed by

10% formalin. Bilateral injections into the mPFC of methylene blue were

performed just before intracardial perfusions to better visualise the location

of injection cannulae. The brain was removed, and the placement of the

injection cannulae and=or microdialysis probes was verified in sections cut

Fig. 1. Schematic representation showing the

place where bilateral microinjection cannulae

and microdialysis probes were located in the

mPFC and nucleus accumbens core, respec-

tively (see co-ordinates in Materials and

methods Section) (modified from Paxinos

and Watson, 1998)
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with a cryostat microtome. Animals with incorrect cannulae or microdi-

alysis probe placements were not included in the study.

Statistical analysis

To analyse motor activity counts and dialysate concentrations a two-way

analysis of variance (ANOVA) with repeated measures design was used to

perform planned comparisons (a priori analysis) considering time and

drug treatment as within- and between-subject factors, respectively. For

the analysis of dialysate concentrations of acetylcholine, dopamine and its

metabolites, absolute values were normalised by subtracting basal concen-

trations (average of three samples values) to each post-basal sample.

Results

Effects of quinpirole injected into the PFC

on spontaneous motor activity

The injection of the D2 agonist quinpirole (1.5 and

5 mg=0.5 ml) produced a decrease in spontaneous horizontal

[F(2, 21)¼ 6.80, p¼ 0.005] and vertical [F(2, 21)¼ 7.26,

p¼ 0.004] motor activity (Fig. 2 and Table 1). The motor

activity was inversely correlated with the dose of quinpi-

role used [horizontal activity: r¼�0.63, p<0.01; vertical

activity: r¼�0.46, p<0.05]. In particular, quinpirole 1.5

and 5 mg reduced horizontal motor activity (total activity

counts during 40 min) to 53% [F(1, 21)¼ 7.87, p¼ 0.01]

and to 28% [F(1, 21)¼ 18.4, p¼ 0.0003], respectively, of

controls (Ringer). The effects of quinpirole (5 mg) were

blocked by the simultaneous injection of the D2=D3

antagonist raclopride (5 mg) [F(1, 28)¼ 4.27, p¼ 0.048].

Raclopride (5 mg) also significantly decreased spontaneous

motor activity [F(1, 20)¼ 4.45, p¼ 0.047] (Table 1).

Fig. 2. Effects of injections of the D2 agoist quinpirole into

the PFC on spontaneous motor activity in non-habituated

rats. Data (mean � SEM) show activity counts every 5 min

(top) or total activity counts (bottom) in the open field.
��p<0.01 compared to Ringer after ANOVA (time� treat-

ment) with repeated measures and planned comparisons.

Number of animals per group in parentheses

Table 1. Effects of the injection into the PFC (0.5�l=side) of the D2 agonist

quinpirole and the D2 antagonist raclopride on spontaneous motor activity.

Data (mean � SEM) show total activity counts (40min). In parenthesis the

number of animals

Horizontal activity Vertical activity

Ringer (8) 1077 � 192 104 � 23

RACL 1.5mg (7) 821 � 80 52 � 23

RACL 5 mg (8) 672 � 104�� 32 � 9��
QUIN 1.5mg (8) 570 � 103�� 25 � 6��
QUIN 5mg (8) 301 � 37�� 24 � 9��
QUIN 5mgþ
RACL 5 mg (8) 655 � 97�� ,$ 28 � 5��

� p<0.05, �� p<0.01 compared to ringer, $ p<0.05 compared to quin-

pirole 5 mg.
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Effects of quinpirole injected into the PFC

on PCP-induced motor activity

The injection of PCP (5 mg=kg i.p.) produced an increase in

horizontal motor activity [F(11, 176)¼ 13.95, p¼ 0.0001].

This increase reached the maximal effect in the Ringer

group [360% of control values (control values as the aver-

age of 30 min before PCP injections)] (Fig. 3). The injec-

tion of quinpirole (1.5 and 5 mg) decreased PCP-induced

horizontal motor activity to 75 and 38% [F(1, 16)¼ 4.61,

p¼ 0.047] of control values, respectively, (total activity

counts for 60 min) (Fig. 3).

