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Abstract

Background Years after a traumatic spinal cord injury (SCI), a subset of patients may develop progressive clinical deterioration
due to intradural scar formation and spinal cord tethering, with or without an associated syringomyelia. Meningitis, intradural
hemorrhages, or intradural tumor surgery may also trigger glial scar formation and spinal cord tethering, leading to neurological
worsening. Surgery is the treatment of choice in these chronic SCI patients.

Objective We hypothesized that cerebrospinal fluid (CSF) and plasma biomarkers could track ongoing neuronal loss and scar
formation in patients with spinal cord tethering and are associated with clinical symptoms.

Methods We prospectively enrolled 12 patients with spinal cord tethering and measured glial fibrillary acidic protein (GFAP),
ubiquitin C-terminal hydrolase L1 (UCH-L1), and phosphorylated Neurofilament-heavy (pNF-H) in CSF and blood. Seven
patients with benign lumbar intradural tumors and 7 patients with cervical radiculopathy without spinal cord involvement served
as controls.

Results All evaluated biomarker levels were markedly higher in CSF than in plasma, without any correlation between the two
compartments. When compared with radiculopathy controls, CSF GFAP and pNF-H levels were higher in patients with spinal cord
tethering (p <0.05). In contrast, CSF UCH-L1 levels were not altered in chronic SCI patients when compared with either control groups.
Conclusions The present findings suggest that in patients with spinal cord tethering, CSF GFAP and pNF-H levels might reflect
ongoing scar formation and neuronal injury potentially responsible for progressive neurological deterioration.

Keywords Spinal cord injury - Biomarkers - Syringomyelia - Cerebrospinal fluid - Tethering of the spinal cord (TSC) - Glial
fibrillary acidic protein (GFAP) - Ubiquitin C-terminal hydrolase L1 (UCH-L1) - Neurofilament - Post-traumatic myelopathy
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The pathogenesis of progressive glial scarring and how this is
associated with neurological dysfunction is incompletely under-
stood. Blood products and factors released from the injured spi-
nal cord at time of initial injury may lead to arachnoiditis and
chronic neuroinflammation, which, in turn, causes gradual scar-
ring and tethering of the cord to the surrounding dura mater
which may result in progressive neurodegeneration [4, 32, 43,
44, 53]. Animal experiments have shown that spinal cord tether-
ing is an important contributing factor for the formation of
intramedullary cysts and progressive spinal cord dysfunction
[9, 28]. Treatment of symptomatic spinal cord tethering, regard-
less of its cause, is surgical [24, 27, 45].

Blood-based markers indicative of glial and neuronal inju-
ry have attracted attention over the past decades [37, 39].
Although previous biomarker studies following acute SCI ex-
ist [10, 29, 30, 56], data are lacking on spinal cord tethering
[2]. Easily accessible, objective, and inexpensive biochemical
markers reflecting glial scar formation and progressive neuro-
nal damage are needed and might help to improve diagnosis,
monitor ongoing pathophysiological mechanisms, and predict
outcome of post-traumatic myelopathy. Such biomarkers
could also aid in medical decision-making and permit the
development of therapeutic interventions aiming to prevent
or optimize surgery of chronic SCI patients.

In the present study, we hypothesized that biomarkers of neu-
ronal/axonal/glial damage would reflect the ongoing pathophys-
iology and symptoms in patients with spinal cord tethering and,
thereby, represent a useful approach to objectively assess the
severity of this condition. With these aims in mind, we sampled
blood and CSF from patients with spinal cord tethering and
examined concentrations of a panel of pathobiologically diverse
markers, namely glial fibrillary acidic protein (GFAP), ubiquitin
C-terminal hydrolase L1 (UCH-L1) and phosphorylated
neurofilament-heavy (pNF-H).

Materials and methods
Patients and setting

Enrolled participants represented a mixed cohort of consecutive
patients presenting with gradual neurological worsening caused
by scar formation/spinal cord tethering following a primary spi-
nal cord injury, as a result of traumatic, infectious, postoperative,
or vascular causes (tethered spinal cord—TSC). Congenital spi-
nal cord tethering was an exclusion criterion. All recruited pa-
tients presented with clinical (progressive deterioration of motor
and/or sensory function) and radiological (spinal cord tethering
and/or edema, with or without syringomyelia) features consistent
with the diagnosis of tethered spinal cord and were scheduled for
microneurosurgical untethering, syringosubarachnoid shunting
of associated syringomyelia (when considered necessary), and
duraplasty at the Department of Neurosurgery, Uppsala
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University Hospital, Uppsala, Sweden, between March 2013
and October 2015.

