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Summary. Levodopa-induced dyskinesias (LID) are abnormal involuntary
movements that develop progressively with repeated dopamine replacement
therapy in Parkinson’s disease (PD). The pathophysiology of LID comprises
many functionally-related abnormalities in neurotransmission which lead
to abnormalities in the rate, pattern and synchronisation of neuronal activity
within and outside the basal ganglia.

In this review, we discuss the significance of the problem of LID, options
currently available for avoiding and treating LID, recent advances in understand-
ing the mechanisms responsible for the generation of LID once it has been estab-
lished. In particular the discussion relates to the mechanisms underlying LID seen
while levodopa is exerting its peak anti-parkinsonian actions, as it is this com-
ponent of LID that is best modelled in animals and, to date, best understood. We
do not aim to discuss the mechanisms by which LID is established and evolves,
often termed priming, with repeated treatment, though this is an important area
that has also witnessed significant advances recently (for recent review, see
Blanchet et al., 2004). Finally, we define, where possible, the rationale for multi-
ple novel therapeutic approaches that might help resolve the problem of LID.

Keywords: Parkinson’s disease, basal ganglia, NMDA, cannabinoid, opioid,
serotonin, synaptic plasticity.

The significance of Parkinson’s disease and levodopa-induced
dyskinesia

Parkinson’s disease (PD) is a progressive neurodegenerative disorder, caused by
loss of mesencephalic dopaminergic neurons and is characterised by reduced
ability to select and initiate voluntary movements (bradykinesia, hypokinesia),
rigidity and tremor at rest (Quinn, 1997). PD is extremely common amongst
those over 65, an age group that, in North America, is predicted to rise from
12% to 24% over the next 30 years. The overall prevalence of Parkinson’s
disease in this population is in the order of 1.5–2% and increases with age.
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While there are some significant discrepancies in reported prevalence of PD,
parkinsonism and parkinsonian signs (e.g. being much higher in Bennett et al.,
1996; Louis et al., 2003), the majority of studies place prevalence of PD per se
at approximately 1% of people 65 to 74 years of age, 3% for those 75 to 84 and
5% of those 85 and older (De Rijk et al., 1997; Kis et al., 2002; Benito-Leon
et al., 2003; Bergareche et al., 2004). Differences in reported prevalence may
relate to methodology of assessment rather than real differences between dif-
ferent populations (Sevillano et al., 2002), and highlight the difficulty of defin-
ing the PD population outside specialist centres (Schrag et al., 2002). In fact, a
corollary of this is that, in the community, the disease is under-diagnosed and
thus many, perhaps between 20% and 80% of cases, go undiagnosed and un-
treated, particularly in geographically-isolated areas (De Rijk et al., 1997; Kis
et al., 2002; Schrag et al., 2002; Sevillano et al., 2002).

The primary therapeutic strategy for the treatment of PD, dopamine replace-
ment therapy, is based on attempts to compensate for the loss of dopaminergic
neurons. This is achieved by the administration of L-3,4-dihydroxyphenylalanine
(L-DOPA, levodopa), the direct metabolic precursor for dopamine, or dopamine
receptor agonists such as pergolide, bromocriptine, ropinirole, cabergoline or
pramipexole (Oertel and Quinn, 1997). Despite the widespread availability of
these agents, PD remains a major problem in contemporary neurology and psy-
chiatry, represents a significant financial burden on society and has a serious
negative impact on the lifestyle and socio-economic status of those affected.
The problems and limitations of current therapies are well-demonstrated by
the fact that people with parkinsonism have a lower perceived quality of life
(Schrag et al., 2000), a much higher risk of hospitalisation for a range of non-
neurological conditions (Guttman et al., 2004) and approximately twice the risk
of death, compared to age-matched controls (Bennett et al., 1996; Guttman et al.,
2001). One major factor contributing to the inadequacies of current therapies
for PD is that they lead to the development of unwanted, debilitating, involun-
tary movements ‘‘levodopa-induced dyskinesia’’ (LID).

Initially, dopamine replacement therapy dramatically improves the motor
symptoms and quality of life of patients with PD. However, within a few years,
treatment with levodopa induces the genesis of unwanted, debilitating, involun-
tary movements known as ‘‘levodopa-induced dyskinesia’’ (LID). This LID,
characterised by idiosyncratic mixtures of dystonia and chorea, becomes pro-
gressively more severe with increasing duration of treatment. LID can show
several patterns of expression, being most severe at peak anti-parkinsonian
effect of levodopa, at the beginning and end of dose or when off-treatment
(Quinn, 1998). LID can affect 45–85% of patients of PD patients within a
movement disorder clinic setting (Friedman, 1985; Quinn et al., 1987; Wagner
et al., 1996; Rascol et al., 2000). In a community setting, it is suggested that the
approximately 30% of patients who have received a levodopa preparation, at
any time, exhibit LID (Schrag and Quinn, 2000). The development, or priming,
of LID over time is a complex process and is dependent on the interaction
of many factors, including age of onset, disease severity, duration of therapy,
treatment regimen (Friedman, 1985; Wagner et al., 1996; Schrag and Quinn,
2000). However, once the brain is primed to elicit dyskinesia it is difficult to
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treat the underlying symptoms without the expression of dyskinesia. It also
extremely difficult to reverse, deprime, the priming process. In fact, LID can
become so severely disabling as to negate any clinical benefit from dopami-
nergic therapy and significant efforts must be made and costs incurred to
maintain control of symptoms in the advanced PD patient. The direct annual
cost of treating PD is estimated as being US$ 11 billion worldwide. In addition
to the financial costs, the human burden is immense and affects not only the
person with PD but a wide network of carers in many ways upon which a fi-
nancial value cannot be placed. An enhanced understanding of the mechanisms
responsible for dyskinesia could thus have great impact.

Current approaches to LID

Several approaches to the treatment of LID are now available though none are
optimal or applicable to all patients (Ferreira and Rascol, 2000).

Five dopamine receptors are described (D1–D5), these can be grouped, on
the basis of molecular biology, pharmacology and signal transduction, into two
classes, D1-like (D1 and D5) and D2-like (D2, D3 and D4). De novo admin-
istration of D2-like dopamine receptor agonists has less propensity to prime
for dyskinesia than levodopa in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP)-lesioned non-human primates (Bedard et al., 1986; Pearce et al., 1998;
Maratos et al., 2001; Smith et al., 2002) and in man (Rascol et al., 1979, 2000;
Montastruc et al., 1989; Parkinson Study Group, 2000; Lees et al., 2001).
However, the anti-parkinsonian benefit of dopamine agonist monotherapy is
generally not maintained with time and ‘‘rescue’’ with levodopa is required
(Rascol et al., 2000; Lees et al., 2001). While levodopa=agonist combination
therapy can be associated with good anti-parkinsonian control, the addition of
levodopa brings with it the almost inevitable prospect of LID. There have been
some indications that the use of high dose dopamine agonist therapy might
be capable of depriming for dyskinesia, thus, use of an apomorphine or lisuride
infusion or high dose pergolide treatment might lead to reduced ability of
dopamine replacement therapy to elicit dyskinesia (Facca and Sanchez-
Ramos, 1996; Manson et al., 2002; Stocchi et al., 2002). However, such
approaches have not been widely employed and are likely to be associated with
significant practical problems and poorly-tolerated by many patients. Thus, the
increasing use of dopamine agonists, while helpful early in the disease in pre-
viously untreated patients, does not remove LID as a major problem in the
management of PD.

