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Abstract

We consider two convection-diffusion boundary value problems in conservative form: for an ordinary
differential equation and for a parabolic equation. Both the problems are discretized using a four-point
second-order upwind space difference operator on arbitrary and layer-adapted space meshes. We give
e-uniform maximum norm error estimates O(N~2In* N(+1)) and O(N~2(+1)), respectively, for the
Shishkin and Bakhvalov space meshes, where N is the space meshnodes number, t is the time mesh-
interval. The smoothness condition for the Bakhvalov mesh is replaced by a weaker condition.

AMS Subject Classifications: 65L10, 65L12, 65L70, 65M06, 65M12, 65M15.

Key Words: Convection-diffusion problems, four-point upwind difference scheme, singular perturba-
tion, Shishkin mesh, Bakhvalov mesh.

1. Introduction

This paper is concerned with e-uniform numerical methods for the two model
boundary value problems: for an ordinary differential equation

.
Lut=—eosu—o (p)u) = f(x) for0<x<1l, u(0)=go, u(l)=ag,

(L.1)
and for a parabolic equation

0
—u+Lu=f(x,t) forO0<x<l1l, 0<¢t<I1,

ot
u(x,0) = p(x) for0<x<I, (1.2)
M(O,t) = gO(t)7 M(l,[) = gl([) for 0 <t S 17

where
p(x) > f=const >0 (1.3)

*This work was supported by the Russian Foundation for Basic Research under grant No.
99-01-01056.
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and ¢ € (0, 1] is a small parameter. Note that the results given in this paper hold
for ¢ € (0,&), where & is a positive constant depending on the data of the
problems. We assume that the data of (1.1) and (1.2) are smooth enough, par-
ticularly

p'(x)| < P. (1.4)

For (1.2) we also assume that ¢(0) = ¢¢(0), ¢(1) = ¢1(0) and the compatibility
conditions [11] are satisfied so that the solution has no internal layers.

It is well known [13, 15] that as ¢ — 0, the solutions of (1.1) and (1.2) have an
exponential boundary layer at x = 0 and, as a result, the accuracy of classical
numerical methods depends on ¢ as well as on the space meshnodes number N.
One of the approaches to constructing e-uniform numerical methods is combining
classical discretizations of differential equations with layer-adapted highly non-
uniform meshes. Bakhvalov [3] was the first to use the approach. The space mesh
[3] for problems (1.1) and (1.2) is as follows:

x;=x(i/N), i=0,1,...,N, (1.5)
where x(&) is the continuous function defined by

ellnfb/(b — &) for £ € [0, 0]
B if e<¥g
x(¢) = 1—d(1—¢) for £ €[0,1] (1.6)

¢ otherwise,
d=d(0) = (1—eiln[b/(b—0)])/(1 - 0),

with constants A, 0 < 0 <b < 1, g < b/A. Note that the mesh [3] for problems
like (1.1) was considered in [12] and [1, 2], e-uniform accuracy being obtained
O(N~") and O(N~2) respectively. In the mentioned papers mesh (1.5), (1.6) is
assumed to be smooth, i.e. the function x(¢) is continuously differentiable and
0 = 0, defined implicitly by the nonlinear equation

0=>b—¢2/d0), (1.7)
can be computed using the following iterations [3]
00 =0, 0% =b—er/a*"), lim 00 =0, 0=0 <oV <...<0.
(1.8)

Note that the impossibility of solving the nonlinear equation exactly, when con-
structing the mesh, can be considered a certain drawback [19, 15]. As in [9], we
replace the mesh smoothness condition implying (1.7) by the following weaker
condition

b—eC<0<b—eCy (1.9)
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with arbitrary positive constants Cy and C satisfying Cy < C < b. Here the right-
hand inequality implies max; . = O(N~') for mesh (1.5), (1.6), while the left-hand
inequality provides ¢-uniform second-order consistency in the negative W_! dis-
crete norm. We point out that the choice 0 = 0 is a particular case of (1.9) as well as

0=0"=b—¢, (1.10)

which is the result of the first iteration (1.8), and both the choices generate the
meshes satisfying the reasonable condition /; < h;,; (which is provided by 6 < 6).

Shishkin [17] suggested piecewise uniform layer-adapted meshes, in particular, for
problems (1.1) and (1.2) the space mesh [17] is as follows:

ih for i=0,...,n,
Q_{xi|xi_{ . .