Clinical evaluations were performed preoperatively and at
3 months after surgery by a trained researcher (UH). Functional
impairment was assessed using the American Spinal Cord Injury
Association (ASIA) Impairment Scale (AIS) [26]. Additional
outcome measures included the JOA Cervical Myelopathy
Evaluation Questionnaire (JOACMEQ), which evaluates cervi-
cal spine function and quality of life [15] and the EQ-5D, a
standardized instrument of health status for clinical and economic
appraisal [13, 40]. The dimensions of EQ-5D comprise mobility,
self-care, usual activities, pain/discomfort, and anxiety/
depression and are rated by the responder as 1, no problem; 2,
some problems; or 3, extreme problems. This assessment is ac-
companied by an EQ-VAS value between 0 and 100, rating the
actual Quality of Life-situation, where 0 is “worst imaginable
health state” and 100 is “best imaginable health state [13, 40].

Postoperative follow-up of the questionnaires was conduct-
ed through phone calls by the first author (UH).

Control patients

A control group of patients undergoing surgery for benign
intradural lumbar tumors, without spinal cord involvement
and without radiological or clinical signs of tethering, was
recruited (Ctrl-T). All tumors were located below the conus
medullaris. The surgical approach to the intradural compart-
ment was similar while perioperative CSF and plasma sam-
pling was identical to that used for the tethered spinal cord
patients (see below).

Since expression by astrocytic and neuronal markers may
be present in some benign intradural tumors, we also recruited
a second cohort of consecutive controls comprised of patients
with cervical radiculopathy caused by herniated discs or de-
generative root canal stenosis (Ctrl-R). All patients underwent
a preoperative magnetic resonance imaging (MRI). None had
any clinical or radiological evidence of spinal cord compres-
sion and myelopathy, or spinal cord signal changes. All pa-
tients were planned for decompressive cervical surgery
through anterior discectomy and fusion.

Surgical procedures

Patient features, spinal configuration, and extent of pathology
guided the surgical treatment strategy. All patients had a preop-
erative MRI (Fig. 1), including axial and sagittal images, for the
evaluation of spinal cord pathology including tethering, edema,
cysts/syringomyelia, and cord compression. In cases with incom-
plete spinal cord injury, intraoperative neurophysiological spinal
cord monitoring including motor (MEP) and sensory (SEP)
evoked potentials was commonly used. The surgical techniques
encompassed a limited laminectomy targeted to the intradural
pathology, dural opening using microinstruments under
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Fig. 1 Preoperative magnetic resonance imaging (MRI) of three patients
included in the present cohort. a Evidence of myelomalacia with spinal
cord tethering over 10 years following a traumatic spinal injury, sagittal
image (arrow). b Spinal cord tethering at C5, axial image. The patient was
treated surgically with laminectomy, untethering of the spinal cord and
duraplasty (arrow). ¢ Patient sustaining an intradural hemorrhage from a
routine spinal tap that resulted in neurological deficits and emergency
surgical evacuation. At 12 months following the hemorrhage, a gradual

microscopic view, and sharp dissection of the scar tissue for the
release of the tethered spinal cord (Fig. 2a, b) to restore CSF flow.
When an intramedullary cyst persisted after dural opening, as
controlled by intraoperative ultrasound, a syringosubarachnoidal
shunt was placed [24]. In all patients, the dura was closed and
expanded using a dural graft (Durepair®, Medtronic, Memphis,
TN) that was sutured using resorbable sutures. All surgeries were
performed by a single surgeon (NM).

Blood and CSF sampling

In patients with spinal cord scar formation undergoing surgical
treatment as well as in the tumor control patients, CSF samples
for biomarker analyses were obtained during surgery. Prior to
dural opening, meticulous hemostasis was achieved to ensure
that the surgical area was clear from blood. After the dura was
opened by a midline durotomy under the microscope and CSF
was released, 3—5 mL of CSF were immediately collected using

yet marked neurological deterioration of lower limb sensory and motor
function was observed which was treated by laminectomy, spinal cord
untethering, and duraplasty. Note the marked adhesions and deformation
of the spinal cord (arrows). d Intradural scarring, an intramedullary cyst
(arrow), and spinal cord signal changes were found in a patient with
previous meningitis and gradual neurological deterioration who was
surgically treated by intradural exploration and release of scar tissue.
This patient had the highest CSF GFAP levels in the current cohort

a syringe attached to a blunt needle. Simultaneously, blood
samples were drawn from the same individual.

In the cervical radiculopathy controls, CSF was obtained
the day prior to cervical surgery using a routine lumbar spinal
tap. Blood samples were also acquired.

CSF and plasma were centrifuged at 3600 rpm at 4 °C for
10 min, aliquoted into cryovials, and stored at —70 °C until
analysis. All procedures were performed according to a stan-
dardized protocol and in line with international consensus rec-
ommendations [36]. Samples were shipped on dry ice to EnCor
Biotechnology (Gainesville, FL, USA) for biomarker analyses.

