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Abstract

For elliptic partial differential equations with periodically oscillating coefficients which may have large
jumps, we prove robust convergence of a two-grid algorithm using a prolongation motivated by the
theory of homogenization. The corresponding Galerkin operator on the coarse grid turns out to be a
discretization of a diffusion operator with homogenized coefficients obtained by solving discrete cell
problems. This two-grid method is then embedded inside a multi-grid cycle extending over both the fine
and the coarse scale.

AMS Subject Classifications: 35B27, 65F10, 65N22, 65N55.
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1. Introduction

When an elliptic partial differential equation with rapidly oscillating coefficients is
discretized, the following problems arise:

(a) The period of the oscillations is often so small that direct simulation with
sufficient accuracy is simply impossible.

(b) Even if direct numerical simulation is possible, the arising system of equations
may be very hard to solve.

In the first case, one way out is to find auxiliary problems, whose solutions are good
approximations of the solution of the original problem. This passage from a “mi-
croscopic” to a “macroscopic’’ equation is called homogenization, see [4], [21], [2],
[27], [19]. Let us also mention the approach due to [23], [22] which, in a model case,
improves the finite element discretization of a diffusion-reaction problem with pe-
riodically oscillating coefficients, the related work from [18], [12], and the articles
[15], [20] which try to recover the homogenized equation by algebraic multigrid.

In the second case, the discretization of an elliptic boundary value problem usually
ends up in having to solve systems of linear equations for which direct decompo-
sitions are too expensive, both in terms of memory and computing time. Instead, one
should use iterative methods, especially hierarchical ones like multigrid, which can
often be shown to have optimal complexity. Yet in many interesting cases, optimal
performance of multigrid is not easily achieved. Usually, this deterioration of
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multigrid performance occurs when one considers so-called “‘singularly perturbed”’
problems like convection-diffusion equations with dominant convection or large
anisotropies, where the original problem is a small elliptic perturbation of some
reduced equation, possibly of non-elliptic type. Indeed, the diffusion problem with
oscillating coefficients may also be considered a perturbation of another diffusion
law which is called the “homogenized problem”.

Methods for improving on multigrid convergence for these singularly perturbed
problems already exist, but up to now there has been no complete answer for any
of the three kinds of singular perturbations mentioned above. The case of a
diffusion problem with small-scale oscillations can in many cases be handled by
using so-called “matrix-dependent” prolongation/restriction operators, see for
example [1], [10], [28], [32], or by immediately applying “algebraic multigrid”
(AMG), which relies on the matrix information even more heavily in setting up
the coarse grid space; among the many references, we want to mention [29], [31],
[5] (aimed at problems with geometric irregularities are [3], [17]). Unfortunately,
given a diffusion problem that is more than one-dimensional and whose coefficient
has small-scale oscillations with a large-scale variation, there is no theory proving
robust convergence independent of the size of the problem and the variation of
the coefficients. This is not particularly surprising, since the class of these prob-
lems is very large, and there is also no method supposed to work in all cases.

Therefore, one first has to restrict the range of problems in a suitable way. As in
[13], [14] and [25], we choose the case of periodic oscillations. Here, a lot is known
about the limiting problem, and one may hope that this information can be used
to design a suitable multigrid algorithm.

A first result can be found in [13], [14], where the continuous homogenized
problem was used to define the coarse-grid problem. Yet, if the problem with
oscillating coefficients itself is not resolved exactly, this may not be a good choice,
see Remark 3.6. In [25], a (discretely) homogenized problem was defined by
solving discretized local problems. For the resulting algorithm, robust conver-
gence could be shown both theoretically and practically.

This work is based on [25], but it contains several improvements. First, the central
result is sharper (especially allowing arbitrarily fine triangulation of each cell) and
makes the relation to algebraic multigrid clearer. Second, we are able to handle the
case of ““stiff”” inclusions theoretically; this was only examined numerically in [25].

Finally, some words on the notation used in this paper: we often use Einstein’s
summation convention, and denote the relations a < Cb, a > Cb, ca < b < Ca for
generic constants ¢,C > 0 by a < b, a = b, a ~ b, respectively. We also use the
ot _ 0 _ 0
abbreviations J; = 8(_xk’ Oy, = a‘—yk.
2. Setting of the Problem
2.1. Basic Setting

Let/:Y — R" bea matrix-valued, 1-periodic function and assume that positive
constants fiy, u; exist with
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uoln*< Ly, < minl’, VneR', vyev. (1)
Next, we define for each ¢ > 0 an ¢-periodic coefficient function
/°: R" — Lin(R", R"), xv—w?i(%c). 2)

Given then a bounded Lipschitz domain Q C R” and f € L*(Q), we want to solve
the following problem: Find u* € H]}(Q) such that

—9, (;z{fj(x)ajug(x))dx — f(x) xeQ, (3)

for which we will mainly use the variational formulation: find u* € Hj(Q) satis-
fying for all ¢ € H}(Q) the equation

S, ) /&/ YO (x 8(pdx/f (4)

It is well-known from homogenization theory (see e.g. [4], [30], [2], [19]) that the
solution u® of (4) is approximated by the solution u° € H}(Q) satisfying the
homogenized equation

0, @) /&i )0 (x)Bsp(x)dx = /f (5)

for all ¢ € H}(Q). The coefficients /° appearing in (5) can be computed as the
cell averages ((f)y = [y fdy)

A= (A (O + 0, wi))y = (0 + Bywi). (S + Dywi))y, (6)
where the wy,k = 1,...,n are solutions to the “cell problems”: find w;, € H,}er(Y)
such that

[ #5010, 0) + 300,000y =0 ¥ 0 € B, (1) ™)

Here, H;er( Y) is defined as the space of 1-periodic functions on R” restricted to Y.

Again we set

W (x) 1= wk<)8‘>, for x € R". 8)

Usual estimates show weak convergence of u° to u° for ¢ — 0. For our applica-
tion, we will need error estimates of the following type (but in a discrete setting):

Theorem 2.1. Define an approximation u;,,, to u® by

ut = u’ + edpu’wi € H'(Q) 9)

aPP

together with a boundary correction term v* € H'(Q), given as the solution of
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) (Jz{fj(x)ajvg(x)) =0 forxeQ v'(x) =u,(x) forxcaQ  (10)

Now assume that the solution u° to the homogenized problem (5) lies in H*(Q), and
that the solutions wy. of the cell problems (7) are in W'*(Y) for some p > n. With a*
being the bilinear form defined in (4), the estimate

fwumaﬂmgcﬂmmMMJVMMQ (11)
is valid for all ¢ € H}(Q), from which one immediately obtains the energy error
estimate

with || - || . denoting the energy norm

& & &
u Ugpp +v

2 0
mgcﬁDunm (12)

lolly: == a0, ). (13)

Proof: See [19], Section 1.4, [24] or [25]. [

2.2. Symmetric Cells

We observe that Theorem 2.1 does not yet give a computationally feasible ap-
proximation, because, to obtain the boundary-layer correction v*, one still has to
solve a problem of the same complexity as the original one. The study of this
boundary term is deep, and not yet completely solved. One can approximate it by
simply cutting off the wrong boundary values taken by u;,,,, but, unfortunately,
this leaves the energy-norm approximation error at a size of O(&'/?). This is much
worse than the O(¢)-estimate from (12), which is essentially what we need for our
theory below. In this paper, we will therefore restrict ourselves to special cases
where this boundary layer vanishes.

