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Summary

Intracranial pressure (ICP) is commonly used by neurosurgeons as

a source of valuable information about the current condition of the

neurosurgical patient. Nevertheless, despite years of e¨ort, extract-

ing clinically valuable information from the ICP signal is still prob-

lematical. Approaches, using current values of ICP, may fail to

disclose imminent risk, because unpredictable factors can rapidly

change the properties of the signal. An alternative approach is to

determine some global characteristics of the signal within a longer

time interval and such statistical analyses have been proposed by

several authors. A further, rarely considered, problem is assessment

of the results obtained from the point of view of their practical utility

and/or such classi®cation of the obtained properties of the signal that

they correspond to certain clinical states of the patient. While this

might be a typical task for discriminant analysis, we approached the

analysis using an alternative methodology, that of computational

intelligence, implemented in arti®cial neural networks (ANN).

We tested two variants of the ANN algorithms for classi®cation

and discrimination of global properties of the ICP signal. In a ``dy-

namic pattern classi®cation'' the network was presented with several

sections of ICP records together with information from the expert-

neurosurgeon, classifying 4 risk groups. In this mode no data pre-

processing was carried out, in contrast to our second approach, in

which the signal had been pre-processed using published statistical

analyses and only these intermediate coe½cients were fed into the

ANN classi®er.

The results obtained with both classi®cation methods at their cur-

rent stage of training were similar and approximated to a 70% rate of

judgements consistent with the expert scoring. Nevertheless, the

method based on the assessment of global parameters from the ICP

record looks more promising, because it leaves the possibility for

modi®cation of the set of parameters analysed. The new parameters

may include information extracted not only from the ICP signal, but

also from other diagnostic modalities, like colour coded Doppler

ultrasonography.

The ultimate goal of this work is to build up a pseudo-intelligent

computer expert system, which would be able to reason from a re-

duced set of input information, available from a standard monitor-

ing modality, because it had been taught salient links between these

data and higher-order data, upon which expert scoring was based.
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Introduction

The problem of reliable detection of life-threatening

situations in a neurosurgical patient treated in the ICU

is still far from reaching a satisfactory solution, though

several methods of clinical and instrumental evalua-

tion have been developed to bring to notice signs of

oncoming danger [3, 4]. The intracranial pressure

(ICP) is commonly used by neurosurgeons as the pri-

mary source of valuable information about the current

condition of the neurosurgical patient. However it is

increasingly felt that traditional statistical methods

of extracting information from the ICP signal have

reached their natural limits, mostly because of di½-

culties in ®tting the appropriate mathematical model

to the non-linear, non-stationary process, which gen-

erates this signal.

Arti®cial neural networks (ANN) are a group of

Arti®cial Intelligence (AI) algorithms, which in many

problems of medical data analysis have demonstrated

better e½ciency than traditional statistical methods [1].

As occurs in many medical applications, the input

factors a¨ect the outcome in somewhat inconsistent

or imprecise ways. Such problems are especially ame-

nable to neural network analysis, as the ANNs learn

directly from the examples presented. Typical appli-

cations of ANNs are signal processing and forecasting,

pattern recognition and discrimination [2]. The num-

ber of applications of ANNs in medicine has been

reported to be growing fast over the last few years [7].

Typical examples are detection of the signs of a heart

infarct in the ECG signal, diagnosis of the type of

neoplasm from microscopic smears, or recognition of
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the outline of cerebral structures in MRI scans. Suc-

cessful implementation of ANNs in medicine encour-

aged us to apply neural networks to the problem of

recognition and discrimination of a con®guration of

unfavourable symptoms in the neurosurgical patient.

Patients and Material

Acquisition of the ICP Signal

In this study we included data obtained from patients with intra-

cerebral haemorrhages, treated in the ICU over the period 1997±

1999. Intracranial pressure was recorded before and after surgical

removal of intraparenchymal brain haematoma. This selection of

subjects o¨ered us the possibility of dealing with distinct situations

corresponding to relatively unambiguous clinical ratings, then used

for the training of the ANNs.