Analysis of GFAP, UCH-L1, and pNF-H

CSF and plasma samples were assayed for the presence of pNF-
H and UCH-L1 using assays based on previously published
ELISAs [23]. The basic assays were modified to run on the
MesoScale Discovery (MSD) platform (Rockville, MD), an
electrochemiluminescence-based assay in which signal is
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Fig. 2 Two intraoperative images showing examples of intradural scar
formation with spinal cord tethering to the surrounding dura. a A rather
mild scar formation was observed (arrows). b A thickened arachnoid with
extensive scarring was observed (arrow) in a patient with previous
intradural spinal hemorrhage

detected by light emission from a suitably tagged detection re-
agent. In brief, purified MCA-NAP4 pNF-H capture antibody
(EnCor Biotechnology, Gainesville, FL) was used along with
affinity purified chicken polyclonal pNF-H detection antibody.
The chicken antibody was affinity purified from a commercially
available IgY preparation (CPCA-NF-H, EnCor) and was direct-
ly labeled with the MSD sulfotag reagent [7, 47]. MCA-NAP4
and the chicken pNF-H antibody were originally raised against a
preparation of purified pig pNF-H as previously described [21].
Both MCA-NAP4 and the chicken pNF-H antibody specifically
recognize only the phosphorylated axonal form of NF-H protein,
and both antibodies bind only to axonal profiles on neurons in
tissue culture and in brain sections [7]. For the UCH-L1 assay
capture reagent, we used a mouse monoclonal antibody MCA-
BH7 (EnCor) as previously described [35]. This was detected
with sulfotagged affinity purified rabbit anti-UCH-L1 derived
from RPCA-UCH-L1 serum (EnCor). Both antibodies were
raised against recombinant full-length human UCH-L1
expressed in and purified from Escherichia coli. All antibodies
were manufactured and all assays were run in the EnCor
Biotechnology laboratory. The pNF-H assay has a lower limit
of quantitation (LLOQ) of 5 pg/mL and the UCH-L1 assay has
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an LLOQ of 15 pg/mL. In both cases, blood samples were dilut-
ed 1:2 in 1% bovine serum albumin and 2% Tween 20 in Tris-
buffered saline, and 30-uL samples were run in duplicate on
standard MSD plates. Incubations with either samples or detec-
tion reagent lasted 1 h at room temperature with vigorous shak-
ing, and plates were extensively washed between incubations
and prior to signal detection.

GFAP levels were measured with a novel assay which used
mouse monoclonal to GFAP MCA-2AS5 (EnCor) as the capture
reagent. This antibody was originally made against native GFAP
purified from pig spinal cord and shows strong binding for hu-
man, cow, and pig GFAP in ELISA, Western blotting, and on
astrocytic cells but reduced binding to rodent GFAP. As a result,
this assay may be less than optimal for studies involving rodents.
The purified antibody was applied to MSD plates at 1 pg/mL in
PBS overnight at 4 °C. The plates were blocked as above and the
samples added in dilution buffer. The detection antibody was
affinity purified from RPCA-GFAP (EnCor), a rabbit serum
generated using full-length recombinant human GFAP isotype
1 as the immunogen. This recombinant protein (Prot-r-GFAP,
EnCor) was also used as the protein standard. The purified rabbit
GFAP antibody was reacted directly with the sulfotag reagent as
described above. The assay detected human GFAP with an
LLOQ of 10 pg/mL.

Statistical analysis

Exploratory analysis was carried out to determine the distribution
of the demographic and clinical variables. Subject characteristics
were summarized using standard descriptive statistics.
Continuous variables were described as mean (SD) or median
(IQR), as appropriate, and categorical data were summarized as
absolute frequencies and percentages. Since biomarker levels did
not meet the criteria for normal distribution, non-parametric sta-
tistics were used. The Kruskal-Wallis test was used for group-
wise comparisons, followed by, if significant, pair-wise compar-
isons using the Mann-Whitney U test. Correlations between bio-
markers and their relation to radiological parameters were ana-
lyzed using the Spearman rank correlation test. All conducted
hypotheses tests were two-tailed and a p value <0.05 was con-
sidered significant. The statistical analyses were performed using
GraphPad Prism 7 for Mac and Windows (San Diego, CA,
USA).

Results

Patient description and control population

Thirteen consecutive patients were initially included, but one
patient was excluded because of a co-existing motor neuron dis-

ease. The average age was 50 + 14 years, 4 of 12 (33%) subjects
were female, and the median AIS grade was C (Table 1). With



Acta Neurochir (2020) 162:2075-2086

2079

Table 1 Baseline characteristics of the included patients operated for symptomatic spinal cord tethering. All patients except for #12 had previous spinal
surgery.