Recently, the concept of using pharmacological adjuncts to levodopa to
reduce the expression of established LID has been demonstrated by the use
of the NMDA antagonist amantadine, firstly in the MPTP-lesioned non-human
primate (Blanchet et al., 1998) and latterly, in the clinic (Verhagen-Metman
et al., 1998c; Metman et al., 1999; Luginger et al., 2000; Del-Dotto et al.,
2001). Although amantadine can be helpful in reducing dyskinesia, it may
not be well-tolerated or efficacious in all patients, insufficient data are available
(Crosby et al., 2003). Furthermore, amantadine has potential to reduce motor
learning in healthy volunteers (Tahar et al., 2004) and its actions in reducing
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LID show tachyphylaxis (Thomas et al., 2004). These limitations of amantadine
may result from its mechanism of action as an NMDA antagonist. Firstly, weak
or variable efficacy may result from it being only a weak blocker of channel
activation (Porter and Greenamyre, 1995), its affinity and binding kinetics re-
sult in only brief blockade, in comparison to other NMDA channel blockers
(Blanpied et al., 1997). Secondly, amantadine shows little selectivity for sub-
types of NMDA receptors and, thus, may have extensive actions, in many brain
structures, that limit its tolerability and=or efficacy (Blanpied et al., 1997).
Thirdly, chronic administration of NMDA channel blocking drugs causes dys-
regulation of synthesis of NMDA receptor subunits, which could contribute to
tachyphylaxis (Oh et al., 2001).

Similarly, surgical approaches to LID have been proposed and applied
(Gross et al., 1999). Thus, in patients with previously-established LID, manip-
ulation of the internal segment of the globus pallidus (GPi) by either deep brain
stimulation (DBS) (Gross et al., 1997; Benabid et al., 1998; Kumar et al.,
1998a; Burchiel et al., 1999) or by lesion (Lozano et al., 1995; Baron et al.,
1996, 2000; Lang et al., 1997a; Samuel et al., 1998; Schrag et al., 1999; Fine
et al., 2000; Lozano and Lang, 2001; Vitek et al., 2003) may reduce the pro-
pensity of levodopa to elicit dyskinesia, without reducing its ability to alleviate
parkinsonian symptoms. Alternatively, surgery focussed on the subthalamic
nucleus, either DBS (Benabid et al., 1994, 1998; Krack et al., 1997, 1998,
2003; Kumar et al., 1998a, b; Burchiel et al., 1999; Fraix et al., 2000;
Molinuevo et al., 2000; Kleiner-Fisman et al., 2003; Varma et al., 2003) or
lesion (Patel et al., 2003), can reduce the problem of LID by allowing the
maintenance of good anti-parkinsonian benefit while reducing the required
dosage of levodopa. Furthermore, it has been suggested that STN-DBS can
deprime the dyskinetic brain so that it is less susceptible to elicit dyskinesia
when challenged with a give dose of levodopa (Bejjani et al., 2000; Varma et al.,
2003). Surgical manipulations such as these can undoubtedly reduce the prob-
lem of LID in some patients and overall probably improve the quality of life of
people with Parkinson’s disease (Gray et al., 2002; Romito et al., 2003). How-
ever, surgery has limitations in that, it is not applicable to all patients, it can
lead to changes in non-motor function and it cannot be applied widely as there
are a relatively small number of specialised centres that can provide service to
all patients for whom LID is a problem (Lang et al., 1997b; Jahanshahi et al.,
2000; Saint-Cyr et al., 2000; Trepanier et al., 2000; Berney et al., 2002; Doshi
et al., 2002; Tamma et al., 2003). On the other hand, surgical transplants of fetal
mesencephalic tissue do not remove the problem of LID, indeed it now appears
that such surgery may exacerbate the problem, in some cases leading to the
appearance of ‘‘runaway’’ dyskinesia present when the patient is receiving no
pharmacological treatment whatsoever (Hagell et al., 2002).

An increased understanding of the mechanisms responsible for LID could
highlight novel approaches to the treatment of LID. The remainder of this
review focuses on how significant advances in understanding the neural
mechanisms by which LID is elicited, once it has become established, have
raised the possibility of more effective therapies based upon targeting not only
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dopaminergic but also non-dopaminergic components of the basal ganglia cir-
cuitry (Chase, 1998; Brotchie, 1999; Metman et al., 2000; Rascol, 2000; Bezard
et al., 2001; Hadj-Tahar et al., 2003).

The pathophysiology of established LID

The striatum influences the output regions of the basal ganglia, the internal
segment of the globus pallidus (GPi) and substantia nigra pars reticulata (SNr),
the output regions of the basal ganglia, by either a ‘‘direct’’ monosynaptic
connection or an ‘‘indirect’’ network involving the external pallidal segment
(GPe) and the subthalamic nucleus. The direct and indirect pathways provide
means by which the striatum can have opposing actions on the activity of GPi=
SNr (Kolomiets et al., 2003). Physiologically, the interplay of these processes
is responsible for selection of appropriate movements and the suppression
of inappropriate movements (Hikosaka, 1989; Chevalier and Deniau, 1990).
Pathophysiological imbalances in the activities of the direct and indirect striatal
output pathways lead to abnormal basal ganglia output, reflected in gross
changes in firing rate, as well as changes in patterning and synchronisation
of neuronal firing, (this basic concept has been reviewed extensively elsewhere,
Penney and Young, 1983, 1986; Alexander et al., 1990; Crossman, 1990, 2000;
Obeso et al., 2000b; Wichmann and DeLong, 2003). In the case of the genera-
tion of the inappropriate movements, such as LID, the net outflow from the
basal ganglia is thought to be reduced.

Although, controversy remains (e.g. Obeso et al., 2000a), and a complete
understanding of LID will undoubtedly require additional and alternative con-
cepts to be incorporated, the following changes in neural function are key con-
tributors to the mechanisms of LID.

1) Once the parkinsonian brain has been primed to elicit dyskinesia, there are
significant alterations in the influence of the glutamatergic inputs to neurons
of the striatum that influence other regions of the basal ganglia (Chase et al.,
1998; Calon et al., 2000; Oh and Chase, 2002).

2) Abnormal glutamatergic transmission in LID, results not only in changes in
the general excitability of striatal neurons but also in abnormalities in synap-
tic plasticity in corticostriatal synapses and abnormalities in the pattern of
activity of those striatal outputs.