Intracranial pressure was measured with a miniature silicon strain

gauge type sensor (CODMAN Neuro Monitor Skull Bolt Kit, Cod-

man & Shurtle¨, Inc., Randolph) and transmitted to a computer via a

specialised multi-channel data acquisition card. The ICP signal was

sampled with a frequency of 51 Hz and visualised on screen, then

one-hour sections of ICP were routinely logged on disc for further

processing. In this way a library of records obtained from more than

60 patients in various clinical conditions has been collected to date to

enable di¨erent methods of analysis to be tested.

ANN in on-Line Classi®cation of ICP Signals

The aim of this study was to construct a neural network, which

could automatically assign an observed ICP waveform to one of

several classes, corresponding to a certain scale of risk. We plan ul-

timately to come to a semi-quantitative scale of 10 levels. As this re-

quires a large number of observations, for the purposes of this study

we allowed a qualitative scale, which consisted of four classes. The

arbitrarily selected classes may be regarded as corresponding to

``good'', ``moderate'', ``serious'' and ``severe'' clinical states of the

patient.

Four groups of ICP recordings, which contained typical repre-

sentatives from each class, were carefully selected from all the ICP

recorded samples by one experienced neurosurgeon (Z. M.) to be

used as the training data. Assignment of an ICP recording to a cer-

tain class was based on expert scoring, drawn from visual analysis of

the recorded ICP signal, clinical examination, measurements of ad-

ditional vegetative parameters, colour-coded transcranial Doppler

study of cerebral circulation, and most importantly, full knowledge

of the further evolution of the clinical condition of the patient. The

neural network could then learn how to adjust its internal parame-

ters to properly categorise a given segment of the ICP signal, pre-

sented to its input.

Having completed the training, the network could proceed with

solving the essential discrimination task. The neural classi®er was

expected to select the class of risk that the observed signal most

probably belonged to, and also to give a quantitative measure of the

probability of this membership. The classi®cation task was solved by

a modular hierarchical structure, based on the Predictive Modular

Neural Network (PREMONN ) architecture [9].

It is assumed that the time series to be classi®ed is generated by a

source (in this case ± corresponding to a certain class of emergency),

which belongs to a ®nite search set. So, the classi®cation problem

may be regarded as selection of the source that best represents the

dynamic features of the observed data. The ANN classi®er consists

of a ``bank'' of neural models (at the lower level) and an ``intelligent''

upper-level decision module which evaluates the errors between the

classi®ed signal and the model outputs and performs the ®nal classi-

®cation (Fig. 1) [9]. Each local neural model represents one risk cat-

egory and approximates the typical dynamic properties of the sig-

nals, which belong to this class.

The lower-level models are used to perform parallel prediction of

ICP, based on historical samples of the signal. It is intuitively obvi-

ous that the local model best ®tting the signal dynamics will produce

the smallest error, so it (and consequently, the corresponding class of

risk) will be selected by the decision module. The selection is based

not only on the prediction errors computed currently, but also on the

time-weighted past values of the error, within the user-selected time

interval.

ANN in Classi®cation of Global Properties of ICP Signals

This approach attempts to imitate the way in which the ICP re-

cording would be judged by a human expert. The expert takes into

consideration not only the current values of intracranial pressure,

but also some general properties of a su½ciently long ICP segment,

e.g. the amplitudes of fast ¯uctuations, the appearance of very slow

ICP waves, average ICP values and other features of the signal. In

keeping with this way of making decisions, the ICP segment was pre-

processed using statistical and spectral methods and the intermediate

results were passed as the inputs to the ANN. The neural network

processed these inputs, which represented ``global'' information ex-

tracted from an ICP segment, and tried to establish associations be-

tween the complex parameters of the ICP recording and the resultant

level of risk to give a judgement of the patient's clinical condition on

an arbitrarily selected risk scale. The same, as de®ned above, four-

level scale of risk was used for this mode of ICP classi®cation.