Patient number Age (y) Gender Underlying pathology Symptom duration (m) AIS Grade Spinal Level
I 62 M Trauma 1 AIS-C c4

2 53 M Trauma 8 AIS-D Thé

3 66 M Trauma AIS-C Th7

4" 50 M Trauma 12 AIS-A c4

5 46 M Previous surgery for intramedullary tumour 10 AIS-C C4

6 51 F Trauma 12 AIS-D C3

7 22 F Dermoid cyst surgery at childhood 10 AIS-C T3

8 67 F Intradural hemorrhage 6 AIS-D T4

9" 62 M Intradural hemorrhage 12 AIS-C T5

107 46 F Neonatal meningitis >24 AIS-B C0-C3

11 30 M Trauma 24 AIS-A C3

12 46 M SAH with intradural hemorrhage 9 AIS-D T7

AIS American Spinal Cord Injury Association Injury Scale, C Cervical, ' Female, L Lumbar, M Male, m Months, SAH Subarachnoid hemorrhage, T
Thoracic, y Years. * Patients who were reoperated due to re-tethering, T Subject with the highest CSF GFAP levels

the exception of one patient who had an initial subarachnoid
hemorrhage from a ruptured posterior inferior cerebellar ar-
tery (PICA) aneurysm, all patients had prior spinal surgery at
time of initial spinal injury. Six (50%) participants had a
previous traumatic spinal cord injury (SCI), of whom four
were motor incomplete (AIS C-D) and two were motor
complete (AIS A-B) SCIs. The symptom duration ranged
from 1 month up to more than 2 years prior to surgery.
There were no surgical complications (infection, wound
healing problems, postoperative hemorrhages) except for
symptomatic re-tethering in three patients (Table 1).

The five EQ-5D domains for the group regarding
mobility, self-care, usual activities, pain, and anxiety/
depression were not altered by surgery. EQ-5D-VAS
self-assessed health status significantly improved follow-
ing surgery (42.7+23.4 vs. 64.3+13.2; p =0.001). The
JOACMEQ), evaluated before and after surgery, showed
significantly higher values for quality of life (QoL) and
upper extremity function postoperatively (p <0.05;
Fig. 3).

The tumor control group (Ctrl-T) consisted of eight
patients surgically treated for lumbar benign tumors in
whom both CSF and blood samples were obtained
(Table 2). One patient with a ganglioglioma was found
to express intense GFAP staining on histology and was
eventually excluded from analysis. Thus, seven tumor
controls were analyzed (mean age 56.9+ 16 years; four
female and three male). There were no complications in
this cohort of patients. The pathoanatomical diagnosis
(PAD) is shown in Table 2.

The other control group included 7 patients with cervical
radiculopathy (Ctrl-R; three female and four male, mean age

45.1 £ 6 years; Table 2). All underwent uneventful anterior
cervical discectomy and fusion.

CSF and plasma biomarkers
GFAP levels (Fig. 4a, d)
CSF levels of GFAP were significantly higher in the

tethered spinal cord (TSC) group (median 3605, range
1575-55,909 pg/mL) than in the Ctrl-R (median 1304,

Cervical spine

function
100.0 4

Upper extremity

Quality of life function

Lower extremity

Bladder function .
function

~0-Preop

<-Postop 3m

Fig. 3 Outcome was assessed using the Japanese Orthopedic Association
(JOA) Cervical Myelopathy Evaluation Questionnaire (JOACMEQ)
prior to surgery and at 3 months post-surgery in 12 patients on 15
occasions. As expected, no changes in the neurological level and
function were found but upper extremity function and quality of life
aspects significantly improved following surgery (p < 0.05)
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Table2  Control patients with lumbar intradural tumors (Ctrl-T) or with cervical radiculopathy (Ctrl-R) from whom cerebrospinal fluid was obtained at

the time of initial dural opening (see text for details)

Patient Number Age (y) Gender Underlying pathology Spinal Level
Ctrl-T 1 61 M Schwannoma Grade 1 * L1-2

2 31 F Ependymoma Grade 2 L1-2

3 45 M Schwannoma Grade 1 L2

4 69 F Schwannoma Grade 1 L2-3

5 51 F Schwannoma Grade 1 L3-4

6 59 F Paraganglioma Grade 1 L3

7 80 M Schwannoma Grade 1 L2
Ctrl-R 1 45 M Cervical radiculopathy C6-C7

2 49 F Cervical radiculopathy C5-Co6

3 50 F Cervical radiculopathy C5-Co6

4 52 M Cervical radiculopathy C3-C4, C5-Co

5 44 M Cervical radiculopathy C6-C7

6 39 M Cervical radiculopathy C5-Co6

7 37 F Cervical radiculopathy C6-7

C cervical, F' Female, L Lumbar, M Male, Y Years

*Grade according to the 2007 World Health Organization grading system of CNS tumors

range 778-3014 pg/mL; p<0.05), but did not differ
from those of the Ctrl-T group (median 3301, range
1565-5828 pg/mL) (Fig. 4a). Plasma levels of GFAP
did not differ between the TSC (median 38.3, range
1.7-208.2 pg/mL), Ctrl-T (median 80.8, range 7.2—
348.6 pg/mL), and Ctrl-R (median 73.8, range 19.6—
93.5 pg/mL) groups (Fig. 4d).