Effects of quinpirole injected into the PFC

on PCP-induced changes of dialysate concentrations

of acetylcholine, choline, dopamine, DOPAC

and HVA in the nucleus accumbens

Basal extracellular concentrations in the nucleus accum-

bens were (mean � SEM, in nM): 26.1 � 2 for acetylcho-

line (n¼ 14); 870.3 � 132 for choline (n¼ 15); 0.67 � 0.1

for dopamine (n¼ 15); 567.6 � 46 for DOPAC (n¼ 15);

and 109.0 � 9 for HVA (n¼ 14). The injection of PCP

(5 mg=kg i.p.) produced increases of extracellular con-

centrations of acetylcholine [F(1, 12)¼ 6.06, p¼ 0.029

(80–120 min)], but not choline, and of the dopamine

metabolites DOPAC (though it did not reach statistical

significance) and HVA [F(1, 11)¼ 5.63, p¼ 0.036 (120–

160 min)], but not of dopamine. The injection of quinpi-

role (5 mg) into the PFC significantly reduced PCP-induced

increases of dialysate concentrations of acetylcholine [F(1,

12)¼ 4.77, p¼ 0.049], DOPAC [F(1, 12)¼ 5.16, p¼ 0.042]

and HVA [F(1, 11)¼ 4.40, p¼ 0.049], in the nucleus

accumbens (Fig. 4).

Discussion

The present study shows that the injection of the D2 ago-

nist quinpirole into the PFC decreased spontaneous motor

Fig. 3. Effects of injections of the D2 agonist quinpirole into

the PFC on PCP-induced motor activity in habituated rats.

Arrow indicates injections (intra-prefrontal and systemic).

Data (mean � SEM) show activity counts every 5 min (top)

or total activity counts (bottom) in the open field. �p<0.05,
��p<0.01 compared to Ringer after ANOVA (time� treat-

ment) with repeated measures and planned comparisons.

Number of animals per group in parentheses
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activity in a dose-dependent manner. These effects were

blocked by the prefrontal injection of the D2 antagonist

raclopride. Furthermore, the injection of quinpirole into

the PFC decreased PCP-induced motor activity in a dose-

dependent manner. The prefrontal injection of quinpirole

also reduced the increases of dialysate concentrations of

acetylcholine, DOPAC and HVA produced by PCP in the

nucleus accumbens. These results suggest that the stimula-

tion of prefrontal D2 receptors plays an inhibitory role in

modulating spontaneous, and PCP-induced motor activity

and cholinergic and dopaminergic activity in the nucleus

accumbens.

In vivo studies producing specific lesions of prefrontal

dopamine terminals as well as stimulation=blockade of

dopamine receptors in the PFC have suggested a role

for mesocortical dopamine system in modulating motor

activity in the rat (Vezina et al., 1991; Duvauchelle et al.,

1992; Radcliffe and Erwin, 1996; Broersen et al., 1999;

Tzschentke, 2001). However, the specific role of prefrontal

D2 receptors stimulation was not fully elucidated with

these studies since the experimental protocols followed and

the dopamine agonists=antagonists used (mixed D1–D2)

produced contradictory (facilitatory=inhibitory) effects on

motor activity (Duvauchelle et al., 1992; Radcliffe and

Erwin, 1996; Broersen et al., 1999; Bast et al., 2002;

Lacroix et al., 2000). As shown in the results section of

this paper, the injection of the D2 agonist quinpirole

reduces spontaneous motor activity in a dose-dependent

manner. These results are in line with other studies report-

ing that the stimulation of prefrontal dopamine receptors

by mixed agonists (Radcliffe and Erwin, 1996; Broersen

et al., 1999) or D2 agonists (Beyer and Steketee, 2000,

2001) reduces spontaneous and=or cocaine-amphetamine-

induced locomotion, and further suggest an inhibitory role

for prefrontal D2 receptors stimulation in modulating motor

behavior.

In support to the involvement of D2 receptors and the

effects of quinpirole reducing spontaneous motor activity

are the results shown in the present study in which injec-

tions of the D2 antagonist raclopride blocked these effects.

It should be mentioned that, in line with previous studies

(Radcliffe and Erwin, 1996), the blockade of prefrontal D2

Fig. 4. Effects of injections of the D2 agonist quinpirole into

the PFC on PCP-induced changes of dialysate concentrations

of acetylcholine, choline, dopamine and the dopamine meta-

bolites DOPAC and HVA in the nucleus accumbens. Data

(mean � SEM) show dialysate concentrations as percent-

ages of basal values after PCP injections (maximun overall

effects). Basal values (mean � SEM, in nM): 26.1 � 2 for

acetylcholine; 870.3 � 132 for choline; 0.67 � 0.1 for dopa-

mine; 567.6 � 46 for DOPAC; and 109.0 � 9 for HVA.
�p<0.05 compared to Ringer in PFC after ANOVA (time�
treatment) with repeated measures and planned comparisons.