We employed a combination of various statistical and non-statis-

tical approaches to extract clinically valuable information from the

original ICP signal to be passed on to the ANN (Fig. 2)

± Spectral analysis (FFT) and digital ®ltering: this enables detection

of the main signal harmonic components originating from the

heart rate (cardiac component) and breathing (respiratory com-

ponent) and, ®nally, to obtain average heart and breathing rates

just from the ICP signal.

Fig. 1. Architecture of predictive modular neural network for time

series classi®cation: yt current value of classi®ed signal; ŷ1
t ; . . . ; ŷK

t

outputs of local predictive models; pk
t generated probability; tÿN

coe½cient expressing delay-weighted extent to which past results of

classi®cation in¯uence current assessment of ICP
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± Second-order statistics of ICP: calculation of mean value, median,

variance and histogram of a given section of the ICP record.

± Computation of RAP (correlation coe½cient between the ampli-

tude of the fundamental harmonic component and the mean ICP);

this was done according to the algorithm developed by Czosnyka

et al. [3]. The amplitude of the main harmonics is usually plotted

against the range of pressure occurring in the analysed segment of

ICP. The piece-wise linear approximation of the resultant scatter

of points gives a rough measure of the compensation reserve of the

intracranial space. The slopes of the two lines ®tted to the scatter

of points were used to construct the ANN input vectors.

± The non-stationary indices of the ICP signal, obtained from a

procedure in which the variance of ICP was calculated over one-

hour segments of the recorded signal in time periods increasing by

a factor of two from 10 seconds to 43 minutes. The distribution of

the averaged variance values was estimated according to a logistic

model. The coe½cients of the resultant logistic curve were re-

garded as a measure of the non-stationarity of the process and

entered as the inputs to the ANN. Numerous analyses of the ICP

signals have proved that the above algorithm describes the content

of very low frequencies in the signal better than frequency analy-

sis. In particular, it was able to model the circumstances related

to the long periods (range of 20 minutes) of high-level, high-

amplitude waveforms of the ICP, following rapid increases of the

signal ( plateau waves).

The input information passed on to the ANN consisted of various

combinations of the parameters, selected from the above set of

global characteristics of a standard one-hour ICP segment [11]. The

result the ANN was expected to produce was a number, corre-

sponding to exclusively one of the four previously de®ned classes of

danger.

Experimental Results

ANN in On-Line Classi®cation of ICP Signals

According to the classi®cation concept described

above, four one-step neural predictors were trained in

the o¨-line mode on selected signals, which were un-

ambiguous representatives of the speci®ed risk cate-

gories. Small ANN structures were used at the bottom

level; they contained from 3 to 5 neurons with logistic

activation functions in the hidden layer and one linear

neuron in the output layer [6]. The averaged signal

(now with a sampling period of 10 s) was further pre-

processed using a logarithmic transformation, to de-

crease the variations of ICP values for patients in dif-

ferent clinical conditions. The samples from the last

minute of observation were used to train local pre-

dictors; so each local neural network forecast the

future sample using six historical samples. The local

predictors behaved reasonably; the absolute errors did

not exceed 5±7% of the signal value.

Figure 3a shows an example of the classi®ed ICP

signal; it takes 6 hours and has been created as a con-

catenation of a few real signals recorded from four

patients in various clinical states. At each time step the

decision module of the neural network generated four

numbers, which represented relative measure of pre-

diction errors, computed by each local model (i.e. the

``®tness'' of a local model to the real signal). As the

numbers are positive and always add up to one, they

may be regarded as the probabilities: p1
t ; p2

t ; p3
t ; p4

t of

assigning the signal to a certain class of risk [9]. The

decision module simply indicates the model with the

biggest value of current probability, which corre-

sponds to a certain class of risk. The plot of the prob-

abilities pk
t for this signal is shown in Fig. 3b.

It can be seen that the decision module modi®es the

judgement as the average value of ICP and dynamic

properties of the signal change. For some parts of the

ICP signal the classi®cation is unambiguous, i.e. one

probability is much bigger, than are the others. How-

ever at some moments, no one of the classes of risk is

dominant; at these time intervals the neural network

detects the changes of signal properties, which may

correspond to changes of the clinical state of the

patient.