This happens, for example, if the domain Q C R" is rectangular with sides lying in
the hyper-planes x; = 0 or x; = Nyg, Ny € N for k= 1,...,n, and if one chooses
periodic instead of Dirichlet boundary conditions for the original problem (3) (of
course, one then has to require the solvability condition [, f'(x)dx = 0 for exis-
tence, and a normalization, e.g. fQ u*(x)dx = 0, for uniqueness). But periodic
boundary conditions are seldom in practical applications, so we want to examine
another situation.

The following definition can be found in [2], §6.3.

Definition 2.2. We say that the function .o/ : ¥ — Lin(R", R") is symmetric with
respect to the k-coordinate or k-symmetric, if it fulfills

(—1)6%2/,](5(1‘))/)(—1)6/* = /;(y) (no summation), (14)
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for the reflection

S<k) : (yh e 7)’n)’_’(y17 cos V=1 Vi Vi1 -+ - 7yn)~ (15)

We call .o/ symmetric, if (14) is fulfilled for all k = 1,...,n.
If the coefficient .o/ is k-symmetric, one can deduce some (anti-)symmetry prop-

erties for the solutions of the cell problems (7) as well:

Theorem 2.3. Let o/ : Y — L(R",R") be symmetric with respect to the k-coordi-
nate. Assume that the w; from (7) are normalized to (w;)y, = 0. Then

1. We have
wi(SWy) = (=1)%w,(y), Vyev. (16)

2. wi(y) =0o0n{y €Yy =0}.
3. The tensor o;; := of ;j + o410, w; satisfies

(—1)5i"oc,-j(S(k>y)(—l)‘S”‘ = a;;(y) (no summation). (17)
4. The homogenized coefficients .</° satisfy .sz/%. = &{?k =0 for j # k. Especially,

/0 is diagonal for (fully) symmetric < .
Proof: See [2], §6.3 or [25]. [

Corollary 2.4. Let ¢>0 and Q=][[,_,[0,di] C R" where, for k=1,...,n,
dy = nye for some ny € N. Assume further that o/ is symmetric with respect to the
coordinate indices ) # S C {1,...,n and that Dirichlet zero boundary conditions are
prescribed on

890::{X€89|E'iGSZX[ZOVX[:di} (18)
while periodic boundary conditions are prescribed on 0Q — 0€y. Then U, vanishes
on 09y, and therefore v* =0 in Theorem 2.1.

Proof: The tangential component of Vu° vanishes on 9Q, due to the homoge-
neous boundary conditions posed for u°. Also the normal component of the
vector of cell solutions vanishes there because of Theorem 2.3. Thus, the product
Vu® - W vanishes on Q). O

3. Discrete Approximation Results
3.1. Basic Setting

Let Q be of the form Q = [[;_,[0,d;] C R" where, for k =1,...,n, di = nze for
some n; € N. Let 7y be a triangulation of the cell Y (consisting of triangles,
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quadrangles or their higher-dimensional analogues), and let ¥y denote the space
of continuous, periodic functions on Y that are piecewise (multi)linear on ele-
ments of J y. Scaling 7 y with factor ¢ and repeating it periodically, we obtain a
triangulation 7, of the whole domain Q. We denote by %, the space of con-
tinuous functions that are (multi) linear on elements of 7, and vanish on 0Q.

Problem (4) now induces the discrete problem: Find uj, € %) such that

/&f VOl (x) B pyy (x)dx = /f X)pp(x)dx Yo € Sy, (19)

and, in the same way, the cell problem (7) induces a discrete cell problem: Find
Wi, € Sy such that

/ L50) Oy Wi, (0) + 03000y, dy =0 Yy, € Sy, (20)
Y

Since we assume throughout this paper that .o/ is symmetric in the sense of
Definition 2.2, it is natural to assume that the triangulation 7 y is also symmetric
with respect to reflections on all coordinate planes. This situation is depicted in
Fig. 1.

Let now 7 g be a triangulation of Q made of cubes aligned with the cell structure,
ie. H=z¢. Denote by &y the space consisting of multilinear finite elements on
7 y vanishing on JQ and define a prolongation py.py : ¥y — %) as

Pheti - Su— Ly Q=@ =1 o (y + 0k Wi y), (21)

where wj ;, (x) := wi, (¥), and I, : C°(Q) — & is the interpolation operator given
by evaluation at nodes of 7

Remark 3.1. Due to the above symmetry assumptions on coefficients and cell
triangulation, the assertion of Theorem 2.3 still holds for the discrete cell solu-

tions wr o, (by the same argument). Together with the observation that, for
& = H, the tangential component of V¢ is continuous across element boundaries

£
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Fig. 1. Symmetric triangulations of cell and domain

Ty
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of Ty, it follows that the prolongation p,. g is well-defined despite the discon-
tinuities of V.

With the help of the discret~e cell solutions wy ¢,, we can further define discretely
homogenized coefficients .7 ° by

A =l (0) (O + Wiz, () (22)

for which we assume that constants ), ¢y > 0 exist such that
20 5 2 n
o> < o Yy < Winl> ¥ on € R (23)

Remark 3.2. We observe that .o7° < .o/° in general, because the cell solutions wy,
resp. wr.o,, can be interpreted as orthogonal projections with respect to the en-
ergy scalar product of the functions —y; (not having periodic boundary condi-

tions!) on H;er(Y), resp. Sy, and 7°, resp..«/’, measures the energy of the

remaining part.

