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Right Brodmann area 18 predicts tremor arrest after Vim
radiosurgery: a voxel-based morphometry study
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Abstract

Introduction Drug-resistant essential tremor (ET) can benefit
from open standard stereotactic procedures, such as deep-
brain stimulation or radiofrequency thalamotomy. Non-
surgical candidates can be offered either high-focused ultra-
sound (HIFU) or radiosurgery (RS). All procedures aim to
target the same thalamic site, the ventro-intermediate nucleus
(e.g., Vim). The mechanisms by which tremor stops after Vim
RS or HIFU remain unknown. We used voxel-based mor-
phometry (VBM) on pretherapeutic neuroimaging data and
assessed which anatomical site would best correlate with
tremor arrest 1 year after Vim RS.

Methods Fifty-two patients (30 male, 22 female; mean age
71.6 years, range 49-82) with right-sided ET benefited
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from left unilateral Vim RS in Marseille, France.
Targeting was performed in a uniform manner, using
130 Gy and a single 4-mm collimator. Neurological
(pretherapeutic and 1 year after) and neuroimaging
(baseline) assessments were completed. Tremor score on the
treated hand (TSTH) at 1 year after Vim RS was included in a
statistical parametric mapping analysis of variance (ANOVA)
model as a continuous variable with pretherapeutic neuroim-
aging data. Pretherapeutic gray matter density (GMD) was
further correlated with TSTH improvement. No a priori hy-
pothesis was used in the statistical model.

Results The only statistically significant region was right
Brodmann area (BA) 18 (visual association area V2,
p = 0.05, cluster size K, = 71). Higher baseline GMD corre-
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lated with better TSTH improvement at 1 year after Vim
RS (Spearman’s rank correlation coefficient = 0.002).
Conclusions Routine baseline structural neuroimaging pre-
dicts TSTH improvement 1 year after Vim RS. The relevant
anatomical area is the right visual association cortex (BA 18,
V2). The question whether visual areas should be included in
the targeting remains open.

Keywords Tremor - Ventro-intermediate nucleus -
Voxel-based morphometry - Visual association area -
Radiosurgery - Thalamotomy

Introduction

Tremor characterizes one of the clearest consequences of
unusual synchronization within the motor network.
Although many studies have attempted to understand the
pathophysiology of tremor [17, 18, 44], its underlying
mechanisms remain largely undiscovered. Essential tremor
(ET) is the most common movement disorder [27]. It has
previously been reported that, in the context of ET, thalam-
ic neurons display discharging patterns correlated with
tremor, predominantly in the cerebellar input-receiving area
(mainly the dentate nucleus) and further in the contralateral
red nucleus, thalamic ventro-intermediate nucleus (Vim)
and precentral gyrus [21]. The “tremor network” thus en-
compasses the cerebello-thalamo-cortical loop [18]. It has
also been reported that the inferior olivary nucleus might
produce an abnormal rhythmic output, which further affects
synchronization of Purkinje cell firing [19], passively prop-
agated through the cerebello-thalamic tract [5, 30] and last-
ly regulating motor activity [31].

Drug-resistant ET can benefit from standard stereotactic
procedures, including deep-brain stimulation (DBS) [3], by
means of an electrode positioned in the ventral thalamus
(the ventro-intermediate nucleus, i.e., Vim) or radiofrequen-
cy thalamotomy [28]. Both have the advantage of intraop-
erative confirmation of targeting, with the possibility of
adjusting the placement of the electrode if necessary, which
can be performed on the basis of the intraoperative electro-
physiology and clinical response; furthermore, they provide
an immediate postoperative clinical effect regarding allevi-
ation of the tremor [6, 20]. Non-surgical candidates can be
advised to undergo radiosurgery (RS; e.g., Vim RS, also
called Gamma Knife stereotactic thalamotomy) [8, 23, 41]
or high-focused ultrasound (HIFU) [14, 15, 26]. The former
aim at the same target (e.g., the Vim). The mechanisms by
which RS and HIFU produce tremor arrest remain un-
known. Radiosurgical targeting is indirect, and the clinical
effect develops gradually, up to 1 year after the procedure
[41], unlike open surgery. It has been previously
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hypothesized that, besides a purely lesioning effect, Vim
RS might have a neuromodulatory one [33].