Fig. 2. Preprocessing of ICP for extraction of versatile information

to be presented to the input of ANN. RR Respiratory rate; HR heart

rate; RAP correlation coe½cient between amplitude of fundamental

harmonic component and mean ICP; AMP amplitude of funda-

mental harmonic component
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ANN in Classi®cation of Global Properties of ICP

Signals

In a general sense, what the network was expected to

do in this part of the study was to solve a pattern rec-

ognition task. This resembles a more conventional

discriminant analysis, which may be understood as

partitioning a multi-dimensional space into subspaces

corresponding to the required classes of discrimination

and the number of dimensions of this hyper-space

equal to the number of analysed parameters [8]. In our

task, which required discrimination of the four pat-

terns of intracranial pressure, 5 parameters (such as

mean value of ICP, its variance, heart rate, respiratory

rate and RAP coe½cient) were presented to the input

of the ANNs and the boundaries of four sub-spaces,

corresponding to four classes of risk were delineated.

The results of the classi®cation (according to the

four-level scale of risk, described above) obtained using

the methodology of global feature extraction from the

ICP segment are presented in Fig. 4. The ®gure shows

the class assignment projected onto a subspace re-

duced to only two input parameters, because only this

number may be displayed as a 3-D graph. The param-

eters chosen for this presentation are mean ICP value

and RAP.

At present, we have completed the construction of

the neural models for on-line and global classi®cation

of ICP signals and a library of about 50 1-hour seg-

ments of ICP records have been collected. From

among them only about 30 were selected as un-

ambiguously representative of one of the four arbi-

trarily selected classes of risk. Nevertheless, not all

classes were evenly represented in this material. From

the number of input parameters of interest, one can

assess the number of ICP samples necessary for e¨ec-

tive training of the ANNs as being at least 50, assum-

ing that all classes would be evenly represented. So, we

consider our network model not fully developed in this

aspect and that it still needs further training with a

su½cient number of ICP samples. Nevertheless, we

attempted to evaluate the practical performance of

our model by presenting to its input a set of 10 new

samples of ICP. The network assessment agreed in 7

instances with the expert classi®cation using both the

on-line and global classi®er schemes.

Discussion

The method of ``dynamic pattern'' classi®cation

has been proved to be especially e½cient for non-

stationary signals with the parameters of their dynamic

models occupying overlapping regions in the parame-

Fig. 3. Sample of ICP records (a) and result of signal classi®cation

(b). The ordinate shows probability pk
t , with which at given time

moment (t) neural classi®er assigns signal to one of four classes of

risk

Fig. 4. Results of ICP patterns classi®cation with ANN classi®er.

The surface obtained represents resultant class of risk as function of

mean ICP and correlation coe½cient (RAP). In reality ANN con-

sidered ®ve such parameters and the real output is a surface located

in 5-dimensional hyperspace. Obviously this can not be displayed on

a 3D graph
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ter space [9]. More importantly, the local dynamics can

be modelled by any type of predictors (including lin-

ear, neural or fuzzy ones), which may also utilise prior

knowledge about signal properties.

The results obtained with both classi®cation meth-

ods at their current stage of training were similar.

Nevertheless it is our impression, based on hitherto

performed numerical analyses, that the classi®cation

method, based on extraction of global parameters

from the ICP record, looks more promising. It can

reveal some relationships between salient parameters

of the ICP signal, which relate to the clinical condition

of a patient, and gives the researcher the possibility to

customise parameters and select those, which have

proved to be most informative. Even more impor-

tantly, these new parameters, which can be introduced

to the neural model, need not necessarily be imma-

nently taken from the ICP signal. At the next stage of

our experimental work we plan to incorporate some

synthetic parameters of colour coded Doppler exami-

nation of cerebral haemodynamics and perfusion

pressure into the set of training data. On the other

hand, our experiments clearly indicate that some of the

parameters used hitherto may be discarded, for their

information load is insu½cient. Thus, more numerical

experiments should be performed to establish the set of

parameters, which optimally describe the current state

of risk.