Xn+(l—n)H fOI' z:n—l—l,...,N, (111)
h=d/n, H=(1-0)/(N—n), n/N=b, 5:min(.sz1nzv,a)}

with constants a, b € (0,1) and A, and the results from [13, 17] lead to e-uniform
error estimate O(N~'InN). Recently (see, e.g., the survey [14]) on mesh (1.11)
other schemes for problems like (1.1) are studied, e-uniform accuracy being ob-
tained of order O(N~2In*N).

It should be remarked that still other layer-adapted meshes were suggested to
provide e-uniform convergence [15].

We shall study difference schemes, using a four-point upwind space difference
operator [6] (see also [15, 1.2.1.2]), that are second-order consistent and, though
do not yield M-matrices, but enjoy certain stability on arbitrary meshes unlike the
second-order central-difference scheme. These schemes can be easily extended into
two dimensions (unlike, e.g., three-point second-order schemes like [2, 18]). Note
also that a similar many-point regularization idea leads, e.g., to the Gontcharov—
Frjasinov five-point scheme [5], which works well for the Navier—Stokes equations
at high Reynolds numbers.

Thus problem (1.1) is discretized as follows:

ANl — AN Ul

NV = M T e =1, N— 1
ul hl f Orl ) ) ) (1.12)
M{)V = 4do, u% =41,
where A" is defined by
ANy, — eD™v; + pi_y/2(v;i — 0.5m; D" v;) fori=1,...,N —1, (1.13)
" eD ow 4+ py-12(ov — 0.5hyD oy ) fori=N. :

Note that this scheme preserves the conservative form of the differential equation.
Here and throughout the paper we use the notation
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Ui — Vi1 Dty — Uit1 — Ui D,
) |2 ) 1 )
hi hit hi

hi =x; —xi—1,  hi= (hi +hip1)/2,

D7U,‘ =

and w; = w(x;), wi_1/2 = w(x; — h;/2), w{ = w(x;, ), wi(t) = w(x;,t) for any con-
tinuous function w(x) or w(x,#). Thus u; (or u?) denotes the exact solution
at the meshnodes, while " (or u'”/) is the computed solution.

Clearly, (1.13) implies
ANy — 8D70i+pi,1/2[(vi_1 +v)/2 = (h#;/2)DD"v;] fori=1,...,N—1,
i = eD vy +PN—1/2(UN—1 +UN)/2 fori=N,

(1.14)

i.e. AV is a second-order approximation of the differential operator 4 defined by

0

Av(x) = e—v + p(x)v(x). (1.15)
Ox

If p(x) =1 and the mesh is uniform, (1.12) turns into the well-known discreti-

zation

—eDD ) + (3ul — 4l +ul,)/(2h) = f; fori=1,...,N -2, (1.6)

with the first-order upwind discretization —eDD~u_| — D*uly | = fy_; fori=
N — 1. Solving (1.16) exactly, it can be easily checked that ul = co + 17 + carh
with some constants ¢, ¢, ¢2, where the roots ry = 1, rq, r, are positive, i.e. the
solution u of (1.16) never oscillates (regarding inverse-monotonicity, see
Remark 2).

Note also that in [8] this scheme is studied on the Shishkin mesh (1.11) and proved
to converge e-uniformly in the discrete maximum norm, the accuracy being
O(N~21In” N). In this paper we extend the analysis to more general meshes and our
parabolic equation.

Problem (1.2) is discretized using the same four-point space operator LV, as in

(1.12):

NI Nl o

4 4Ny =4 fori=1,...,N—1, j=1,...,K,
T

uN’O:q)fV fori=1,...,N—1,

1

(1.17)
uév‘j =go(t)), uy” =go(t;) forj=0,... K.

To our knowledge the first result of e-uniform convergence for problems like (1.2)

is by Shishkin [17] for the difference scheme with the first-order upwind space

operator on the Shishkin space mesh, e-uniform accuracy being proved

O(N~"In? N + 7). We also refer to [7], where a time defect-correction approach for
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(1.2) is considered on the Shishkin mesh, with ¢-uniform error bound
ON~"In’ N + %), k > 2; and [10], where (1.2) is discretized using the central-
difference space operator, with e-uniform accuracy O(N~2In’ N + 1).