3) The principal abnormality is that glutamatergic drive to striatal output
neurons projecting to GPi is enhanced, i.e., the direct pathway is over-
stimulated.

4) As the direct pathway employs GABA as its primary transmitter, there is
enhanced inhibition of GPi and SNr by the direct pathway so rendering basal
ganglia outputs underactive. This drives the expression of inappropriate
movements.

In themselves, we propose, that these changes may be sufficient to generate
dyskinesia. However, additional mechanisms are likely play a role, for instance
GABAergic inhibition of GPe by the indirect pathway may be reduced, thus
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making GPe overactive. This would further lead to enhanced inhibition of GPi
and SNr. Thus,

1) enhanced activity in the GABAergic projections from GPe to GPi=SNr, and,
2) increased activity of the inhibitory GPe-subthalamic nucleus connection,

which would lead to subsequent underactivity of excitatory subthalamic
efferents to GPi and SNr, would both cause underactivity of basal ganglia
outputs.

The above explanation of the mechanisms underlying LID has been extremely
useful in providing a theoretical framework upon which to hang a vast amount
of data and thus enable the generation of testable hypotheses. However, it must
be appreciated that the concept that basal ganglia outputs, from GPi and SNr,
are simply underactive in LID is far from being the full story. Indeed, the
somewhat paradoxical success, in reducing LID, of an approach that further
reduces GPi activity, pallidotomy, illustrates the failure of the model to encap-
sulate all available data well. To move beyond this simplistic viewpoint towards
a more complete understanding it will be necessary to re-evaluate data and take
more sophisticated approaches to studying LID. Such would recognise that,
in LID, it is not simply the total neuronal activity, but also the pattern and
synchronisation of firing that defines the operation of the basal ganglia cir-
cuit (Matsumura et al., 1995; Vitek and Giroux, 2000; Brown, 2003). Thus in
experimental dyskinesia, within either GPi or GPe, the firing frequency in
neighbouring neurons can be either increased or decreased (Matsumara et al.,
1995). It now appears that the pattern of firing of individual neurons in GPe and
GPi, rather than frequency alone, is abnormal following the appearance of LID
in the MPTP-lesioned primate (Boraud et al., 2001). That the pattern of GPi
activity, and not just reduced frequency, is responsible for the generation of LID
is supported by the fact that manipulations which disrupt that pattern e.g. GPi
DBS, alleviate LID, as discussed above. In addition to the pattern of firing of
individual neurons, it is likely that synchronisation and correlation of firing
of multiple neurons within and between regions plays an important role in
the expression of LID. The basal ganglia circuitry may support several states
of neuronal activity, e.g. bursting, synchronisation, oscillation, and switches
between such states may represent the neuronal basis for many functions of
the basal ganglia and also disease sates (Wichmann and DeLong, 1999; Brown,
2003; Ruskin et al., 2003; Williams et al., 2003; Hamani et al., 2004). Such
behaviour may be an emergent property of the molecular and cellular architec-
ture of the basal ganglia circuitry, this has been elegantly demonstrated for GPe
and the subthalamic nucleus (Bevan et al., 2002 a, b; Terman et al., 2002). As
an example, cross-correlation analysis of simultaneously, recorded monkey pal-
lidal cells shows a very low level of correlated activity in the normal state.
However, the induction of parkinsonism results in both increased synchroniza-
tion and the appearance of oscillatory activity in the pallidum (Nini et al., 1995;
Wichmann et al., 1999; Raz et al., 2000, 2001). Dopamine replacement therapy
restores the normal correlation level at the pallidum in the MPTP-treated
parkinsonian monkeys (Heimer et al., 2002). Unfortunately, to date, no details
of the nature of correlated or oscillatory firing activity in the basal ganglia in
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animals with defined LID have been reported. However, the advent of a novel
drug, levetiracetam, that can alter neuronal synchronisation suggest that such
studies could prove extremely interesting. Levetiracetam is a novel, and well-
tolerated anti-convulsant, and exhibits unique properties that interfere with
neuronal synchronisation, these contrast to other anti-epileptic drugs. Admin-
istration of levetiracetam, reduces the expression of established LID in MPTP-
treated non-human primates, without affecting the anti-parkinsonian action of
levodopa (Hill et al., 2003; Bezard et al., 2004). Furthermore, levetiracetam has
synergistic actions with amantadine with respect to its anti-dyskinetic actions
(Hill et al., 2004). If these actions of levetiracetam can be demonstrated to
reflect an action due to altering neuronal synchronisation then they will repre-
sent a paradigm shift in the pharmacological treatment of LID, which has,
hitherto, focussed on modulating signalling at individual neurotransmitter
receptors or their downstream signalling cascades.

The pharmacology of established LID

Many factors are likely to contribute to the production of abnormal frequency,
firing patterns and neuronal synchronisation in LID. These have been demon-
strated to different degrees of rigour, though all have some supportive data. The
remainder of this review will discuss the contribution played by multiple trans-
mitter systems to the generation of LID once it has been established.

Role of different classes of dopamine receptors

As discussed above, dopamine D2-like receptor agonists produce less dyskine-
sia than LEVODOPA if given to previously-untreated patients, as described
above the mechanism of priming are not he subject of this review and are
discussed elsewhere (e.g. Blanchet et al., 2004). On the other hand, the role
of different subtypes of dopamine receptors in eliciting LID, once it has been
established, is also of great interest and might offer opportunities for therapeu-
tic intervention in the vast majority of patients who have been previously
primed with levodopa. However, if patients, or monkeys, in whom LID has
been previously established, are administered dopamine D2 receptor agonist
therapy, even as monotherapy, dyskinesia is evoked in a similar way to levo-
dopa (Gomez-Mancilla and Bedard, 1991; Blanchet et al., 1993, 1997; Pearce
et al., 1995; Marsden, 1998; Clarke et al., 2000; Rascol, 2000; Clarke and
Deane, 2001). Similarly, in parkinsonian monkeys and patients, previously
primed with levodopa to elicit LID, acute administration of D1 dopamine
receptor agonists also elicit dyskinesia, though this may have different phenom-
enology (Pearce et al., 1995, 1999; Grondin et al., 1997; Rascol et al., 1999,
2001b). However, initial claims, in non human primate, that D1 receptor stim-
ulation might be associated with less severe dyskinesia than LID (Grondin et al.,
1997), for equivalent anti-parkinsonian doses, have not been substantiated
by subsequent studies in man (Rascol et al., 2001b). The reason for this is
not clear but may reflect the variability, between species or between human
disease state and animal model, in basal levels of endogenous dopamine as
the actions of D1-like agonists require concomitant stimulation of D2-like

Levodopa-induced dyskinesia 365



receptors (Gnanalingham et al., 1995; Grondin et al., 1999; Treseder et al.,
2000a, b). Thus, the expression of LID cannot be simply described on the basis
of involving either D1-like or D2 like, nor once established can it be avoided
by employing D1-like or D2-like agonists to alleviate parkinsonism. This
does not necessarily mean that specific subtypes of dopamine receptor are not
involved in eliciting LID, just that receptors of both classes are able to be
involved in its production.