Number of animals per group in parentheses
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receptors also reduced spontaneous motor activity at the

highest dose of raclopride used. However, as shown in this

report, this effect did not mask the role of raclopride in

counteracting the stronger inhibitory effects produced by

quinpirole on motor activity. The effects observed with

quinpirole and raclopride in the present study parallel other

studies reporting similar results in which blockade and

stimulation of prefrontal dopamine receptors have similar

effects on different behavioural paradigms such as work-

ing memory and fear conditioning (Pezze et al., 2003;

Goldman-Rakic et al., 2000). Based on these last studies

and the results shown here, an inverted U-shape function of

prefrontal D2 receptors in regulating spontaneous motor

activity can be hypothesized.

The locomotor hyperactivity and the limbic dopaminer-

gic activation produced by the psychomimetic phencycli-

dine (PCP) in rodents has been used as a valid experimental

model to investigate the cortico-limbic dysfunction that

occur in schizophrenia (Jentsch et al., 1998; Jentsch and

Roth, 1999; Takahata and Moghaddam, 2003). Specifically,

some studies have suggested that PCP, as well as other

NMDA antagonists, acts at the level of PFC to impair

the activity of pyramidal neurons (Shi and Zhang, 2003;

Jacksonet al., 2004) and, in turn, the function of the

cortico-limbic system and motor behavior. In order to

investigate the function of prefrontal D2 receptors in the

PFC-nucleus accumbens circuit under PCP treatment, we

studied the effects of D2 stimulation in the PFC on PCP-

induced locomotion and on the changes in acetylcholine,

dopamine and dopamine metabolites extracellular concen-

trations in the nucleus accumbens. As shown in the results

section, PCP increased the extracellular concentrations of

acetylcholine and of the dopamine metabolites DOPAC

and HVA in the nucleus accumbens as well as locomotion.

In contrast to the dopamine metabolites, PCP at the dose

used in this study did not increase consistently the extra-

cellular concentrations of dopamine in the nucleus accum-

bens. Previous microdialysis studies have suggested that

higher doses of PCP to the ones used here are in fact

needed to better characterize PCP-induced dopamine re-

lease in this area of the brain (Schiffer et al., 2001). How-

ever, the substantial increases of HVA produced by PCP

could be considered to be an index of an increased dopa-

minergic activity (Deutch et al., 1987; Kashiwa et al.,

1995; Del Arco and Mora, 1999). These results are in line

with previous studies showing that systemic injections of

PCP and other NMDA antagonists produce hyperactivity

and increase dialysate concentrations of acetylcholine in

PFC (Kim et al., 1999; Nelson et al., 2002) and dopamine,

DOPAC and HVA in PFC, nucleus accumbens and=or

striatum (Nishijima et al., 1994; Kashiwa et al., 1995; Kato

et al., 2000).

As shown in Figs. 3 and 4, stimulation of prefrontal D2

receptors strongly reduced both motor activity and the

increases of dialysate concentrations of acetylcholine,

DOPAC and HVA in the nucleus accumbens produced by

PCP. Given the involvement of acetylcholine, dopamine

and nucleus accumbens in motor behavior (Kelly and

Iversen, 1976; Ahlenius et al., 1987; de Rover et al., 2002),

it is suggested that the blockade of the increases of ace-

tylcholine and dopamine metabolites in the nucleus accum-

bens produced by prefrontal D2 stimulation underlies, at

least in part, the decreases in PCP-induced locomotion

observed (but see Takahata and Moghaddam, 2003). These

results are in agreement with our own studies in which pre-

frontal D2 stimulation reduces spontaneous motor activity

(present study) and the basal release of acetylcholine and

dopamine in the nucleus accumbens (Del Arco and Mora,

2005) and further suggest that this inhibitory action is not

changed under the effects produced by PCP.

As shown, the stimulation of prefrontal D2 receptors

produces an inhibitory action on hyperactivity induced by

acute injections of the psychomimetic PCP. These results

are of relevance in the context of the cortico-limbic

hyperactivity and the deficient stimulation of prefrontal

dopamine receptors, suggested to occur in schizophrenia

(Guo-Zhang et al., 2002; Meyer-Lindenberg et al., 2002;

Laruelle et al., 2003). Based on the present and previous

reports (Tamminga et al., 1978; Dolan et al., 1995), it could

be suggested that strategies focused on the specific stimu-

lation of prefrontal D2 receptors would be of interest to

consider in order to attenuate the behavioural impairments

related to the cortico-limbic dysfunction in schizophrenia

(Tamminga and Carlsson, 2002).
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