The accuracy of classi®cation obtained by using

both methods cannot be reliably estimated at the

present stage of the ANN development. It may be ex-

pected that after the training procedure is completed,

the agreement with expert scoring will improve above

the present 70%. However, we are cautious in our ex-

pectations, because the ANN algorithm is not the only

source of error. Expert judgements, even when sup-

ported by such data as Doppler studies of cerebral cir-

culation [5, 10], are by no means an objective measure

of the clinical condition of the patient. In fact, con-

struction of the scale of risk (which is no more, no

less, than a database of several dozen ICP records, as-

cribed to a class representing the patient's clinical

state) is one of the biggest problems in this research

set-up. For example, using the TCD ®ndings for con-

struction of the expert scale of risk strictly prevents

incorporating them into the set of training data. So,

extending the input data of the ANN by TCD

parameters, is possible only when this information is

replaced in the construction of the risk scale by other

sources of information about the clinical state of the

patient, for example by measurement of pO2 and CO2

within the brain parenchyma.

The idea and the ultimate goal of this investigation

(which is far from being complete at the present stage

of the study) is to build up a pseudo-intelligent com-

puter bed-side expert system for on-line estimation of

risk endangering the neurosurgical patient. What this

system ought to be able to do, in essence, would be to

reason on the basis of a reduced set of input informa-

tion, available from a standard monitoring modality.

This would be possible because the system had been

taught to be sensitive to salient links between this re-

duced set of data and higher-order data, on which the

expert scoring system had been based. A system of this

kind might be useful not only in smaller treatment

units, but also in fully equipped centres, as very ex-

pensive monitoring devices are usually in short supply

and not available to all patients who may actually be

in need of them.
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Comment

This is a very interesting work attempting to apply principles of

computerized neural networks to clinical practise. The authors ought

to be congratulated with this careful and intelligent study.

At ®rst sight, one wonders whether it is very worthwhile to teach a
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machine what the human mind can do better. However, in other

®elds of medicine expert systems and decision analysis have been

demonstrated to greatly contribute to clinical decision taking.

This is just the beginning as the authors themselves point out. A

prediction horizon of only three minutes, as in the ®rst manuscript, is

very short indeed and much too short to be able to in¯uence clinical

action. The best example in this respect is probably the prediction of

a plateau wave. Although, sudden steep increments of ICP may also

be due to various kinds of Valsalva manoeuvres, such as coughing

and straining. With such short prediction horizons, consisting of a

number of steps of a few seconds only, the good ®t between actual

and predicted ICP in ®gure 2a does not come as a surprise. The

model only predicts the continuation of increasing or declining ICP.

It does no really predict instantaneous changes, it just follows them.

Therefore, I agree with the authors that the evaluation of the ICP

signal on the basis of trends or classi®cations of clinical severity are

of much more importance.

Figure 3 in the second manuscript illustrates the early phase of this

work. Critically judged, it just shows that high pressure is bad, low

pressure is good and moderately elevated pressure is intermediate.

However, most interestingly, the high pressure during the ®rst 1.5

hours is judged as class II, whereas class IV has, surprisingly enough,

a very low probability. The same is true during the steep increase of

ICP towards the fourth hour, where the probability of class I is

sharply declining and the probability of class IV is increasing, but not

to the same extent. These discrepancies are probably due to the clin-

ical input from the expert neurosurgeon. This result is most promis-

ing. However, the classi®cation system may by di¨erent according to

the pathologies. This manuscript is dealing with patients with spon-

taneous intracerebral haematoma. In head injury, for example, a low

pressure may sometimes indicate a poor outcome. Therefore, each

pathology should have its own classi®cation system of severity ac-

cording to the ICP.

I wonder what the results would have looked like when instead of

ICP the cerebral perfusion pressure had been used.

C. Avezaat
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