The study of specific dopamine receptors has been hampered by the avail-
ability of pharmacological tools selective between members of the D1-like and
D2-like families. However, a body of data has emerged that make credible the
concept that the D3 receptor may have a role to play in the generation of LID.
Thus, in the 6-hydroxydopamine (6OHDA)-lesioned rat (which shows motor
complications in many ways equivalent to LID) and in MPTP-lesioned pri-
mate models of LID, there are reports of increased, above normal, levels of
D3 receptor and its mRNA (Bordet et al., 1997; Bezard et al., 2003; Guillin
et al., 2003). However, these conclusions are not universally drawn, with striatal
D3 levels being reduced or normal in monkeys with LID (Hurley et al., 1996b;
Morissette et al., 1998) or in PD patients post mortem, after many years levo-
dopa treatment and in many cases LID (Hurley et al., 1996a). This notwith-
standing, in the rat, elevated D3 expression after repeated levodopa treatment
of the 6OHDA rat, is confined to the direct pathway (Bordet et al., 2000),
overactivity of which is a key mechanism in the pathophysiology of LID and
anti-sense knockdown of striatal D3 receptor expression reduces established
levodopa-induced motor complications in the 6OHDA-lesioned rat, suggesting
a causative role in the production of LID (van Kampen and Stoessl, 2003).
More recently it has been reported that a partial D3 agonist, BP897, can act
to reduce the expression of LID in the MPTP-lesioned primate (Bezard et al.,
2003; Guillin et al., 2003). As dopamine formed from levodopa is essentially a
full D3 agonist it can thus be claimed that these actions result from an atten-
uation of D3 transmission. However, further studies are merited as full
D3 antagonists are not able to reduce LID without compromising the anti-
parkinsonian action of levodopa (Bezard et al., 2003; Silverdale et al., 2004),
indeed it has recently been suggested that BP897 only reduces LID at the
expense of anti-parkinsonian benefit (Hsu et al., 2004). Preliminary claims have
been made that, in addition to its D3 properties, BP897 also interacts with a
range of monaminergic receptors (Cussac et al., 2000). Given the discussion
below, such interactions could underlie the albeit impressive actions of BP897
in reducing LID. If the concept of attenuation of D3 signalling as an approach
to LID is sustained by further studies it highlights the possibility of develop-
ing selective D2 agonists, with little D3 activity, as a treatment for PD that will
potentially allow alleviation of parkinsonian symptoms without dyskinesia,
even in previously-primed patients.

An intriguing possibility is that LID may represent the stimulation of non-
synaptic dopamine receptors. The priming process might reflect abnormal traf-
ficking of dopamine receptors such that they are localised to inappropriate
locations on striatal neurons and thus exert inappropriate influence of the inte-
gration of incoming information to that neuron. The administration of levodopa
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or dopamine receptor agonists would stimulate dopamine receptors regardless
of their precise localisation. However, if synaptic receptors were selectively
targeted we have speculated that it might be possible to alleviate parkinsonism
without eliciting dyskinesia even in patients that had previously been primed to
elicit dyskinesia with levodopa. To date this concept is purely speculative. In
fact, a single dose of LEVODOPA can alter the subcellular distribution of
striatal D1 receptors, in a way that is not seen with agents with less propensity
to prime for dyskinesia (Muriel et al., 1999, 2002). However, a detailed analysis
of the cellular localisation of dopamine receptors in LID has yet to be per-
formed. One means to assess the effects of selectively stimulating synaptic
dopamine receptors might be to enhance the actions of endogenous, synapti-
cally-released dopamine. Indeed, inhibition of the re-uptake of endogenous
dopamine can alleviate parkinsonian symptoms without eliciting dyskinesia
in primed MPTP primates (Hansard et al., 2002a, b; Pearce et al., 2002). As
such effects are dependent on the presence of a pool of residual endogenous
dopamine they may only be therapeutically relevant in the early stages of the
disease, and thus not useful in all patients, they do however, highlight the fact
that in eliciting dyskinesia the brain responds differently depending upon the
source of its dopamine receptor stimulation. This suggests the involvement of
different populations of dopamine receptors in mediating anti-parkinsonian
actions and eliciting LID.

Table 1. Involvement of multiple receptor systems in levodopa-induced dyskinesia. Proposed
sites and mechanisms of involvement in the expression of dyskinetic symptoms

Receptor Site Nature of
abnormality in LID

Potential mechanism
of involvement in LID

Glutamate NMDA
(NR2A)

striatum enhanced Stimulation of activity
of direct output
pathway

Glutamate AMPA striatum enhanced Stimulation of activity
of direct output
pathway

Cannabinoid CB1 striatum reduced Enhanced glutamate
transmission

GPe reduced Decreased GABA
transmission

GPi enhanced Enhanced GABA
transmission

Dopamine D3 striatum enhanced Stimulation of activity
of direct output
pathway

Adrenergic a2 striatum=GPi enhanced Sensitises direct
pathway to effects
of dopamine

5HT2A striatum enhanced ?
5HT1A striatum reduced ?
m opioid GPi enhanced Inhibition of GPi

outputs
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Enhanced glutamatergic excitation of the direct pathway

Within the striatum, glutamatergic inputs, from the cerebral cortex and thala-
mus, can excite striatal output neurons by interactions with both ionotropic
(NMDA, AMPA and kainate) and metabotropic glutamate (mGluR) receptors
(Lovinger, 1991; Lovinger and Tyler, 1996; Pisani et al., 1997, 2001; Stefani
et al., 1998; Chergui et al., 2000; Gubellini et al., 2003; Vergara et al., 2003).
There are undoubtedly important functional interactions between these gluta-
mate receptors and abnormalities in signalling, by all, probably contribute to
the expression of LID. However, to date the most-studied and best understood
contribution of enhanced glutamatergic signalling to the mechanisms of LID
are those involving NMDA receptors. On an empirical level there are now a
number of studies in patients with PD, in the MPTP-lesioned primate with LID
and in the 6OHDA-lesioned rat model of LID where systemic administration of
NMDA antagonists reduces LID, or related motor complications (Engber et al.,
1994; Papa et al., 1995; Papa and Chase, 1996; Blanchet et al., 1998, 1999;
Verhagen-Metman et al., 1998a, b, c; Del Dotto et al., 2001; Chassain et al.,
2003). The effects appear to be mediated by blockade of NMDA transmission
within the striatum (Papa et al., 1995). Such blockade of excessive striatal
NMDA receptor-mediated excitation probably underlies the ability of amanta-
dine to reduce LID in man. A more detailed understanding of this excitation is
likely to lead to the development of treatments for LID that are even more
effective than amantadine. Several lines of investigation may bear fruit and will
be discussed below.