With the coefficients .o/, we define a discrete bilinear form on H} (Q) by
&(u,v) == /Q 70 Du(x)0(x)d. (24)

which gives rise to the discretely homogenized problem

Find u’ € H)(Q): & °,0) = f(@) Y ¢ € Hy(Q). (25)

3.2. The Uniformly Elliptic Case
We have the following basic theorem:
Theorem 3.3. We assume the setting of Subsection 3.1. Especially, we have a
symmetric diffusion coefficient and the coarse grid I y is aligned with the cell

structure'. Then let u%, be the a®-orthogonal projection of u° from (25) on &7, which
is defined by

Find v}y € Sy @)y, 0n) = foy) Yoy € Su. (26)
Then a constant C = C(n,Q, T y) exists such that
a*(uj, — prerrnagy, 1) < Cy + 1 [ weoy |11 o0 JEID* 0 | 2oy IV sl 2y (27)

Setting ¢, == u, — pynuy, we immediately obtain the energy-norm error estimate
!/
1+ wlwe gy [l o

Vi

IVt = Ptttz oo < € e D’ 2 - (28)

! This assumption of alignment with the cell structure can be weakened, see Theorem 3.9 below.
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Since we are in a H>-regular setting for the homogenized problem (25), we may
Sfurther replace HDzuOHLZ(Q) by ﬂi(,]”fHLZ(Q) in (28).

Proof: 1. The idea is to decompose the test function ¢, into a “smooth” and an
“oscillating” part. To achieve this, let Iy : H'(Q) — &5 be a suitable quasi-
interpolation operator (see [8], [7], [25]) which satisfies for 0 < k£ < 2

llue — Tyt ) < Ch*~ k|u|Hz

Then the decomposition

1 2 1
o)) = LTy, o =, — @)

fulfills (note that H = ¢)

@)
|07 b Vel g < Clvelie @)
We now have to estimate
£, & 0 B 0 (1) £, 6 0 (2) 30
a’(uy, — Pr—mtigy, @) = a* (W, — Pr—rtigy, @y, ") + @ (ujy — prppug, @) (30)

which is done in the following.

2. The second term on the right-hand side of (30) can be estimated as follows:

& & 2
a“(u, thHuHMDh ) f, ‘Ph )L2 +a (thHu?iv(pg))'

Here, the first term on the right-hand side is of the right order because

2 .
o) ) < Celf Nl IVl
S CM,ISHDZMO HLZ(Q) ||V(Ph ||L2(Q)

because of (29). To handle the second term, we first replace u?, by u°, which may
be done since, according to standard finite element estimates,

[V (g — ) L2(Q)

< CH|[DW| g

Second, we have for every cell e € 7y (D denoting a suitable projection of Vi’
on constant vectors)

V(]h o (sﬁku%wz’h) — sakuow,?h> ~ V(]h o (saku?{wz’h) — gDzw;h>
~ eV o (Drtdyy — Di)wi )
~0
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up to error terms of size
C8HW/€_’((/Y

I 1P ey (31)

We therefore obtain

¢ one iy of”) ~ [ (Ao + ot 50y cOuatt,)) D)k

J
J

€ € 2
o (&/U + &/ik@ykwj,yy)@juoﬁi(p; )dx

~

(500 + 3000w, ) O

~

up to error terms of size

. (32)

Cruellwes, [ NP0y [ VR g

Next, we expand (p22> with respect to the nodal basis {,;}, 5 of ¥

& & 2 2 & &
/Q (ﬁf i Oy, W«/:,ffy) o) =>. o () / ( w’)(&/ gt ikakW/-Vr) o0
supp(i)*

AEA

Again, Vu® may be replaced on supp(y/,) by constant vectors D; up to an error of
the form

Clwezy |11 oo Z hHDzuo

AEA

< Cﬂ1||Wk,<%H1,oo||D2u0

— 2 1
tsappiu ) @1 () vol(supp(y;))?

H o?
LX(Q) || Th 2(Q)

|l,oo ||D2u0||L2(Q) HV‘PE,Z)

< Cpye|wesry 2@

because of (29). Since the remaining terms with the constant vectors vanish due to
(20), the assertion is proved.

3. For the first term on the right-hand side of (30), we obtain

a*(uf _pheHu?—p <P§,1>) = (f, <P/<71))L2(9) + ag(.pheHU?-[a <P1<71))
=a(, 9}") + @ (prnt), 9})

7 1
~ /Q(,ng — eﬁifj — .Q{?kayAWj_’g/},)ajuoaiq)z )QSC

up to an error of size

Crallwes, [Py [ V01 g
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Next, we decompose the integral into a sum over all elements e € 7 4 (i.e. over all
cells), and replace Vu® by constant vectors D¢ on each cell, which can be done up
to errors of the form.

€+ mlwis, |, o0y [V (33)
The remaining term then is
S [ (A8 =ty = im0 . 34

ecT y

Now, qo,(ql) was constructed by pointwise interpolation of some function which was
multilinear on each cell. Therefore, since nodal evaluation interpolates linear
functions exactly and anti-symmetric functions to anti-symmetric functions (be-
cause J y was assumed to be symmetric), <p§ll) can be written as a (L*-orthogonal)
sum of a linear function plus functions that are anti-symmetric in at least two
variables. Now, the integral over the linear function vanishes because of the
definition of the homogenized coefficients. On the other hand, using a discrete
analogue of (17) (which can be proved in precisely the same way), one easily
checks that each of the integrals in (34) vanishes for those parts of <p<l) which are
anti-symmetric 1n at least two variables (apply a reflection SU) : y;+—1 — y; such
that / # j and ¢, () is anti- -symmetric in y;). Thus, the estimate follows. Note that
at this point, symmetry is needed crucially except for the one-dimensional case
where q)hl is linear on each cell and no anti-symmetric parts appear. []

The following theorem shows that our discrete homogenization can be interpreted
as a Galerkin approximation for the prolongation (21).

Theorem 3.4. 1. In (26), instead of @°, we may use the Galerkin form
as(up, vp) := @ (Pherties, Prerrvn)- (35)
2. For practical computations, it is convenient to use the right-hand sides

Ju(oy) = f(hoy) (36)

or the Galerkin choice

15(on) = f Prenoy) (37)

n (26). The choice (36) allows the same estimate as (26). The choice (37) even
allows the improved L*(Q)-approximation property

H”Z _p/U—HquIHLZ(Q)S CgZHfHLZ(Q)' (38)

Proof: 1. Since the bilinear forms % and a° coincide on linear functions, we can
apply Theorem A.1. The argument is as follows: one easily checks that the values
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D; from (71) coincide. According to Remark A.2, we only have to ensure that no
degeneracy point ¢ € [0,4]" — 0 with ¢(¢) = 0 exists. But if such a point existed,
one could construct functions, oscillating with period O(H) in at least one co-
ordinate direction, having an L,-norm of order 1 and an energy norm of order
O(H). Applying Poincaré’s inequality on patches having the size of the oscilla-
tions, one obtains a contradiction for H = ¢ — 0. Therefore, Theorem A.l is
applicable and shows that the stiffness matrix corresponding to a% is also a dis-
cretization of the homogenized problem (25), and that the corresponding solution
of (26) approximates #” up to an energy error of size O(H) (equivalent to O(e),
since ¢ = H). Thus, estimate (27) remains valid.