The advances in neuroimaging procedures have provided a
new understanding of the pathophysiology of tremor [34].
Computational approaches to analyzing high-resolution struc-
tural MRI provide a powerful and non-invasive tool for char-
acterizing individual and/or group differences in brain anato-
my [1]. Regarding structural MRI, voxel-based morphometry
(VBM) is a well-established and robust methodology,
allowing insight into depicting the structural brain features.
It uses routinely acquired T1-weighted imaging (T1w) to
study volume subparts, gray or white matter density [1]. For
ET, VBM has been used at both 1.5 and 3 T, with a large
spectrum of controversial findings [2, 4, 7, 10-12, 25, 29,
32]. However, all these studies have compared ET cases ver-
sus a group of healthy controls.

In the present study, we use pretherapeutic VBM assess-
ment and correlate pretherapeutic gray matter density (GMD)
with tremor score on the treated hand (TSTH) improvement at
1 year after Vim RS. We used no a priori assumption. We
hypothesized (based on previous work from our group) that
visual areas might play a role in tremor alleviation and/or
arrest after Vim RS.

Methods
Subjects

We analyzed 52 patients (30 male, 22 female; mean age
71.6 years, range 49—82, standard deviation 6.9). All had severe
refractory right dominant in right-handed ET, treated with uni-
lateral left Vim RS, in Marseille, France. All had given informed
written consent. The study was approved by the local ethics
committee (in compliance with the national legislation and the
Declaration of Helsinki). All were part of a research protocol
aiming at understanding Vim RS radiobiology. Inclusion and
exclusion criteria are shown in Table 1. Essential tremor was
defined according to Elble et al. [13]. The indications for Vim
RS rather than DBS were medical comorbidities, drug resis-
tance, advanced age or patient’s refusal.

Ventro-intermediate nucleus radiosurgery procedure

All Vim RSs were performed by the same neurosurgeon (JR)
in Marseille, France, using a uniform procedure: Leksell®
coordinate G Frame (Elekta AB, Stockholm, Sweden) appli-
cation under local anesthesia [41], stereotactic CT and MRI
and indirect targeting using Guiot’s diagram [2.5 mm above
the AC-PC line, 11 mm lateral to the wall of the third ventricle
and at a mean of 7.3 mm in front of the PC (3.8-9.8; SD: 1.3)].
A unique 4-mm isocenter was used with a uniform maximal
prescription dose of 130 Gy.
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Table 1  Patient inclusion and exclusion criteria

Inclusion criteria

* Able to give formal approval and attend all follow-up visits (including
intermediate ones at 3, 6 and 9 months)

* Essential tremor diagnosis confirmed by our movement disorder
neurologist from clinical history and examination

* Drug-resistance after adequate trials
» Age between 18 and 80
* Medical contraindication for DBS or radiofrequency thalamotomy
* The Vim thalamic area apparent on pretherapeutic MRI
Exclusion criteria
* Previous contralateral Vim RS

* Previous history of stroke or epilepsy to exclude unrelated structural
changes appearance

* Standard contraindication for MRI, including non-MRI compatible
devices, such as cardiac pacemakers

* Pregnancy or lactation

* Parkinson-plus syndrome suspected on neurological examination
* Brain tumors

* Unable to provide consent for any reason

* Prior stereotactic and/or radiosurgical procedures in the basal ganglia
area

Clinical evaluation and outcome measures after Vim
radiosurgery

The same neurologist (TW) performed all clinical assessments
at baseline and 1 year after Vim RS to account for delayed
clinical effect [41]. The tremor score on the treated hand
(TSTH) was assessed according to the Fahn-Tolosa-Marin
Tremor Rating Scale [36]. At the time of study, no patient
was under medication.

MRI pretherapeutic acquisition

All imaging was obtained on a 3-T magnetic resonance imag-
ing (MRI) scanner (Siemens Skyra TrioTim Scanner, Munich,
Germany) with a 32-channel receive array head coil. The ac-
quisition protocol included a high-resolution T1-weighted
(T1w) image, TR/TE = 2300/2.03, inversion time 900 ms,
isotropic voxel of 1 mm® and 192 slices. Images artifacted
by movement were excluded.