NMDA receptors are comprised of complexes of subunits of 2 families, NR1
and NR2. There are 8 splice variants of NR1 (NR1a–h) and 4 genes encoding NR2
subunits (NR2A–D). Subunits from each family combine, probably as tetramers,
of 2 NR1 and 2 NR2 subunits, to form functional receptors (Monyer et al., 1994).
Receptors with different subunit compositions have different physiological and
pharmacological properties and are expressed heterogeneously in different brain
region in a manner that is regulated during development, physiologically in the
adult and in disease processes (Buller et al., 1994; Goebel and Poosch, 1999).

In the MPTP-lesioned primate, established LID is associated with enhanced
levels of striatal NMDA receptors, particularly those containing NR2A sub-
units (Calon et al., 2002b). Furthermore, studies in a the 6OHDA rat model
of motor complications of dopamine the replacement therapy in PD, suggest
that enhanced phosphorylation of serine residues on NR1 and NR2A, but not
NR2B, subunits of striatal NMDA receptors accompanies repeated, intermit-
tent treatment of the parkinsonian brain (Oh et al., 1999; Dunah et al., 2000).
This enhanced serine phosphorylation is driven by activation of calcium=
calmodulin-dependent protein kinase II (CaMKII). Similarly, both NR2B and
NR2A subunits of striatal NMDA receptors exhibit enhanced phosphorylation
of tyrosine residues in the rat model of LID (Oh et al., 1998; Dunah et al.,
2000). These processes are driven by D1 receptor activation. This is of interest
as, D1 receptors preferentially modulate the activity of the direct striatal out-
put pathway so highlighting one potential means by which NMDA signalling
on the direct pathway may be abnormal and contribute to overactivity of this
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connection in LID. That such abnormal phosphorylation contributes to LID is
suggested by the findings that inhibition of CaMKII and tyrosine kinases reduce
motor fluctuations in the rat model of LID (Oh et al., 1998, 1999). How, or why,
such hyperphosphorylation might lead to LID is less clear. However, it is known
that phosphorylation of NMDA receptor subunits can modulate the probability
of channel opening and can affect their subcellular distribution and membrane
anchoring. Of particular interest, are findings that tyrosine phosphorylation of
NR2A and NR2B leads to rapid trafficking of NMDA receptors, from the cyto-
plasm, to the synapse and has a requirement for D1 receptor activation (Dunah
and Standaert, 2001; Dunah et al., 2004). Such a mechanism is an attractive
candidate for the molecular basis of enhanced NMDA receptor-mediated exci-
tation of the direct pathway in LID. Given the diversity of cellular functions
they regulate, it unlikely that the direct targeting of the kinases and phospha-
tases controlling NMDA phosphorylation is likely to lead to useful therapeutics
for LID. However an understanding of which of the many abnormal phosphor-
ylation events are responsible for LID and the mechanisms by which abnormal
kinase and phosphatase activity occur does have the potential for defining novel
therapeutic strategies. For instance, it is likely that targeting NMDA receptors
with specific subunit compositions could form the basis of a treatment with
better efficacy and tolerability than amantadine. To this end it has already been
suggested that hyperphosphorylation of NR2B subunits is critical to LID and
that targeting of these receptors selectivity may be associated with good anti-
dyskinetic actions (Oh et al., 1998; Blanchet et al., 1999) while blockade of
NR2A-containing NMDA receptors may exacerbate LID (Blanchet et al.,
1999).

In addition to NMDA transmission, signaling at non-NMDA classes of
glutamate receptors may contribute to LID. In fact, there is increasing evidence
to support a role for enhanced striatal AMPA receptor signaling in the produc-
tion of LID. While the total levels of AMPA receptors are either normal
(Silverdale et al., 2002) or only moderately increased (Calon et al., 2002b) in
the MPTP-lesioned primate with LID, the development of LID may be asso-
ciated with an increased phosphorylation of the GluR1 subunit of AMPA re-
ceptors (Oh et al., 2003). Additionally, blockade of AMPA receptors, but not
NMDA receptors, can reverse some of the changes in strital gene expression
that are thought to be involved in LID (Perier et al., 2002). That these changes
contribute to the production of LID is suggested by findings that AMPA an-
tagonists have anti-dyskinetic actions if administered as adjunctive therapy with
levodopa in the MPTP-lesioned primate (Konitsiotis et al., 2000). Furthermore,
we have recently shown that the anti-convulsant topiramate, which inhibits
AMPA receptor subunit phosphorylation (Gibbs et al., 2000; Angehagen et al.,
2004; Poulsen et al., 2004), can reduce the expression of established LID in
the MPTP-lesioned primate (Silverdale et al., in press).

Abnormal synaptic plasticity at corticostriatal synapses

The alterations in striatal glutamatergic transmission highlighted above raise
the possibility that abnormal learning processes and=or synaptic plasticity may
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be a component of the mechanisms of LID. Glutamate transmission in the
striatum, as elsewhere in the brain, is critical for learning processes and is
capable of exhibiting several forms of plasticity. Thus, when studied at the
cellular level, in the normal striatum, high frequency stimulation (HFS) of
striatal afferents can lead to a maintained enhancement of the strength of synap-
tic transmission at corticostriatal synapses, the well-described phenomenon of
long-term potentiation (LTP) (Artola and Singer, 1993; Charpier et al., 1999;
Spencer and Murphy, 2000, 2002; Picconi et al., 2003). With different experi-
mental protocols, where interneurons as well as afferents are stimulated, HFS
can induce a maintained decrease in the efficacy of corticostriatal synaptic
transmission, long-term depression (LTD) (Calabresi et al., 1992; Spencer
and Murphy, 2000; Gerdeman et al., 2002). On the system level, it is also clear
that the striatum participates in procedural or habit learning, which is distin-
guished from the episodic, or explicit, memory system based in the hippocam-
pal formation (Graybiel, 1995, 1998). The dopamine containing neurons of the
midbrain are thought to provide a ‘‘reward’’ signal to the striatum and provide a
reinforcement signal for the learning of associations between different sensor-
imotor signals and may be responsible for adapting expectations and behaviours
to novel or changing environments (Aosaki et al., 1994; Waelti et al., 2001;
Schultz, 2002; Schultz et al., 2003). As LID bears many hallmarks of abnormal
motor learning and has properties reminiscent of forms of synaptic plasticity,
the concept that it represents, or at least involves, abnormal motor learning=
plasticity is attractive, on an intuitive level at least, and has, in its broadest
sense, been previously proposed (Calabresi et al., 2000a; Calon et al., 2000;
Graybiel et al., 2000; Lovinger et al., 2003).