2. First, because of Theorem 3.5, we have

(f — fir)(onr) = /Q F(0n — how)dx < CH|f oo IVouloq.  (9)

Consequently, the energy norm of the difference of the corresponding solutions is
also of the same order, which shows that f; may be used instead of f in (26).

Next, we observe that

(S — fi)ow) = ¢ / Sy & < Celf IV oullg,  (40)

such that estimate (27) also follows if we use f;7 instead of f in (26).

Then, in the Galerkin situation (i.e. if using both a% and f5), the improved L2-
estimate follows with the usual duality argument: let v, be the solution of the
problem

a*(vn, @p) = (1, _Ph«—H”?J7 (Ph)LZ(Q) Vo, €S, (41)
and let vy be the solution to

5%(011,(/)11) a*(On, Ph—HPx)
&
h

Wy, = Prertiyy, Do P12y ¥ P € S (42)

Because of (35), (37), the Galerkin orthogonality

a*(uly — prsaty prn@yr) = @ (uj, i ppr) — @Gy, i) =0 (43)
holds and yields

2 &8 0
2Q) a (uh — Ph—HUp, Un)

||, — phe—rruy
= as(uz —PhHHu(I){, Up — PheHUH)

< CﬁszHLZ(Q)H”Z _ph‘—Hu?‘IHLz(Q)'
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The assertion then follows. Finally, due to Theorem A.1, this improved estimate
remains valid if one uses @° instead of a%. [J

We used the following lemma in the proof:

Lemma 3.5. Let 7, and Ty be two triangulations of the polygonal domain Q.
Assume that h < H and denote by &), and Sy the corresponding spaces consisting
of (multi) linear finite elements. Let I, : C°(Q) — ), be the nodal evaluation op-
erator. Assume that uy is an approximation to u € H*(Q) satisfying

Hu_MHHLZ(Q)shZHDzuHLZ(Q)' (44)

Then, for 0 < k <1, there holds

\Thurr = vt yge iy < CH? ™ Ju 2. (45)

Proof: We only sketch the proof, which can be done similarly to the proof of
Theorem 1.5.22 of [25]: first, one replaces uy by the function u. This in turn is
replaced locally by linear polynomials. Since 7, does not change linear polyno-
mials, one then can estimate the error by an inverse inequality. []

Remark 3.6. Note that the estimate (28) implies a certain optimality for the
discretely homogenized coefficients given by (20) and (22), because any other
choice of coefficients for the & y-problem (for example the choice (7) and (6)
which was suggested in [14]) yields an O(1) approximation error independent of .

Remark 3.7. Since 4 was allowed to be arbitrarily small compared with ¢, the
previous theorem yields an O(¢?) L*-approximation for the continuous case as
well, provided that, for the homogenized problem, the right-hand side is modified
according to (37). Numerical tests confirm this observation, see Subsection 4.1.

Remark 3.8. It is possible to prove a result similar to Theorem 3.3 using less than
H?-regularity for domains with reentrant corners. We do not want to do this here,
since it is technically more difficult, and one does not gain more insight. For a
result in this direction, the reader is referred to [25].

Finally, we note that we can generalize the choice of the coarse grid:

Theorem 3.9. If' 7 y is chosen different to the grid induced by the cell structure such
that ¢ SH, then for the prolongation

DPh—H ‘= Ph—e © 185 (46)

estimates (27) and (38) remain valid with H replacing .
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Proof: This follows immediately, since /,u?, approximates the solution u° up to
O(H) in the energy norm according to Lemma 3.5. []

3.3. The Case of Soft Inclusions

While the results shown up to now are already quite satisfactory, they are not
really applicable if the coefficients .o7 fulfill (1) with ﬁ—(‘) > 1. In this as well as in the
following subsection, we consider special cases, where the condition of uniform
ellipticity (with moderate constants) is violated.

Definition 3.10. Let the unit cell Y be the union Y{ U Y, of two open, disjoint subsets
Y, Y2, and assume that the periodic repetition of Y1 over the whole R" is connected
(see Fig. 2 where the light region could be Y| and the dark region Y,). Assume that on
Y1 the matrix-valued function <f : Y — R" fulfills the uniform ellipticity condition
(1) with constants uy, u, and on Y, with constants kg, ky with k) < ug. Then we say
that o describes a soft inclusion.
We can then prove the following analogue to Theorem 3.3:
Theorem 3.11. Under the assumptions of Theorem 3.3, assume that the boundary
oY) = 0Y, is aligned with edges of the cell triangulation T y (see again Fig. 2 for an
example). Further assume that the operator E : Sy — Sy, u,— wy, defined by

iy = upon Yy, a(ip, ;) =0 V@, € Lywithe,|, =0 (47)
Sulfills

1Eanl[ g1, vy < Cellunllgy, v)- )

Define a weighted L*-scalar product as
()i = [ o ()ds (49)

with the weight

\

ij ™

ij

Fig. 2. Diffusion coefficient and coarse cell triangulation
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- (12%@) . (50)

Then we have the error estimate

0

o6, = o < Cellf @ (51)

with constant C = C(n,Q, Cg, T v, o, Iy, My 1) ||Wk,g7YH1 50? KO)

Proof: 1. Fori=1,2 let
Qi :ng(zn+ Yl)
Denoting ej, := uj, —p;“_Hu,Q,, let ¢, = Ee;, be defined as in (47). Then

a’(ep,en) = a®(en, en) + a(en,en — €p)
= as(eh,éh) + ag(eh —ép,ep — éh).

2. For the first part, we can apply (27) of Theorem 3.3 to obtain

ag(ehvéh) (Iul + My ||Wk Sy Hl ,00 ||D2 OHLZ |veh||L2(Q

) +H1|| Wiy |1 o
<G T P

WMH m”m Bl 1z Pl
L a*

3. For the second part, setting ¢, := e, — &, we have to estimate

a*(@y, @) = a(en, ¢y) = a"(u}), @) — & (Prenttyy, 3)-

For a*(u, ¢,), we have

/K1
a*(uy, ) = (f, (Ph)p((zz) < ||f||L2(Qz)||€0h||L2(Qz) S ;OEHJ[HLEJ(Q)HQDhHa"

where we used Poincaré’s inequality (note that ¢, vanishes on parts of the cell).