Data processing and analysis

Statistical parametric mapping (SPM12) (Department of
Neurology, London), performed with MATLAB 2014a,
2014 (MathWorks, Boston, MA, USA), was utilized for pre-
processing and analyzing of the MRI data. The anatomical
MR images were normalized to the Montreal Neurological
Institute (MNI) atlas, with voxel size of 2 x 2 x 2 mm. The

normalization procedure allows the warped images to fit into a
standard template brain. Furthermore, this establishes a voxel-
to-voxel correspondence between brains of different individ-
uals. This enables driving the group statistics and reporting the
results in a standard coordinate system (e.g., MNI, which is
based on data from many individuals and is fully 3D, with
data at every voxel). They were further segmented into the
GM, white matter and cerebrospinal fluid. Furthermore, they
were spatially smoothed using an 8-mm full-width-at-half-
maximum (FWHM) Gaussian kernel in SPM12 to blur indi-
vidual variations in the gyral anatomy and to increase the
signal-to-noise ratio. The smoothing procedure enables sub-
sequent voxel-by-voxel analysis comparable to a region-of-
interest approach as the voxel will contain the average con-
centration of gray matter from around the voxel (where the
voxel is characterized by the form of the smoothing kernel).
The former is often referred to as the GMD. In a structural
MRI of the brain, the intensity of each volumetric pixel or
voxel relates to the density of the gray matter in that region.
The VBM technique thus compares brain structures on a
voxel-by-voxel basis. After the classical preprocessing steps,
the intensity values of the voxels are compared to identify
localized differences in the GMD.

SPM 12 was used to create a flexible factorial analysis of
variance (ANOVA) model. Pretherapeutic T1w imaging was
used, and TSTH improvement at 1 year after Vim RS was
added as a covariate using the corresponding continuous
values. The aim was to depict the anatomical area that corre-
lates best with tremor stop after Vim RS. The uncorrected p
value at the cluster level was set at < 0.05 and for the peak
level < 0.001.

The SPM analysis was done by the medical staff (CT,
DVDV, EG) not involved in the treatment indication, Vim
RS procedure or follow-up evaluation. Gray matter density
(GMD) was further extracted from statistically significant re-
gions. For correlation between the GMD and TSTH improve-
ment, STATA version 11 (StataCorp LLC, College Station,
TX, USA) was used, and p values were evaluated with the
Spearman correlation coefficient.

Results

One-year overall improvement in TSTH in the present popu-
lation was 67.8% (range 0—100%, standard deviation 32.9).
No side effect was encountered. The vast majority of the pa-
tients presented a left thalamic “cocade” lesion on follow-up
MRI, which is classically considered associated with the clin-
ical response [37, 41]. However, four patients with severe
pretherapeutic tremor were considered clinical non-
responders but had a visible thalamic lesion on follow-up
MRI, while eight patients were considered clinical responders
and had a smaller lesion on follow-up MRI.
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Right visual association area (Brodmann area 18, V2)
predicts tremor alleviation

The only statistically significant cluster was the right Brodmann
area (BA) 18 (visual association area V2; MNI 12, =74, —4;
Puncor = 0.05, K, = 71; Fig. 1). Higher pretherapeutic GMD
correlated with better TSTH improvement (Spearman = 0.002;
Fig. 1).

Discussion

To the best of our knowledge, we performed the first VBM
analysis endeavoring to predict which structural changes and/
or adaptations in patients with drug-resistant ET would best
correlate with 1-year outcome (e.g., tremor score on the

Fig. 1 The only statistically
significant cluster was right
Brodmann area (BA) 18 (visual
association area V2). The upper
part shows an illustration of the
cluster in the axial, coronal and
sagittal plane. Below, a scatterplot
correlates the baseline GMD with
TSTH improvement

(Spearman = 0.002). The bottom
part shows the SPM result at the
cluster and peak level
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treated hand) after Vim RS. We report that right Brodmann
area 18 best correlates with TSTH improvement. Furthermore,
higher baseline gray matter density within this region associ-
ates with better TSTH improvement.