The main results of this paper (Theorems 1, 2) are g-uniform maximum norm
error estimates O(N~21n* N(+1)) and O(N~2(+1)) for schemes (1.12) and (1.17)
on the Shishkin and Bakhvalov space meshes respectively.

Notation: Throughout the paper, C, sometimes subscripted, will denote a generic
positive constant that is independent of ¢ and of the mesh.

Remark 1. All the results given in this paper hold for difference schemes (1.12)
and (1.17) with AV := 4" defined by

Ty — eDv; + pv; — 0.5:D (pv), fori=1,...,N—1,
b= eD~ vy + pyoy — 0.5hyD* (pv)y_, fori=N.

(compare with (1.13)).
2. Two Point Boundary Value Problem

2.1. Hybrid Stability Inequality

Let o ={x]0=xp<x; <:--<xy_1 <xy=1} be an arbitrary nonuniform
mesh on [0, 1]. Throughout the paper we assume that

h:=max b < CN~ ', H:=hy_ | =hy. (2.1)

For any mesh functions v; and w;, we assume that vy = vy = wy = wy = 0, when
these values are not defined explicitly, and use the scalar product

N-1
(v, w) = hpw; (2.2)
i=1
and the discrete Ly, L, and W ! norms defined, respectively, by
N-1
lolle = maxoil, ol = 1ol = Vo), [oll, = max| 3" Ao
j=i

Note that for any discrete function v; on an arbitrary nonuniform mesh, we have
ol < llvlly < lvlloes  [1Doll, < 2ol (2.3)

The key to our analysis of schemes (1.12) and (1.17) is the hybrid stability in-
equality given by
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Lemma 1. Suppose p(x) satisfies (1.3), (1.4), and ¢ < gy = 0.18>/P. Then for any

solution v; of the discrete problem LNv; = fifori=1,...,N —1,v9 = vy = 0 on an
arbitrary nonuniform mesh satisfying (2.1), so that h < hy := 0.15/P, we have

vl < Coll 71 (2.4)

Proof: First note that, by (1.13), we have

— i bic1+ {hi—&- (1 +ﬁ)p¢1/2]vi _ﬁpi—l/ﬂ)iwtl fori=1,...,N—1,

ANU,' =
—(& =B oy + (£ +252) oy fori=N.
Since LY = —DA4Y, the discrete function v; admits the representation
Wy V;
v =W —-2% fori=0,...,N, (2.5)
4%

where V; and W; are the solutions of the following discrete problems

AV, =1 fori=1,2,....N, V=0, (2.6)

AW, =y, fori=12,....N, Wy=0 (2.7)

with
N—1
mo= Y Mify fori=12. N=1 gy=0.
J=i

Thus it suffices to prove that ||v]|, < Co||n|| - Further, we consider the two cases.

() If e/H > py_1/2/2, it can easily verified that AN yields an M-matrix. Now, using
the barrier functions ¥ = 0, ¥ = 1/f, and W™ = V|||, we get the bounds

0< ¥ <1/B. |WI< Wl < lInllo/B fori=1,...N,

which, combined with (2.5), yield (2.4) with the stability constant Cy = 2/f.
(ii) If e/H < py_12/2, we set p := py_i,, and, by (2.6), (2.7), have

_ -1 _ _ -1 /-
_ (P & _(P_E — (P E) (P_E
w=() =G m--Ge) G
Now, eliminating Vy and Wy from (2.5), (2.6) and (2.7), we obtain

(G- ) -1V

v = W+ 2T
1= G- )

fori=0,...,N —1, (2.8)



Uniform Pointwise Convergence of Difference Schemes 185

where V; and W, for i =0,...,N — 1, are the solutions of the slightly modified
problems

- -1
o . b PN-3/2 (P &
AV,=1 fori=1,2,....N=2, AW_ =1 P & _
ori () ) ) N-1 + > (2+H> y VE) O,

AW, =n, fori=1,2,....N—1, Wy=0

with the slightly modified operator 4V defined by

ANV, =4V, fori=1,...,N -2,

- € e vz pvsp (P& (P e

ANV = — =Wy — S ~— )| Wt
N-1 g 2+ H+ > + 3 2+H 5T H N-1

Since it can be easily verified that 4V yields an M-matrix, we shall use the barrier
functions V! = 0, ¥* = (5/3)/pi, and W™ = +V||5|, to get the bounds