For a*(py_pul;, ¢,), we proceed exactly as in step 2 of the proof of Theorem 3.3:
first, we expand ¢, := e, — e, with respect to the nodal basis {lﬁ(k)}ie\ of %}, then
we replace Vu locally by constant vectors D;. This can be done up to an error of
size
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CHWk’yY || 100’1 ||D2u0||L2<Q2> ||(ph||L2(Qz)

1
< Cllwigy || 51 u 1/ 1 20 ell V@l 20,
0

K1 1

< CHWk,yyHl,ocu—éx/ﬂ—l||f Lﬁ)(Q)S\/_K—OHCPh“a“
K1 /Moty

< CHWk,-‘fyHlm ,70 % 8||f||Lg)(Q)||QDh||a‘?a

since we assumed x| < py. The remaining term again vanishes, since the wy o, are
solutions to the discrete cell problems (20). [J

Remark 3.12. The constant in the assertion of Theorem 3.11 still depends on
||wk7yy HLOO (which can be slightly relaxed to Hwk, yy”l,p)' Thus, one has to ensure
that this quantity does not depend too heavily on ’;_? This may be done in several
situations. For example, it is shown in [25] for cell triangulations containing only a
small number of unknowns. On the other hand, for fine cell triangulations, the
regularity of the solutions wy ¢, of the discrete cell problems (20) will be de-
termined essentially by the regularity of the solutions wy of the continuous cell
problems (7). Here, good behavior of ||wi«,||, . can be expected for smooth
coefficients and/or smooth interfaces between regions where jumps of the coeffi-
cients occur.

3.4. The Case of Stiff Inclusions

We now consider the case of an inlay with a large diffusion coefficient surrounded
by a matrix where the diffusion coefficient is relatively small.

Definition 3.13. Let the unit cell Y be the union Y{ U Y> of two open, disjoint subsets
Y1, Ya, and assume that the periodic repetition of Y» over the whole R" is not con-
nected. Assume that on Y| the matrix-valued function o/ : Y — R" fulfills the uni-
Sform ellipticity condition (1) with constants , 1, and on Y, with constants Ko, K|
with K9 > ;. Then we say that of describes a stiff inclusion.

Throughout this subsection we only handle the following special case:

Definition 3.14. We say that </ describes a simple stiff inclusion, if .o/ describes a
stiff inclusion and Y, does not touch the boundary dY = 9]0, 1[".

We now prove a form of Theorem 3.3 that does not depend on «;. To achieve
this, we have to modify the prolongation p,. 5 such that

sl ~ Nl o (52)

This is done by using, instead of .y, a modified space of finite element functions
which is generated by functions on the reference cube that are linear in a neigh-
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borhood of Y5. Such a space % can be constructed in the following way: as in the
proof of Theorem 3.3, a multilinear function can be written as an L?-orthogonal
sum of basis functions that are either linear or multilinear in two or more variables.
Now one can modify this basis by replacing the multilinear functions by some which
take the same boundary values on 8Y and vanish on Y>. Since ¥> does not touch 97,
the resulting basis functions can be smoothed. The resulting finite element space still
contains the linear functions which guarantees that the usual error estimates are
valid. Of course, the constants in the estimates will depend on d(Y>,dY).

Replacing %y by %y, we can prove the following theorem:

Theorem 3.15. Assume again the setting of Theorem 3.3, but, instead of Sy, use the
space Sy to define the approximate solution ul;. Then the estimate

a&(uz _thHu?—p (ph) S C(:ull + H Hwk,»(/JYH1,30)8HD2MOHLZ(Q)HV(rDhHLZ(Q) (53)

is valid with C = C(n,Q, 7 y,dist(Ys,0Y)). Setting ¢y, := uf — pp_pu¥, we im-
mediately obtain the energy-norm error estimate

/
+ 9
||V(M2_thHMH)Ha,: Scﬂl :u]HWk-,/YHI,OOSHD2u0

Vo

Again we are in an H?-regular setting for the homogenized problem (25), such that
we can replace HD2u0

o (54)

12(Q) by inHLZ(Q)

Proof: The proof of Theorem 3.3 can be transferred: First, step 1 can be carried
out as before (note that also here the estimates (29) are valid for &y since the
linear functions are contained in the ansatz space).

Step 2 needs a little change: instead of replacing uY, immediately by u°, we have to
replace it by a function #° € H*(Q) with

V(@@ —u)

2 S C8||D2”0||L2<Q)

which is equal to u%, on the inlay part Q,. This can be done in a standard way by
smoothing u¥, outside from some neighborhood of Q. It is clear that the resulting
function remains a good approximation of u°, albeit with constants depending on
d(Y>,0Y). After this change, the argument runs as before: since no replacement is
done on Q,, the size of the diffusion coeflicient there does not enter into the error
term (31), and since D; may be chosen to be equal to Vi on the inlays, the error
term (32) also keeps the same form.

For step 3, we note that

1 ~ 1
W, o) ~ a (@, 0}

up to an error term of the form
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Cott |04 g |V f”

@)’

which appears in (33) anyhow. Therefore, (33) also remains unchanged, and
step 4 can be performed using #° instead of «°. []

Corollary 3.16. Using the Galerkin modification

I5(on) = f(Prenon) (55)

we obtain again by a duality argument the estimate

6, Phcsry iy < Colls — prcy], (56
and combining this with (54), we get
H“Z _p/wH”?iHLZ(Q) = C82||fHL2(Q)' (57)

4. Numerical Applications
4.1. An Improved L*-Estimate

We first want to establish the improvement of L’-convergence numerically
by using the modified right-hand side (37) for the homogenized problem. This
improvement is valid only for symmetric cells, but symmetric cells are often found
in industrial applications, so this method may be very helpful in practice.

To check this estimate numerically, we consider a two-dimensional example with
the diffusion coefficient

oA (y1, ) = 1 + (sin(my) sin(my))2. (58)

We note that o7 fulfills (1) with gy = 1,4, =2, and is smooth, which ensures
smooth cell solutions w; and a finite element approximation of u* satisfying

1
HD2u£HL2(Q) < Cg ||f||L3(Q) (59)

We now choose f = 10% and compute # on a uniform grid 7, of meshsize
h = &2. Because of (59), this ensures that u* is approximated up to O(e) in the
energy norm and O(¢?) in the Z2-norm. The cell solutions are computed on a mesh
Ty of meshsize ¢, and 4% on a mesh 7y with meshsize H = ¢ as well. Using £
from (37) as the right-hand side and the bilinear form @° (using @% makes almost
no difference) for computing u%, we obtain the values from Table 1, which indeed
show an O(e)-approximation error in the energy norm as well as an O(&?)-
approximation error in the L>-norm.
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Table 1. Energy error and L?-error for f = 10*

/e 4 6 8 10 12 14 16

Energy error 503.7 3499 266.0 2142 179.1 153.8 134.8
L? error 34.10 15.62 8.881 5.713 3.979 2929 2.245

Table 2. Energy and L’-error for rough f

1/¢ 4 6 8 10 12 14 16

Energy error (with fi;) 7677  544.1 418.5 338.8 2842 244.6 214.5
L2 error (with fy)  32.36  15.54 9.771 7.043 5.498 4.515 3.836
Energy error (with £§) 7652 542.0 416.8 337.4 283.0 243.6 213.7
12 error (with £G)  31.18  13.75 7711 4917 3.405 2495 1.907

Since one easily checks that we have fy = f for constant f, this example does
not show that the Galerkin modification is necessary. To see this, we have to look
at rougher right-hand sides, preferably oscillating with period ¢. For such £, it is
easy to give counter-examples already in the one-dimensional case?. In the setting
above, the choice

T O
f=1 {—%H’ﬂ—% ifx > 1 (60)

leads to the values of Table 2. It is obvious that the L2-error does not behave like
O(&?), unless we use the Galerkin restriction.