Visual association area V2, also called the prestriate cor-
tex, is the second major area in the visual cortex. This
region receives connections from the V1 and sends strong
connections to the V3, V4 and V5 areas. Most of the
neurons are regulated to simple visual features such as
orientation, spatial frequency, size, color and shape. It is
mainly involved in visuo-spatial information processing
[39]. Other roles include detection of light intensity, detec-
tion of patterns, discrimination of finger gestures or
orientation-selective attention [24]. In fact, according to
some functional studies, it additionally participates in visual
priming and visual attention [9].
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The previous studies related to VBM and ET patients have
mainly compared the ET with healthy controls and revealed in-
consistent results (at 1.5and 3 T [2, 4, 7, 10, 11, 25, 32], showing
atrophy, no change or volume increase in different brain areas).
In the present study, it was beyond our purpose to analyze a
healthy control group, as we were interested in correlating an
eventual statistically significant structural feature, present pre-
therapeutically, to the clinical response at 1 year after Vim RS.

In line with our present findings, using a VBM methodolo-
gy, Daniels et al. [11] revealed a relative expansion of gray
matter bilaterally in the temporo-parietal junction and the right
middle occipital cortex in patients with ET as compared with
healthy controls. The authors concluded that these areas, in-
volved in higher order visuospatial processing and control,
might exhibit an adaptive reorganization and compensate
skilled movements in case of tremor. In a recent functional
resting-state MRI study, Jang et al. [22] evaluated the effect
of Vim HIFU on brain networks in ten patients using graph
analysis. Interestingly, the authors observed changes in func-
tional connectivity in the right lateral inferior occipital cortex.
They hypothesized that a loss of strong interactions might ap-
pear or a reduced functional interaction on the way to other
brain regions. Concerning the eventual distant effects of a
thalamotomy procedure, structural diffusion tensor imaging
(DTI) data after HIFU thalamotomy for ET [40] showed that
fractional anisotropy changes included the pre- and post-
central subcortical white matter, thalamus, red nucleus, inferior
olive, bilateral parts of the superior vermis or central tegmental
tract. After correction for multiple comparisons, only distant
DTI changes were correlated with clinical improvement [40].

Previous studies have postulated that visual areas must be
linked to the motor ones as a need for sensory guidance of
movement of the hands and fingers [16] and further in motor
regulation. Several possibilities could explain this: one is a
modulation by the corpus callosum (mediating tasks in which
the visual cortex on one part of the body is linked to the
contralateral motor cortex); a second is a visual input to motor
areas (by the caudate nucleus and claustrum); third, the cere-
bellum might play an essential role in calibrating the relation-
ship between visual and somatosensory/motor information.

In a recently published paper [38], we evaluated longitudinal
GMD changes in time between the pretherapeutic state and
1 year after Vim RS. We assessed whether these structural MR
changes related to TSTH improvement by conventionally sepa-
rating two different groups, clinical responders (> 50% improve-
ment) and non-responders (< 50% improvement). Furthermore,
we also appraised whether pretherapeutic GMD within the sta-
tistically significant clusters correlated with 1-year TSTH im-
provement, in the same study. We found that GMD was lower
at baseline in the non-responder group for left BA 19 and left
temporal pole (BA 38), V4, V5 and the parahippocampal place
area. Moreover, for the left temporal pole, higher baseline GMD
predicted better TSTH improvement.

In the present study , we exclusively used pretherapeutic
structural T1w imaging. The VBM preprocessing steps were
identical. However, the research question and statistical anal-
ysis model pertinent to this question were different. Here, we
constructed a general linear model allowing the prediction of
whether an eventual pretherapeutic GMD in a specific ana-
tomical area would relate to TSTH improvement. Of particular
importance, we used TSTH as a continuous variable, without
the splitting of any group, as in the previous study [38]. We
found that higher pretherapeutic GMD within right BA 18
predicted better TSTH improvement.