UCH-L1 levels (Fig. 4b, e)

UCH-L1 levels in CSF did not differ significantly between the
TSC (median 325.7, range 106.3—1340 pg/mL), Ctrl-T (me-
dian 272.9, range 128.1-676.1 pg/mL), and Ctrl-R (median
133.6, range 37.9-280.1 pg/mL) groups, though there was a
trend towards increased levels in TSC (Fig. 4b). Like GFAP,
UCH-LI levels in plasma were similar in the TSC (median
58.4, range 0.02-338.8 pg/mL), Ctrl-T (median 70.3, range
3.9-391.5 pg/mL), and Ctrl-R (median 73.0, range 12.1-
229.5 pg/mL) groups (Fig. 4e).

pNF-H levels (Fig. 4c,f)

CSF levels of pNF-H were significantly higher in the
TSC group (median 260.1, range 66.9-718.2 pg/mL)
than in the Ctrl-R group (median 96.3, range 77.3—
322.1 pg/mL; p<0.05), but did not differ significantly
from those in the Ctrl-T group (median 307.9, range
160.9-729.4 pg/mL; Fig. 4c). Plasma pNF-H levels did
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not differ between the TSC (median 16.2, range 0.2—
78.3 pg/mL), Ctrl-T (median 8.7, range 0.8—88.1 pg/
mL), and Ctrl-R (median 20.8, range 0.2-143.5 pg/
mL) groups (Fig. 4f).

Complications

Three patients were re-operated (Table 1). Patient no. 1, an
incomplete SCI patient (AIS C), experienced worsening in
gait function and was re-operated due to spinal cord tethering
17 months after the initial surgery. He showed marked im-
provement after the second surgery. CSF biomarkers were
similar in both surgeries.

In patient no. 4, a C4 AIS A post-traumatic patient,
CSF UCH-L1 and pNF-H levels were 584.9 and
570.8 pg/mL, respectively, at the initial surgery. At
the second surgery (performed 18 months after the ini-
tial operation due to progressive worsening of wrist ex-
tension function), both GFAP and pNF-H levels in CSF
were markedly increased (9847.0 and 718.2 pg/mL, re-
spectively). UCH-L1 levels were similar to the other
patients in the cohort (231.7 pg/mL) and substantially
lower compared with the first surgery.

Patient no. 9 had an unfortunate intradural hemor-
rhage secondary to spinal anesthesia and later developed
severe spinal cord tethering in the thoracolumbar region
in combination with neurological deterioration (Fig. Ic).
At the initial surgery, CSF GFAP levels were high
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Fig. 4 Plasma and cerebrospinal fluid (CSF) biomarker levels in patients
undergoing surgery due to neurological deterioration caused by intradural
scar formation. Control groups comprised of patients operated on for
intradural, lumbar tumors (Ctrl-T), and patients with cervical
radiculopathy without spinal cord involvement selected for cervical
decompression surgery by anterior discectomy and fusion (Ctrl-R).
Data is presented for glial fibrillary acidic protein (GFAP), ubiquitin C-
terminal hydrolase L1 (UCH-L1), and phosphorylated neurofilament-
heavy (pNF-H). Data is presented as medians, 25th and 75th percentile,
and individual values. a—c Cerebrospinal fluid (CSF) biomarkers. In the

(11323.1 pg/mL), although UCH-L1 and pNF-H levels
were not (170.7 and 399.7 pg/mL, respectively). At
4 months postoperatively, no improvement was noted
and on MRI evidence of re-tethering was found.
Biomarker levels were lower compared with the initial
surgery (GFAP 2121.4 pg/mL, UCH-L1 133.7 pg/mL
and pNF-H 108.8 pg/mL).

lllustrative case

A 45-year-old female patient had suffered neonatal men-
ingitis and was later treated with a ventriculoperitoneal
shunt that was revised on numerous occasions. She then
experienced a progressive tetraparesis and became un-
able to walk. She underwent surgical decompression at
C1-C3 on two occasions, 4 and 6 years previously,
without improvement. Due to continuous deterioration
of upper extremity function, an MRI was performed
(Fig. 1d) that showed a C0-C2 cyst and signs of
intradural tethering. A C4 decompression and intradural

TSC and Ctrl-T groups, CSF biomarkers were sampled intraoperatively
whereas in patients with cervical radiculopathy (Ctrl-R), the samples were
obtained preoperatively via a routine spinal tap. Compared to patients
with cervical radiculopathy, the levels of GFAP and pNF-H although
not UCH-L1 were higher in those with chronic spinal cord injury/spinal
cord tethering and intradural scar formation. d—f Plasma biomarkers. In
patients with chronic spinal cord injury/tethered spinal cord, the
biomarker levels in plasma were similar to those with intradural lumbar
tumors or cervical radiculopathy control groups for all evaluated
biomarkers

exploration of CO—C3 was performed. At surgery, dense
adhesions were found in addition to a markedly thick-
ened arachnoid membrane. In the CSF obtained at dural
opening, exceedingly high GFAP levels (55909 pg/mL)
were observed. UCH-L1 levels (1074 pg/mL) were the
second highest in this cohort, whereas the pNF-H levels
were on an average level (355.5 pg/mL; Fig. 4). Blood
biomarker levels were all within the normal range.
Postoperatively, initial improvement in hand function
was observed.