4.2. A Robust Two-Grid Scheme

In this subsection, we apply Theorem 3.3, Theorem 3.11, and Theorem 3.15 to
show the convergence of a suitable two-grid algorithm for solving (19) efficiently.
We assume that we are in the setting described in Section 3. For our numerical
tests, we further assume the special case of coefficients .27 shown in Fig. 2 which
depend on the parameter A.

As ingredients for the two-grid algorithm we require the following: on &, we
need a smoothing algorithm which we assume to be given as some approximation
W, to the stiffness matrix 4, such that

Wi+ Wy

AhSw 3

(61)

As coarse grid space we take %y, the space of multilinear finite elements on the
cube decomposition with meshsize H = ¢, and as prolongation we use p;_py de-

2 For example, take a coefficient ¢ =1 in ¥; =[0,1/3]U[2/3,1] and a =2 in ¥, = [1/3,2/3]. On
Q=10,1], one then can take the right-hand side f=w on [0,1/2] and f = —w on [1/2,1]. A
computation then shows that the peaks of 4° and u® are both of order ¢, but differ by a multiplicative
factor unless one uses the modified right-hand side for the homogenized problem.
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fined in (21). The coarse-grid matrix is chosen as Ay = pj,_ ,Aspr—m (Which means
that we are in a Galerkin setting, so that convergence can be shown for any
number of smoothing steps). We also assume that an (approximate) solver for the
& y-problem is given by an Ay-approximation Wy. Such a solver is easy to obtain,
because we have a constant coefficient problem on %y. For our numerical tests,
we have used a multigrid V-cycle with one Gauss-Seidel post-smoothing step, but
other methods also work well. The two-grid algorithm then reads

Algorithm 4.1. (Two-grid cycle with post-smoothing) TG( f;,) :=

begin
u, =0
coarse-grid correction
defect computation: dy, == f, — Apuy,
Uy =ty + Pheti Ay Py
post-smoothing : wy, := u;, — Wh’I(Ahuh — /)
return uy,.
end

This two-grid cycle converges robustly provided the %;-smoother is chosen rea-
sonably. For example, we have

Theorem 4.2. In the uniformly elliptic case, the two-grid cycle with Gauss-Seidel
smoothing converges with a convergence rate independent of ¢ ~ h.

Proof: We show that conditions (7)) — (V) of [26] are satisfied. First, condition
(V) corresponds to (61) which is satisfied for Gauss-Seidel smoothing. Next, the
approximation property (7]) for unsymmetric smoothers can be infered from
Theorem 3.3 using [26], Section 3.1. Finally, condition (73) is trivial for the two-
grid situation where we can choose the subspace decomposition orthogonal with
respect to the energy scalar product. Thus, Theorem 2.5 of [26] is applicable and
yields the result. []

This can be verified also numerically. Using the coefficient and the cell triangu-
lation shown in Fig. 2 and fixing 4 = 0.1, we indeed observe robust convergence
with respect to variations in &, see Table 3. Here, as well as in the following tests,
the termination criterion was a defect reduction by a factor of 1072, and the
convergence rate is a geometric average.

Table 3. Averaged convergence rate for varying ¢

/e 4 8 16 32 64
Convergence rate ~ 0.670 0.703 0.715 0.714 0.712
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Next, we look at robustness with respect to soft inclusions. Here, Theorem 3.11
yields the approximation estimate needed for the application of the theory of [26]
with constants independent of A. Consequently, Theorem 4.2 still holds in the
limit case of arbitrarily small A.

We check this assertion numerically by fixing ¢ = 1/16 and varying 1 which gives
the results from Table 4. We see that our algorithm is indeed robust with respect
to soft inclusions. The values are even slightly better for small A than for the
constant coefficient case 1 = 1.0.

We now turn to the case of stiff inclusions, i.e. 4 > 1. We cannot expect the above
cycle with Gauss-Seidel smoothing to be robust in this case, and indeed, numerical
experiments show that it converges very poorly, even if we use the modified
prolongation from Subsection 3.4. The problem is the following: errors constant
on the inlays are damped neither by the Gauss-Seidel smoother (since that
smoother does not damp such errors robustly for A > 1) nor by the coarse-grid
correction (because these errors are not ‘“‘smooth’). Fortunately, a cure is found
quite easily and follows a pattern which Brandt in [6] calls the “golden multigrid
rule”: points connected strongly should be treated as a block. This remedy is
possible here, since for 4 > 1 the patches consisting of strongly connected points
are isolated from each other and consist (on %) only of very few points (which
allows effective application of block-wise smoothers).

And indeed, if we use block Gauss-Seidel smoothing on the block structure given
by strong coupling (thus, blocks are all nodes which do not lie on an inlay
together with blocks consisting of all nodes lying in or at the boundary of the
same inlay), we obtain the values from Table 5. We see that our cycle is again
perfectly robust.

Also here, robustness is an easy consequence of the above theory:

Theorem 4.3. In the above setting, let the diffusion coefficient describe a stiff
inclusion. If we use the modified prolongation described in Subsection 3.4 together
with a block Gauss-Seidel smoother for a block decomposition where all nodes
touching an inlay are inside a block for & p-smoothing, the corresponding two-grid
cycle converges with a convergence rate independent of the number of cells.

Table 4. Averaged convergence rate for soft inclusions
yl 1 10! 1072 107 107* 107 107¢
Convergence rate  0.755  0.715 0.711 0.710 0.710 0.710 0.710

Table 5. Averaged convergence rate for stiff inclusions

A 10! 10% 103 104 10 100
Convergence rate  0.621 0.619 0.618 0.618 0.618 0.617
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Proof: The argument is very similar to that of Section 3.2 in [26]. Again, con-
ditions (¥;) and (V5) of [26] are easily seen to be satisfied. To show (7}), we
observe that

VthS}’mm = VVh(I/Vh + I/Vh* _Ah)ilpVh* = I/Vh(zl;f/h,symm _Ah)ilpVh*

is spectrally equivalent to the block-diagonal Dj, of the stiffness matrix 4, with
respect to the above block structure (strongly coupled unknowns of the inlay
forming a block). Therefore, (7;) follows from

1Qunllp, < Cllunlls, (62)
with Q denoting the coarse grid correction operator. But on %, we have
(), ~ (2 argy + CH2 (5 ) gy
such that (62) follows by using
1Qunllse 0, < 1Qunll 4, < llunll,

together with (56). [J

Some concluding remarks are called for. It usually pays off to use more than one
smoothing step on ., which can also be shown theoretically, at least for the case
of symmetric smoothing operations by a well-known argument, see e.g. [16].
Further, it can be useful to choose the meshsize H smaller than ¢ to decrease the
“frequency gap” between %, and &y. The above convergence results remain
valid because of Theorem 3.9.