Until recently the lack of studies on learning or plasticity in animal models
of LID had left this proposal as purely speculative. However, recent studies
have identified abnormalities in synaptic plasticity that may accompany LID
(Picconi et al., 2003). Thus, the ability to induce striatal LTP is abolished
following dopamine depletion but reinstated following long-term LEVODOPA
therapy. However, when such therapy is associated with the development of
abnormal involuntary movements, that are likely to be a rodent correlate of
LID, a remarkable difference in this plasticity is observed. In the normal state,
established LTP can be reversed, depotentiated, by low frequency stimulation.
In LID, this bi-directional plasticity is lost and, thus, synapses become ‘trapped’
in an LTP state. The mechanisms underlying this appear to reflect enhanced
Thr43 phosphorylation of DARPP-32 and inhibition of protein phosphatase 1
(PP1). These processes are associated with D1 receptor signalling, a charac-
teristic that may explain the relative overactivity of the direct, over indirect,
striatal output pathways in LID.

In understanding the relationship between LID and abnormal synaptic plas-
ticity, such as described by Picconi et al., a major challenge is to understand the
contribution of that abnormal synaptic plasticity to the different components of
LID, i.e. the priming process, the production of LID once priming is established
and the maintenance of the brain in the primed state. The experimental para-
digm they employed makes it likely in this case that the inability to depotentiate
LTP is associated with the processes responsible for eliciting LID, once priming
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has been established and not the priming process. It is also important to appreci-
ate whether abnormalities in synaptic plasticity that are described as occurring
in animal models of LID represent mechanisms underlying the production of
LID, responses to the production of LID or are in fact problems that arise
because of a disruption of a cellular process that is common to both LID and
that particular form of synaptic plasticity. In the light of the work described
above one might consider that strategies aimed at restoring the bi-directional
plasticity, and reverse trapped LTP, may be a potential avenue for therapy of
reducing the expression of established LID, and not the priming process. How-
ever, when removed from the animal with established LID, striatal neurons are
not already trapped in LTP, but only become so during the artificial conditions
of the experimental procedure that induces LTP. Thus it seems unlikely that
being trapped in LTP is actually the mechanism responsible for LID. Rather,
this phenomenon, is more likely to be caused by a process that is abnormal and
also responsible for LID, e.g. Thr43 phosphorylation of DARPP-32 or PP1
inhibition which also disrupts the LTP process. This latter concept, invoking
the involvement of proteins, the function of which are, at present, difficult to
manipulate via pharmacological means, highlights the potential value of
employing research strategies based on knockout mice. Such strategies have
been powerfully employed to define the physiological role of DARPP-32 in a
variety of contexts (Fienberg et al., 1998; Hiroi et al., 1999; Calabresi et al.,
2000b; Fienberg and Greengard, 2000; Svenningsson et al., 2000) and could be
extended to the understanding of LID following the recent validation of a
mouse model of LID (Lundblad et al., 2004).

Although, our understanding of these issues is still evolving, correction of
the molecular abnormality responsible for eliciting LID, once it has been estab-
lished, would also be expected to re-establish the ability to depotentiate estab-
lished LTD. The reverse may also be true to some extent, re-establishing the
ability to depotentiate may suppress the expression of LID. The mechanisms of
depotentiation of striatal LTP depotentiation are thus of potential interest with
respect to LID. An alternative approach to preventing synapses becoming
trapped in LTP, and thus also, perhaps, attenuating the expression of LID,
might be to interfere with processes responsible for establishing LTP. In this
respect, it is of interest that LTP induction has recently been described as
involving NR2A-, rather than NR2B, containing NMDA receptors (Liu et al.,
2004; Massey et al., 2004), a phenomenon that is consistent with our sugges-
tion, above, that NR2A-containing NMDA receptors may be involved in the
expression of LID.

LTP and LTD at corticostriatal synapses involves enhanced and decreased,
respectively, transmission at AMPA receptor mediated synapses. AMPA recep-
tors are heteromeric complexes comprising different combinations of the sub-
units GluR1–4. The detailed molecular mechanisms of striatal LTP and LTD
remain to be elucidated, however, in the CA1 region of the hippocampus
much progress has been made. LTP is driven by the redistribution of GluR1
and GluR2-containing AMPA receptors to the synaptic membrane (Shi et al.,
2001). Trafficking of GluR1=2 receptors to the synapse during LTP is depen-
dent on phosphorylation of GluR1 and interactions between GluR1 and the
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synapse associated proteins (SAPs) PSD95 and SAP97 (Hayashi et al., 2000;
Piccini and Malinow, 2002). Depotentiation results from a reversal of these
processes e.g. PP1-mediated dephosphorylation of GluR1 (Huang et al., 2001).
Thus, we propose that in LID, inhibition of PP1 activity (Picconi et al., 2003)
would trap GluR1=2 AMPA receptors at the synapse. One means to restore
striatal depotentiation would thus be to reverse the Thr43 phopsphorylation
of DARPP-32 and the associated inhibition of PP-1. This approach though
attractive from a molecular perspective is unlikely to represent a viable ther-
apeutic approach given the ubiquity of the kinases and phosphatases involved.
Alternatively, other mechanisms responsible for depotentiating LTP, e.g. activa-
tion of mGluRs (Bashir and Collingridge, 1994) might be more ‘‘druggable’’.
More options for treating LID might be identified by considering the processes
underlying LTD. Although there are likely some mechanistic similarities, the
mechanisms of striatal LTD are distinct from depotentiation. LTD is dependent
on removal, from the synapse, of AMPA receptors containing GluR2 and
GluR3 subunits. Their removal is dependent upon interactions between GluR2
and SAPs (Daw et al., 2000; Kim et al., 2001) and ultimately by endocytosis
(Luscher et al., 1999). We hypothesise that the GluR2 subunit of GluR1=2
AMPA receptors trapped in LTP could be made to act as bait for the mechan-
isms responsible for internalising GluR2=3 receptors in LTD. By initiating an
internalisation process targeting GluR2=3 subunits, GluR1=2 receptors will also
be internalised, LTP depotentiated and might be LID reversed.

In support of this latter contention, stimulation of cannabinoid CB1 recep-
tors is an integral part of the mechanisms underlying LTD in the striatum
(Gerdeman et al., 2002) and stimulation of CB1 receptors reduces LID in both
the MPTP-lesioned primate (Fox et al., 2002) and PD patients (Sieradzan et al.,
2001). Several other components of the mechanisms responsible for inducing
LTD have been described either within the striatum and elsewhere (Centonze
et al., 2003; Lovinger et al., 2003). Thus, within the striatum, in addition to
requiring CB1 stimulation, LTD is enhanced by, or dependent upon, stimulation
of mGluRs (Sung et al., 2001), nicotinic acetylcholine receptors (Partridge et al.,
2002), administration of lithium (Calabresi et al., 1993), activation of nitric
oxide synthase and enhancement of cGMP levels (Calabresi et al., 1999). These
and related approaches might also be considered as having potential to form
the basis of treatments that would suppress the production of established LID.