Correlations between biomarker levels and clinical
factors

CSF and blood biomarker levels did not correlate with age,
symptom duration, injury level, and disease severity as assessed
by AIS grade, EQ-5D, and JOACMEQ before surgery. As
expected, biomarker levels were higher in CSF than in plasma,
but no correlation between the two compartments for any of the
evaluated biomarkers was found (p > 0.05; Fig. 5).
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Fig. 5 Correlations between plasma and cerebrospinal (CSF) levels of
glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase L1
(UCH-LT1), and phosphorylated neurofilament-heavy (pNF-H)
(Spearman’s rank correlation). The analyzed groups were patients with
neurological deterioration and tethering of the spinal cord (TSC), controls

Discussion

In this study, the first to evaluate CSF and blood biomarkers in
patients with spinal cord tethering and neurological deterioration,
we observed that CSF concentrations of GFAP and pNF-H are
increased in tethered cord SCI patients compared with
radiculopathy controls without evidence of spinal cord compres-
sion. These elevated concentrations of biomarkers of neuronal/
axonal injury and glial scar formation may reflect ongoing pro-
cesses of clinical relevance. Studies on a larger patient population
may provide insight into the mechanisms causing progressive
neurological deterioration in these patients.

Following traumatic SCI, the clinical entity of delayed neu-
rological worsening up to many years post-injury is well
established [14, 24, 27, 32, 34]. The condition is named
post-traumatic syringomyelia or preferably progressive post-
traumatic myelopathy (PPM). In accordance with previous
findings, surgical untethering was safe in the present study
and resulted in improved clinical outcome as evaluated by
the JOACMEQ and EQ-5D assessment tools [14, 24, 27,
32]. However, re-tethering occurred in 25% of patients, sug-
gesting a continuous process leading to recurrent intradural
scar formation.
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with intradural lumbar tumors without spinal cord involvement (Ctrl-T),
and controls with cervical disc disorders causing cervical radiculopathy
without spinal cord involvement (Ctrl-R). There were large differences
between CSF and plasma levels but no significant correlations between
the compartments for any of the analyzed groups were found

To date, the pathophysiology of PPM has not been fully
clarified [24]. Hence, we assessed 3 biomarkers, namely
GFAP, p-NFH, and UCH-LI, each linked to different cell
origin and pathophysiological mechanisms that could help
us appreciate the etiology and underlying processes predispos-
ing to spinal cord tethering.

The intermediate filament cytoskeleton protein GFAP is an
astroglial biomarker of CNS injury which is found in the
astroglial skeleton of both white matter and gray matter with a
suggested serum half-life of <48 h [30]. Following
thoracoabdominal aortic aneurysm surgery, CSF GFAP levels
were > 500 times higher in patients who suffered ischemic spinal
cord injury compared with controls [3]. Recently, in acute SCI
patients, the GFAP levels in blood were higher in patients with
motor complete injuries than in those with motor incomplete
SCI, suggesting a correlation with the degree of cord injury [1,
19, 30, 42]. In our study, we did not observe a clear correlation
between GFAP levels and the severity of the clinical situation or
the time since the initial injury. This may be partially explained
by the fact that spinal cord tethering, and its associated neurolog-
ical exacerbation, is typically a slow process continuing over
many years with large individual variability. Nonetheless, the
increased GFAP levels in CSF suggest an active process
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presumably from glial scar formation that can represent a thera-
peutic target.

We also hypothesized that progressive white matter pathol-
ogy could be associated with neurological deterioration in
chronic SCI. We therefore evaluated pNF-H, a main compo-
nent of the axonal cytoskeleton that has previously been asso-
ciated with acute worsening of cervical spondylotic myelopa-
thy [49], and injury severity in acute SCI [48]. pNF-H was
substantially increased in CSF of patients with spinal cord
tethering compared with controls, thus suggesting ongoing
axonal degeneration in this population and supporting its use
as a potential biomarker for chronic SCL

UCH-L1 is a deubiquitinating enzyme present primarily in
neurons [25]. It is a promising biomarker for many CNS dis-
orders, including traumatic injuries [17, 38, 51]. It was also
increased in a rat model of acute SCI [54], although has not
thoroughly been evaluated in human SCI. In the present re-
port, it was not elevated in chronic SCI patients, although a
slight trend toward increased levels was discerned. Many fac-
tors might contribute to the discordance of these results in-
cluding a subtle ongoing injury process which do not result
in markedly increased levels of UCH-L1, as well as different
biomarker kinetics and dynamics [8]. Taken together, these
biomarker observations argue that spinal cord tethering is pre-
dominately characterized by glial and axonal involvement.