4.3. A Robust Multigrid Scheme

We now use the results of the previous subsection to construct robust multigrid
algorithms for diffusion problems with periodically oscillating coefficients which
are symmetric in the sense of Definition 2.2. Thus, for a model situation, we solve
the problem mentioned in the introduction: for the above kind of diffusion
equations, our algorithm converges robustly with respect to period and amplitude
of the oscillation.

Adopting the setting of Subsection 4.2 and setting 7, := 7, we obtain further
triangulations ..., ;, by uniform refinement. We denote the corresponding
spaces of multilinear finite elements by %, ..., %,. For this range of levels, the
construction of a suitable multigrid algorithm would be straightforward if we
could afford the exact solving of the .%),-problem (see [33] or [26]). But again, if
Y1, 1s already very large, this may not be possible. As a remedy, we propose to use
the two-grid algorithm described in Subsection 4.2 above. Given suitable smoo-
thers W, on %), and defining prolongation/restriction by the finite-element
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inclusion operator ;. ;_; and its adjoint, we obtain the following algorithm which
executes the two-grid algorithm from Subsection 4.2 for solving the coarse-grid
problem. We call it a multi-scale cycle because of Fig. 3, which depicts a situation
where the homogenized problem is also solved with multigrid.

Algorithm 4.4. (Multi-scale cycle) MSC(k, fi) :=

begin
ifk=0
returnug := TG( fp).
else
u, =0
coarse-grid correction :
defect computation: dy = fi — Aruy
= g + Leer -t MSC(k — 1, I}, di)
post-smoothing : uy := u; — Wk’l (Axur — fx)
return uy.
endif
end

Robust convergence of this cycle can also be verified numerically: in the setting of
Subsection 4.2, we fix ¢ = 1/16 and refine 7, three times (i.e. J = 3). We use
Gauss-Seidel smoothing again, but since a single Gauss-Seidel step usually yields
a convergence rate of about 0.5, it is sensible to improve the convergence of the
two-grid algorithm by performing an additional pre-smoothing step (otherwise
the convergence of the whole cycle would be determined by the coarse-grid cor-
rection). Since this pre-smoothing step does not increase the energy error, the

Sh
J, Multigrid for the
. original problem
Sh
0
Solution of the cell problem
<_ _———
P 7
‘ 7
Multigrid for the

homogenized problem

Fig. 3. Multi-scale cycle
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Table 6. Convergence rates for the whole multi-scale cycle

2 106 104 1072 10° 102 104 109
Convergence rate  0.498 0.498 0.497 0.514 0.482 0.498 0.498

theoretical results can be carried over easily. The results for different values of 4
(using the block Gauss-Seidel smoother for large values of 1 > 1) are given in
Table 6 and show that the whole cycle is perfectly robust.

A. An Approximation Estimate for Structured Grids

Theorem A.1. On a structured grid with (N + 1)" grid points

xp= (i1h, ..., i,h) (63)
with = (i1, ...,iy),i; € {0,...,N} and meshsize h = 1/N, we consider a difference
equation of the form

1
7 Z a&x7+isz VT:(llavln)aljzlavN_l (64)
Ge{~1,0,1}"
xpy =0 V7:3j:i;=0Vi;=N. (65)
If ag is symmetric, i.e.
az = a_z, (66)

one easily checks that the eigenvectors l//E, ke {1,...,N —1}" of the difference
operator are given by

]#i:{ = H sin(nhijkj)7 ’7 S {07 s 7N}n (67)
j=1
with
1 “ o
=13 > a; [ (cos(rhk)) . (68)
ge{-10,1}" =l
Setting
L 1
= = 1 — < Gq; |o{i‘
a(8) az [[(1 =)™, (69)

ge{-101}" i=l
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we further assume

a(0) =0, (70)
) 1
Di::8—2|5:0:—§ az >0, Yi=1,...n, (71)
! {aze{—1,0,1}" ,0;#0}
1 1
— ——|<C,, VEE0,4]"—0. 72
a& D- é‘ - celod (72)

Then (64), (65) is a second-order discretization of
- ZD,@?u(x) =f(x), x€Q:=10,1]", (73)
i=1

u(x) =0, xe€oQ, (74)

where f may be defined as f =Y. frpy with the usual multilinear finite-element basis
functions of the cube decomposition associated with the grid. Especially, given az and
al; where the associated functions ¢ and o' fulfill (66), (70), (71) with the same values
D;i=1,...n, and (72) with constants C, and Cy, the difference of the corre-

sponding solutions x and x' can be estimated as
1

2

(h" > - x;}2>5< (Co+ Co)l? (h" Zf#) . (75)

T

Proof: This is done by eigenmode analysis: if x = ) Xp; and f = Z,;f,;lp,;, we
have

)»]; /L]‘{‘

N 1 A
Xp—xp= ( i,>fk (76)

and the assertion follows from

l*i < h? sup L, 1 ‘

T cebarolo(@ a9
<K sup — '+ __ ‘
cepar-olo(&) D-¢l |o'(&) D¢

< (Cy + Cy)H?

and the fact that the eigenmodes are orthogonal with respect to the Euclidean
scalar product. []
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Remark A.2. For (72), it is necessary and sufficient that ¢ from (69) does not
vanish in [0, 4]" — 0.

Proof: It is obvious that the condition is necessary, and we will proceed with
showing that it is also sufficient:

Since ¢ is obviously two times continuously differentiable, a neighborhood Us(0)
exists in which (&) > 1|D - ¢| and |¢(&) — D - ¢| < C|é[*. Therefore

< - <=. (77)

The complementary set [0,4]" — Us(0) is compact, such that the function o takes a
positive minimum 6,,;, there. Therefore

1 1 1 1
— | < —+ == 78
]
Acknowledgement

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) through the Sonderfor-
schungsbereich 359 (SFB 359) at the University of Heidelberg.

References

[1] Alcouffe, R. E., Brandt, A., Dendy, J. E., Painter, J. W.: The multigrid method for the diffusion
equation with strongly discontinuous coefficients. SIAM 1J. Sci. Stat. Comput. 2, 430-454 (1981).