Abnormal modulation, by non-dopaminergic mechanisms,
of glutamate, GABA and dopaminergic signalling throughout

the basal ganglia circuitry

A key feature of the functional organisation of the basal ganglia is that signal-
ling by the principal excitatory and inhibitory transmitters of the circuit,
glutamate, GABA and dopamine, are modulated by a vast array of diverse
mechanisms. Although there are clearly abnormalities in signalling by the prin-
cipal transmitters, these may not necessarily be the primary, or at least only,
abnormality of cell–cell communication responsible for LID. Thus changes in
these modulatory mechanisms may contribute to aberrant communication in
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LID, reversal of these might represent a novel therapeutic approach. Alterna-
tively, attempts by modulatory mechanisms to compensate for abnormalities
in glutamate, GABA and dopamine signalling induced by repeated dopamine
replacement therapy may be insufficient to suppress LID. However, enhance-
ment of such compensatory mechanisms may attenuate the expression of LID.
As will be discussed below several such opportunities for developing novel
therapeutics to reduce established LID have been described over the last de-
cade. In some cases the exact mechanism of action is unclear but an emerging
understanding of the pharmacology is a common feature and many drugs are
now progressing towards, or already in, clinical trial.

Cannabinoids

An important system modulating classical transmission in the basal ganglia is
the cannabinoid CB1 receptor system. CB1 receptors are richly represented in
both the target regions of the direct and indirect pathways as well as in the
striatum and play crucial roles in regulating basal ganglia function at the behav-
ioural level (Maneuf et al., 1997; Sanudo-Pena and Walker, 1997; Sanudo-Pen
et al., 1999; Di Marzo et al., 2000; Segovia et al., 2003). These behavioural
effects reflect a diversity of cellular actions. Activation of CB1 blocks the
release and uptake of striatal glutamate (Gerdeman and Lovinger, 2001; Brown
et al., 2003). Such effects might contribute to the role of endogenous cannabi-
noids in LTD (Gerdeman et al., 2002), described above. Furthermore, canna-
binoids regulate GABAergic signaling in GPe and the output regions of the
basal ganglia, by blocking the uptake and release of GABA (Maneuf et al.,
1996a, b; Szabo et al., 1998; Wallmichrath and Szabo, 2002). The CB1 system
is also notable in that it regulates, and is regulated by, other transmitter systems
critical to LID. Thus, the synthesis of one of the endogenous ligands of CB1,
anandamide, is under positive control of D2 receptors (Giuffrida et al., 1999)
while another, 2-arachidonyl-glycerol is suppressed by D2 activation (Di Marzo
et al., 2000). There is also evidence for interactions with opioid system (e.g.
cross-desensitization, decreased opioid peptide levels in CB1 knock-out mice)
(Manzanares et al., 1998; Navarro et al., 1998; Vigano et al., 2003), D2 recep-
tors at the level of G-protein coupling (Jarrahian et al., 2004) and 5HT1B

receptors (Hermann et al., 2002). Given the diversity of actions and the number
of regions throughout the basal ganglia in which endogenous cannabinoids
could potentially contribute to the expression of LID, it is perhaps not surpris-
ing that although several valuable sets of data relating to receptor levels and
signal transduction have been obtained in animal models of LID (Zeng et al.,
1999; Lastres-Becker et al., 2001) and in PD patients post mortem (Lastres-
Becker et al., 2001; Hurley et al., 2003), the full extent of their role in LID
remains to be defined. In fact, it has been suggested that, due to actions in
different regions either CB1 agonists or antagonists could have beneficial
effects in reducing established LID (Lastres-Becker et al., 2001; Brotchie,
2003). To date, the CB1 receptor agonist, nabilone, has been shown to have
positive effects in reducing established LID in a clinical trial (Sieradzan
et al., 2001), while both agonists and antagonists were shown to improve the
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symptoms of LID in animal models of LID (Fox et al., 2002; Segovia et al.,
2003; Fox et al., in press).

Monoamines

In addition to dopamine, two other monoamines, noradrenaline and 5-hydroxy-
dopamine (5-HT), are likely to play a role in basal ganglia function and in LID.
For instance, the alpha2 adrenergic system modulates the sensitivity of the
direct pathway (Hill and Brotchie, 1999b). Activation of alpha2 receptors
may be crucial for setting the balance between the direct and indirect pathway
and making it difficult to treat PD, in the primed state, without eliciting LID.
Once LID has been established, alpha2 antagonists have the ability to attenuate
its production following subsequent levodopa challenges in rat (Henry et al.,
1998; Lundblad et al., 2002), non-human primates (Gomez-Mancilla and
Bedard, 1993; Henry et al., 1999b; Grondin et al., 2000; Fox et al., 2001;
Savola et al., 2003) and in PD patients (Rascol et al., 2001a). This ability of
alpha2 antagonists to allow the alleviation of parkinsonism without producing
LID appears to relate to the fact that alpha2 antagonism reduces the sensitivity
of the system to produce LID. Thus in the absence of alpha antagonism, levo-
dopa elicits its anti-parkinsonian and pro-dyskinetic actions at similar doses,
alpha2 receptor blockade shifts the dose response curve for producing LID to
the right. Thus, in the presence of a dose of levodopa that is optimal for alle-
viating parkinsonian symptoms reduced LID is seen. If supra-optimal doses
of levodopa are employed, the ability of alpha2 antagonism to reduce LID is
compromised. Although the effects of alpha2 antagonists in reducing LID are
robust are have been demonstrated by several compounds and several groups
across species, two potential limitations of the approach must be highlighted.
Firstly, it appears that the actions of alpha2 antagonists in reducing LID involve
blockade of receptors stimulated by levodopa, or one of its metabolites, thus
alpha2 antagonists do not reduce dopamine agonist induced dyskinesia (Fox
et al., 2001). Secondly, it may be necessary to consider the issue of tolerability,
especially with respect to potential cardiovascular effects, if these agents are to
be widely applied in LID. Thus one trial with idazoxan was plagued by unac-
ceptably high drop out rates (Manson et al., 2000). Such problems may not
apply to all alpha2 antagonists.

In a similar way, 5-HT receptors are located at several sites throughout the
basal ganglia and have been shown to represent potential targets for treatment
for LID (see Nicholson and Brotchie, 2002 for review). Agents which act as
agonists at 5HT1A have been shown to reduce LID in the MPTP-lesioned pri-
mate and the 6OHDA rat (Bibbiani et al., 2001). Similar effects are reported for
antagonists at 5HT2A receptors (Oh et al., 2002), though these results have not
been substantiated in man by the use of quetiapine (Dekeyne et al., 2003). In
fact, multiple classes of 5HT receptors probably contribute to LID and drugs
with multiple actions may prove useful. In this respect, the observations that
MDMA (‘‘Ecstasy’’, which non-selectively enhances several aspects of 5HT
transmission) reduces LID are of great interest (Iravani et al., 2003). Further-
more, fluoxetine (which reduces 5HT re-uptake) attenuates apomorphine-
induced dyskinesia in man (Durif et al., 1995). Identification of the precise
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combination of 5HT receptors involved in these effects, and the discovery of
drugs that can target them, offers great hope for defining novel strategies for
LID.