In our opinion, these findings should be seen as comple-
mentary, not exclusive. Both studies point to the involvement
of the visual association areas in tremor arrest after Vim RS.
Furthermore, together, they show that lower baseline GMD in
these areas (independently if right or left) and in the left tem-
poral pole was associated with lower TSTH improvement.
Some other additional aspects should be taken into account
because of their relevance. First, from a methodological point
of view, as previously explained, the research questions were
different. Second, it is well known that several visual func-
tions (e.g., detection of light intensity, feature extraction or
detection of patterns, etc.) simultaneously activate both BA
18 and 19, which are in close anatomical location, suggesting
a common brain network. Third, regarding visual perception,
it is now well acknowledged that it is not just carried out in
one area, but involves many different regions of the cerebral
cortex [42, 43], receiving input from V1. Typically, the corre-
sponding processing of different information streams con-
tinues beyond V1. Many outputs go to V2 (e.g., BA 18) and
relate to motion analysis, and this information is further proc-
essed in V3 (e.g., BA 19) and then V5, the medial temporal
(MT) cortex (part of the study already published) and medial
superior temporal (MST) cortex. All these steps happen before
the information moves to other visual association areas, such
as the posterior parietal cortex. Fourth, regarding functions
related to the visual association cortex, electrophysiology data
suggest sensitivity to motion-delineated forms [35] and its role
as a differentiation point between the ‘what’ and ‘where’ vi-
sual pathways. Additional involvement is in visuospatial in-
formation processing, horizontal saccadic eye movements,
orientation-selective attention and tracking visual motion pat-
terns [42]. These functions involve both hemispheres and are
not limited to a certain unilateral and individual area (whether
V2 or V3, V4, etc.). Ultimately, a possibility that has been
raised over time and that was already mentioned here is that
the cerebellum might play the crucial role in adjusting the link
between visual and somatosensory/motor information [16].
This former feature might be of particular interest in ET.

We believe that these findings, from two different studies in
which two different methodologies were used, provide rich
and complementary information about what structural change
relates to a better clinical response after Vim RS. Our research
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question was not conducted to support existing pathophysio-
logical theories, and thus our findings might provide new
insight. The depicted changes in relationship to tremor re-
sponse might have several possible explanations. One would
be that adaptive structural MR changes appear during the dis-
ease course and, depending on these changes, the “reset” of
the “tremor network” might be either easier or more difficult
after Vim RS. A second hypothesis sees ET as a family of
diseases rather than a uniform entity. Regarding this, some
of the patients, depending on their phenotype, might develop
structural MRI changes making them more “sensitive” or
“resistant” to Vim RS as a trait of ET subclinical phenotype.

The advantages of the VBM analysis are related to the
unbiased and objective procedure, being fully automated,
not being based on regions of interest and being more explor-
atory. Furthermore, it depicts differences and/or changes (in
our study) on a global and local scale. The limitations of our
study are mainly related to the absence of a blinded neurolog-
ical examination and to the VBM method (preprocessing
steps, statistical challenges, etc.).

The role of the right visual association areas depicted on
routine structural pretherapeutic neuroimaging is reported for
the first time as a predictor of tremor improvement after Vim
RS. How the “tremor network” (e.g., the cerebello-thalamo-
cortical pacemaker) modulates these structural adaptations in
patients with ET remains unknown.

Conclusion

Right visual association (BA18, V2) predicts tremor arrest
after Vim RS. The mechanism by which this visual area mod-
ulates the clinical response is currently unknown. The ques-
tion of whether visual areas should be included in the targeting
is still open.
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Comments

Fifty-two patients with right-sided ET were treated with left unilateral
Vim Gamma Knife (Vim) thalamotomy. Targeting was performed using
130 Gy and a single 4-mm collimator. Pre-therapeutic gray matter density
in T1-weighted MRI (GMD) was correlated with tremor score improve-
ment of the treated hand (TSTH) at 1 year after Vim RS as a continuous
variable. As the only statistically significant anatomical region, higher
baseline GMD in right Brodmann area 18 (visual association area V2)
correlated with better TSTH improvement.

This article shows a very interesting relation between unsuspected
anatomical visual association areas (BA18, V2) and tremor arrest in
general by demonstrating a correlation between pre-therapeutic T1w im-
aging in visual association areas and outcome of left unilateral
radiosurgical Vim lesions in patients with right-sided essential tremor.

Bodo Lippitz

Hamburg, Germany

This study is from a leading group in the field of radiosurgery for
functional disorders. The authors were able to recruit a remarkable
number of patients treated with an innovative method for a rare disease.
No a priori hypothesis was used in the statistical model, which is a very
important strength of the study. Also, the hypothesis that the visual areas
are linked to the motor ones, as sensory guidance of the movement of the
hand and fingers, appears sound and sheds new light on the understanding
of the visuospatial network.

Alfredo Conti

Messina, Italy
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