[2] Bakhvalov, N., Panasenko, G.: Homogenization: averaging processes in periodic media.
Dordrecht: Kluwer, 1989.

[3] Bank, R., Xu, J.: An algorithm for coarsening unstructured meshes. Numer. Math. 73, 1-36
(1996).

[4] Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic analysis for periodic structures.
Amsterdam: North-Holland, 1978.

[5] Braess, D.: Towards algebraic multigrid for elliptic problems of second order. Computing 55,
379-393 (1995).

[6] Brandt, A.: Multigrid techniques: 1984 guide with applications to fluid dynamics, GMD-Studien
Nr. 85, Gesellschaft fiir Mathematik und Datenverarbeitung, St. Augustin, 1984.

[7] Brenner, S. C., Scott, L. R.: The mathematical theory of finite element methods. Texts in Applied
Mathematics. New York: Springer, 1994.

[8] Clément, P.: Approximation by finite element functions using local regularization, RAIRO, 9, R-
2 (1975), pp. 77-84.

[9] Dendy, J. E., Hyman, J. M., Moulton, J. D.: The black box multigrid numerical homogenization
algorithm. J. Comput. Phys. 741, 1-29 (1998).

[10] deZeeuw, P. M.: Matrix-dependent prolongations and restrictions in a blackbox multigrid solver.
J. Comput. Appl. Math. 33, 1-27 (1990).
[11] Edwards, M. G., Rogers, C. F.: Multigrid and renormalization for reservoir simulation. In:

Multigrid methods IV. Proceedings of the Fourth European Multigrid Conference, Amsterdam,
July 6-9, 1993, pp. 189-200. ISNM, Vol. 116. Basel: Birkhduser, 1994.



26

(12]
(13]
[14]

[15]

[16]
(171
(18]
[19]
(20]
(21]
[22]
(23]
[24]
(23]
[26]
(27]

(28]

[29]
(30]
(31]
(32]

(33]

N. Neuss et al.: Homogenization and Multigrid

Efendiev, Y. R., Hou, T. Y., Wu, X. H.: Convergence of a nonconformal multiscale finite element
method. SIAM J. Numer. Anal. 37, 888-910 (2000).

Engquist, B., Luo, E.: Multigrid methods for differential equations with highly oscillatory
coefficients. Presented at the Copper Mountain Conference, 1993.

Engquist, B., Luo, E.: Multigrid methods for differential equations with highly oscillatory
coefficients. SIAM J. Numer. Anal. 34, 2254-2273 (1997).

Griebel, M., Knapek, S.: A multigrid-homogenization method, In: Adaptive methods —
algorithms, theory and applications, pp. 142-157. Notes on Numerical Fluid Mechanics, Vol.
59. Vieweg: Braunschweig, 1994.

Hackbusch, W.: Multigrid methods and applications, Computational Mathematics, Vol. 4.
Berlin, Hiedelberg, New York: Springer, 1985.

Hackbusch, W., Sauter, S.: Composite finite elements for the approximation of partial differential
equations on domains with complicated microstructure. Numer. Math. 55, 447-472 (1997).
Hou, T. Y., Wu, X. H., Cai, Z.: Convergence of a nonconformal multiscale finite element method
for elliptic problems with rapidly oscillating coefficients. Math. Comp. 68, 913-943 (1999).
Jikov, V. V., Kozlov, S. M., Oleinik, O. A.: Homogenization of differential operators and integral
functionals. Berlin, Heidelberg, New York, Tokyo: Springer, 1994.

Knapek, S.: Matrix-dependent multigrid homogenization for diffusion problems. SIAM J. Sci.
Comput. 20, 515-533 (1998).

Lions, J.-L.: Some methods in the mathematical analysis of systems and their control. New York:
Gordon and Breach, 1981.

Matache, A. M., Babuska, 1., Schwab, C.: Generalized p-FEM in homogenization, SAM, ETH
Zirich, CH-8092 Ziirich, Switzerland, Research report 1999-01 (1999).

Morgan, R. C., Babuska, I.: An approach for constructing families of homogenized equations for
periodic media, I+1II. Math. Anal. 22, 1-33 (1991).

Moskow, S., Vogelius, M.: First order corrections to the homogenised eigenvalues of a periodic
composite medium, a convergence proof. Proc. R. Soc. Edinb., Sect. 4 127, 1263-1299 (1997).
Neuss, N.: Homogenisierung und Mehrgitter. PhD thesis, Universitdt Heidelberg, Heidelberg,
Germany, 1995. Also as ICA-Report N96/7, ICA Stuttgart, Germany, 1996.

Neuss, N.: V-cycle convergence with unsymmetric smoothers and application to an anisotropic
model problem. SIAM J. Num. Anal. 35, 1201-1212 (1998).

Oleinik, O. A., Shamaev, A. S., Yosifian, G. A.: Mathematical problems in elasticity and
homogenization. Amsterdam: North-Holland, 1992.

Reusken, A.: Multigrid with matrix-dependent transfer operators for convection—diffusion
problems. In: Multigrid Methods IV, Proceedings of the Fourth European Multigrid Conference,
Amsterdam, July 6-9, 1993, pp. 269-280. ISNM, Vol. 116. Basel: Birkhduser, 1994.

Ruge, J. W, Stiiben, K.: Algebraic multigrid (AMG). In: Multigrid Methods (McCormick, S. F.
ed.), pp. 73-130. Frontiers in Applied Mathematics, Vol. 3. Philadelphia: SIAM, 1987.
Sanchez-Palencia, E.: Non-homogenous media and vibration theory. Lecture Notes in Physics,
Vol. 127. Berlin, Heidelberg, New York: Springer, 1980.

Vanék, P., Mandel, J., Brezina, M.: Algebraic multigrid based on smoothed aggregation for
second and fourth order problems. Computing 56, 179-196 (1996).

Wagner, C., Kinzelbach, W., Wittum, G.: Schur-complement multigrid. A robust method for
groundwater flow and transport problems. Numer. Math. 75, 523-545 (1997).

Zhang, X.: Multilevel Schwarz methods. Numer. Math. 63, 521-539 (1992).

Nicolas Neuss Willi Jager
e-mail: Nicolas.Neuss@iwr.uni- e-mail: jaeger@iwr.uni-heidelberg.de
heidelberg.de WWW: http://www.iwr.uni-heidelberg.de/

WWW: http://www.iwr.uni-heidelberg.de/ ~Willi.Jager
“Nicolas.Neuss

Gabriel Wittum Interdisziplindres Zentrum
e-mail: wittum@iwr.uni-heidelberg.de fiir Wissenschaftliches Rechnen
Im Neuenheimer Feld 368
D-69120 Heidelberg
Germany