Opioids

A role for opioid systems has been suggested in LID, though in recent years the
nature of this role has become less clear, as conflicting data have emerged from
different groups employing different animal model of LID. Within the basal
ganglia, opioids are used as co-transmitters with GABA in both the direct and
indirect striatal output pathways (Steiner and Gerfen, 1998). There are much
data to support the concept that there is increased synthesis of the opioid pep-
tide precursors, preproenkephalin A and B (PPE-A and PPE-B), in striatal out-
put neurons in animal models in LID (Engber et al., 1991, 1992; Taylor et al.,
1992; Cenci et al., 1998; Duty et al., 1998; Henry et al., 1999a, 2003; Westin
et al., 2001; Winkler et al., 2002) and in PD patients, post mortem (De Ceballos
et al., 1993; Calon et al., 2002a; Henry et al., 2003). The aforementioned
changes do not develop following long-term de novo use of dopaminergic
agents that are less likely to cause dyskinesia, e.g. bromocriptine, lisuride
or ropinirole (Henry et al., 1999a; Tel et al., 2002; Ravenscroft et al., 2004).
Moreover, PET studies demonstrate enhanced opioid transmission in the basal
ganglia of patients with LID (Piccini et al., 1997). Thus, that there is an asso-
ciation between enhanced opioids and LID is well-accepted. However, a con-
troversy arises as to whether this relates to the mechanisms responsible for the
expression of established LID, the priming process and=or the maintenance of
the primed state, and whether they contribute to, or result from, these processes.
Efforts to address this issue have been confounded by the fact that there are
probably differences between species with respect to processing opioid pep-
tides, there are likely complex interactions between two or more subtypes of
opioid receptor and that opioids probably play roles in several processes.

The products or PPE-A and PPE-B, the enkephalins, dynorphins and alpha-
neoendorphin, can activate all three major classes of opioid receptor, mu, kappa
and delta. All three opioid receptors regulate signalling at several sites with-
in the basal ganglia circuitry and all of which have been suggested as show-
ing some abnormal function in animal models of LID. Kappa opioid receptors
are expressed primarily pre-synaptically on dopaminergic, glutamatergic and
GABAergic nerve terminals in the striatum, GPe and GPi=SNr where they in-
hibit neurotransmitter release (Maneuf et al., 1995; Schoffelmeer et al., 1997;
Gray et al., 1999; Hill and Brotchie, 1999a; Rawls et al., 1999; You et al., 1999;
Ogura and Kita, 2000). Kappa receptors are also located post-synaptically on
striatal neurons (Spadoni et al., 2004) and on GPe cell bodies (Ogura and Kita,
2000) which they hyperpolarise. Kappa receptors are substantially down-
regulated in the striatum and substantia nigra in 6OHDA rats chronically treated
with levodopa (Johansson et al., 2001). In the striatum, mu opioid receptors are
found pre-synaptically on glutamatergic corticostriatal terminals and inhibit
the release of glutamate (Herrera-Marschitz et al., 1998). In GPe, mu opioid
receptors are expressed both post-synaptically, where they reduce excitabil-
ity (Stefani et al., 2001) and pre-synaptically on GABAergic terminals of the
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indirect pathway where their activation reduces inhibition (Stanford and
Cooper, 1999). Delta opioid receptors are located on GABA terminals within
GPe (Stanford and Cooper, 1999). In the striatum, delta receptors play a role in
regulating glutamate and acetylcholine release, though these effects may not be
direct but transynaptic involving a release of dopamine (Arenas et al., 1991;
Pentney and Gratton, 1991; Rawls and McGinty, 2000). Given this diversity of
effects across the nuclei of the basal ganglia, many hypotheses, which are not
necessarily mutually-exclusive, have been put forward to define the role of
opioids in LID or potential means to modulate opioid transmission and treat
LID. In the absence of extensive site and receptor class-selective manipulations
in animal models of LID the true, rather than potential role, remains unclear. In
fact, even systemic studies to demonstrate a role, at some point of the circuit,
for opioids in LID have produced conflicting data. That enhanced opioid trans-
mission within the basal ganglia might contribute to the generation of LID once
it has been established is suggested by the findings that subtype-selective opioid
receptor antagonists can reduce established LID in rodent (kappa only) and
primate (mu and delta but not kappa) models of Parkinson’s disease (Newman
et al., 1997; Henry et al., 2001). On the other hand, data with non-subtype-
selective antagonists are less convincing with primate studies showing either no
effect (Gomez-Mancilla and Bedard, 1993), attenuation (Henry et al., 2001;
Klintenberg et al., 2002) or exacerbation (Samadi et al., 2003) of LID and
clinical studies showing no effect (Nutt et al., 1978; Rascol et al., 1994; Manson
et al., 2001; Fox et al., 2004) or reduction (Trabucchi et al., 1982) in LID by
naloxone or naltrexone. It is suggested that there may be opposing roles, with
respect to generating LID, for different subtypes of opioid receptor in different
regions of the basal ganglia. These may have relatively different roles in dif-
ferent species or in different forms of LID (e.g. chorea vs. dystonia). Thus it
appears likely that an opioid based therapy for LID that acts as an adjunct to
levodopa to reduce established LID may have to be based on an approach that
selectively targets a single class of opioid receptor.

Conclusions

Much progress has been made in understanding the mechanisms responsible for
eliciting LID once it has been established. LID results a combination of factors
that include alterations in signalling at many neurotransmitter receptors, abnor-
mal synaptic plasticity and altered firing pattern and synchronicity in the basal
ganglia circuit. Several novel therapeutic approaches based upon this under-
standing have already been anticipated and will continue can be developed. It is
perhaps likely that several different classes of drug will be required as some
will have efficacy in patients with dyskinesia of different forms, e.g. chorea
compared to dystonia, or that some drugs will reduce LID more effectively than
dopamine agonist-induced dyskinesia. An intriguing possibility is that the pen-
dulum of biopharmaceutical opinion may swing from a position where the
industry has focussed on defining novel therapeutics based on highly selective
targeting of single receptors to one where they embrace the possibility of drugs
that can have multiple actions. The design of drugs combining, into a single
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molecule, multiple actions, each individually selective, is both a theoretical and
practical challenge. That such drugs might be valuable is not only illustrated by
the above discussion but also by the actions of ‘‘old’’, non-selective drugs, e.g.
clozapine (dopamine=5HT) (Durif et al., 2004), mirtazapine (noradrenaline=
5HT) (Pact and Giduz, 1999; Meco et al., 2003) or piribedil (dopamine=
5HT=noradrenaline) (Smith et al., 2002), all of which have been suggested as
having value in the control of LID.
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