We observed a > 50-fold interindividual concentration dif-
ferences in biomarker levels, particularly in plasma. Moreover,
CSF levels were ~ 10-fold higher than in plasma and no corre-
lation between the two compartments was observed. Significant
differences among the groups were observed only in the CSF
samples. Nonetheless, together, these data suggest that sam-
pling of CSF is more sensitive to detect changes and altered
biomarker profiles in chronic SCI patients than of plasma.
These findings are in accordance with previous studies in other
neurological diseases [5] and might be caused by many factors,
including the blood-spinal cord barrier preventing free passage
of biomarkers into the circulation, the use of research-grade
assay, and the presence in blood of heterophilic antibodies,
which may react with the immunochemical tests giving falsely
low results. Nonetheless, together, these data suggest that sam-
pling of CSF is more sensitive to detect changes and altered
biomarker profiles in chronic SCI patients than of plasma.

Mounting evidence indicates that biomarkers become abnor-
mal in a temporally ordered manner reflecting distinct contribut-
ing pathophysiological mechanisms. Following experimental and
clinical traumatic brain injury, UCH-L1 and GFAP concentra-
tions increase in biological fluids in the superacute (UCH-L1)
and acute (UCH-L1, GFAP) phase and then, depending on injury
severity, they normalize over 3—4 days unless secondary events
occur [6, 41, 50, 57]. On the other hand, pNF-H is considered a
subacute biomarker of axonal injury that rises in later stages [23,
46, 55]. In acute SCI, there is limited information on biomarker
kinetics, although a similar trend has been reported [29-31].

In our patient cohort, the pattern of altered CSF pNF-H con-
centrations linked with no appreciable UCH-L1 changes implies
that the neuronal/axonal injury is an earlier event which retains
ongoing white matter degeneration. On the other hand, the ob-
served increased GFAP concentrations in CSF, but not in blood,
are consistent with continuing glial remodeling rather than a
potential ensuing surgical injury, owing to the fact that the inci-
sion and surgical approach using microinstruments is mainly
performed within dense scar tissue with minimal damage and
bleeding [20]. In addition, CSF samples were taken immediately
at dura opening, a time period likely insufficient to alter biomark-
er levels in our samples.

In the current cohort, GFAP levels but not UCH-L1 were
significantly higher in tethered cord patients compared with
radiculopathy. Since the surgical approach from skin to dural
opening and CSF release did not exceed 1 h, UCH-L1 levels
should arguably be even higher as a result of the surgical
trauma indicative of a superacute phase. However, such re-
sults were not observed in our study sample. It must be also
stressed that this is the first study to evaluate these biomarkers
in patients operated for tethered cord, and therefore there are
no previous results to compare with.

We used perioperative CSF sampling to, obtain CSF from the
site of maximal injury, and avoided lumbar sampling since free
CSF flow beyond the tethered area was uncertain. For compari-
son with the radiculopathy controls, CSF samples via a lumbar
puncture would be preferred. However, this should be avoided in
most tethered cord patients, due to multiple adhesions and stag-
nant CSF. Similarly, to obtain CSF via an ultrasound-guided tap
is not applicable and, in particular, not safe due to the fact that
spinal cord is commonly adhered to the dura. Moreover, it may
be difficult to obtain a clear image by ultrasound when used on
dense scar tissue. To percutaneously insert a needle through the
dura at the level of the spinal cord, with the cord adherent to the
dura and/or in patients with retained neurological function,
should be regarded unsafe and unethical when used for scientific
purposes.

One key aim of surgical untethering is to restore CSF flow by
untethering the cord [14, 24, 32]. To mimic the surgical approach
and in an attempt to evaluate whether the surgical trauma per se
influenced the biomarker levels, we also included a small control
cohort with intradural tumors not involving the spinal cord. It
should be mentioned, however, that biomarker secretion from
intradural tumors is not known and compression of cauda equina
nerve roots may have influenced the biomarker results. These
uncertainties were the main rationale for adding a radiculopathy
control group. Thus, radiculopathy patients without spinal cord
compression were also included as controls. Finally, future stud-
ies are needed to evaluate whether there are temporal alterations of
biomarker abnormalities and their relationship with pathological
stage, appearance of clinical symptoms, and disease progression.

The decision to proceed to this rather lengthy and potentially
risky neurosurgical procedure depends on a combination of
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patient factors, degree of clinical deterioration, and to some ex-
tent the radiological findings. Currently, the indications for sur-
gery may vary among centers due to the lack of objective mea-
sures. Biomarkers indicating glial scar formation and/or neuronal
degeneration could, in combination with the degree of clinical
neurological deterioration, provide more objective factors in de-
termining the surgical indication. However, at present, it is pre-
mature to suggest their use as biomarkers in clinical practice,
awaiting results from larger patient cohorts.

Our study has several limitations. The patient cohort is rather
small, in view of the scarcity of the used surgical procedure.
Therefore, the prognostic value of biomarker levels on outcome
could not be determined. In addition, the study sample was in-
sufficient to enable a multivariate analysis of the biomarker
levels. For technical reasons at time of analysis, some results
for plasma GFAP could not be obtained in a subset of patients.
This could have influenced the statistical results, although in
view of the limited changes overall in plasma compared with
CSF, it is unlikely that it altered the main finding that biomarker
changes in CSF were more robust than in plasma. The exact
contribution of the surgical approach from skin incision to dural
opening to CSF levels cannot be assessed although it is unlikely
that it contributed significantly to the observed biomarker levels.
Similarly, the degree of glial scar formation and neuronal degen-
eration could not be objectively evaluated. Importantly, biomark-
er results from patients who underwent first surgery and reoper-
ation were similar. The biomarkers used in this cohort have pre-
viously been investigated in acute spinal cord injury, although
not in chronic SCI patients and the normal levels in chronic
spinal cord injury without tethering are unknown. Thus, this
study is the first to evaluate serum and CSF biomarkers in pa-
tients with chronic spinal cord injury and intradural tethering of
the cord. Lastly, the follow-up period was relatively short.
However, recent work from our group showed that long-term
outcome following untethering is favorable [24]. Therefore, we
have no reason to believe that the outcome would change sub-
stantially between 3 and 12 months. Moreover, the primary aim
of surgical untethering is to arrest ongoing clinical deterioration,
not improvement per se.

Conclusions

In this report, we evaluated CSF and plasma biomarkers in
patients with spinal cord tethering and intradural scar forma-
tion. The patient cohort was heterogeneous and consisted of
patients with previous trauma, surgery, infection, or hemor-
rhage. We were interested in unveiling mechanisms causing
the delayed neurological deterioration in these patients using a
multimarker panel. We showed that compared to controls,
GFAP and pNF-H levels in CSF but not in plasma were higher
in patients surgically treated for tethered spinal cord, indicat-
ing that CSF is superior to blood biomarker sampling in this
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population. The present results also suggest that biomarkers
may provide insight, as observed in other acute CNS disor-
ders, into the pathophysiology of a progressive axonal injury
and glial scar formation plausibly contributing to spinal cord
dysfunction and progressive neurological deterioration ob-
served in a subset of chronic SCI patients. However, this as-
sumption should be validated in a larger cohort of SCI pa-
tients, preferably with histological verification, when possible.
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Comments

Holmstrom et al. present an interesting and well-conducted study of bio-
marker levels in patients with progressive chronic spinal cord injury due
to intradural scar tissue and spinal cord tethering. This condition may
evolve in the cervical and thoracic spine years after trauma, infection,
hemorrhage, or intradural surgery, and is poorly understood. Surgery with
microsurgical untethering and duraplasty seems to be the most effective
treatment option, but indications for surgery are not clear due to lack of
objective measures. Twelve patients with symptomatic spinal cord teth-
ering were examined for the presence of GFAP, UCH-L1, and pNF-H in
CSF and plasma at the time of microsurgical untethering. All surgeries
were performed at one center by one surgeon over a period of 32 months
from March 2013 until October 2015. The biomarker results were com-
pared with 2 control groups with 7 patients in each group that underwent
surgery for either benign intradural lumbar tumors or cervical
radiculopathy (ACDF). All patients with progressive chronic spinal cord
injury benefitted of microsurgical untethering in terms of outcome scores
after 3 months (EQ-5D-VAS and JOACMEQ), but 3 patients (25%)
experienced re-tethering and were re-operated. The authors only found
significant biomarker difference among the 3 groups in CSF analyses for
GFAP and pNF-H. This difference was only seen between the tethered
cord and radiculopathy groups, but not between the tethered cord and
lumbar tumor groups. There was no correlation between patient charac-
teristics and biomarker levels. However, biomarker levels were always
found to be higher in CSF compared with plasma, but there was no
correlation between the two compartments.

Holmstrom et al. conclude that CSF sampling might be superior to
blood biomarker sampling, and biomarkers may provide insight into
pathophysiology of progressive chronic spinal cord injury. Still, the
clinical application of biomarkers indicating glial scar formation or
neurodegeneration in spinal cord tethering must be further investigated.
Important questions regarding patient-specific baseline values and serial
CSF sampling need to be addressed in future studies.

Jesper Kelsen
Denmark
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