0< W< (5/3)/pn I <Wlnly fori=l...N-1  (29)

Here, in particular, we used (1.4) implying |p(&;)/p(&) — 1] < |€ — &|P/ B, and
also the conditions of the Lemma ¢ <g and h < hy implying ¢/D (1/p),| <
0.1, and A"W_1 <1+pysp/p<21, and ANV > (5/3)[-eD~(1/p)y_+
1.5py_3/2/pn—1]. Combining bounds (2.9) with (2.8), we derive |v;| < Vi|n|
[1— (pv_1Vw_1)(@/py-1)/2]"", which yields (2.4) with Cy = (40/3)/p. O

Remark 2. Our analysis for the case (i) implies that, if ¢ < Hpy_;/»/2, the dif-
ference operator LV is inverse-monotone.

2.2. Truncation Error and Convergence

Lemma 2. Let u(x) be the solution of (1.1) with sufficiently smooth p(x) and f(x),
and uY be the solution of (1.12), (1.13) on an arbitrary nonuniform mesh. Then,
under the conditions of Lemma 1, we have

I = )l < €| max {oity max @1+ N2 o)

i=1,..N gelxi1x)

e — u(x)|, < C[.nllaxN(min{hih,-/gz, 1} exp{—yxi_1/¢}) —&-N—Z} (2.11)

with an arbitrary positive constant v, satisfying y < p(0), and the notation hy := hy.

Proof: Let z; :=uY —u(x;) be the error and , := f; — LNu; be the truncation

i

error. Then LVz; =, for i=1,...,N — 1, zp =zy = 0, and Lemma 1 implies
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4 — u(xi)

2.11). 0O

< Gol|y||,. Further, |||, is estimated as in [2, 9] to derive (2.10),

lloo

Our main result regarding problem (1.1) is given by

Theorem 1. Let u(x) be the solution of (1.1), (1.3) with sufficiently smooth p(x) and
f(x), and u} be the solution of (1.12). Let also our meshnodes be x; = x(&;) with
{&Y satisfying 0=¢E <& < <&y <&y=1, &—& 1 =0N"), and
Env — Ev_1 = En_1 — En_a, where the function x(&) is defined by a) (1.6), (1.9) or

14 for ¢ € [0, 5],

b) x(&) = {’(’3_1_ =0(2 _p) for & € [b, 1], with 0 = min(eZIn N, a)

and some constants a,b € (0,1), A. Then, provided that 1 > 2/p(0), we have
a) lu —u(x)||l, < CN72 b)) |lul —u(x)|, < CN2In?N.

oo oo

Proof: These estimates are derived from bound (2.11) of Lemma 2. The right-
hand terms in (2.11) for our two meshes are estimated using a slightly modified
analysis [2, 9]. O

Remark 3. If & =i/N fori=0,1,...,N, the meshes a) and b) of Theorem 1 turn
into (1.5), (1.6), (1.9) and (1.11) respectively, i.e. the meshes a) and b) of Theo-
rem 1 are nonuniform generalizations of the Bakhvalov [3] and Shishkin [17]
meshes.

3. Parabolic Problem
3.1. Truncation Error

Let K, our time discretization parameter, be a positive integer, and 1 = 1/K. We
define the tensor-product mesh on [0, 1] x [0, T]

o x o, ={(x;,t;), with¢t;=jr, fori=0,...,N, j=0,...,K},

which is uniform in time. It is assumed for the space mesh o, in addition to (2.1),
that

hi < hiy fori=1,2,...,N—1. (3.1)

which is reasonable for problem (1.2), since its solution has a boundary layer at
x = 0. On w X @, we shall study difference scheme (1.17). For the time difference
derivatives we shall use the notation

-1 ' 1 j j—1 )
tYq T ) Vi < .

Let 2/ := u)' — u(x;,¢;) be the error and Y/ := f/ — d — LNu/ be the truncation
error. Then
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o7 I+LN4‘=¢{ fori=1,....N—1, j=1,...,K,

(3.2)
z(’) =0 forj=0,...,K, z?:(pﬁv—(p(x,») fori=0,...,N.
It is easy to check that 1//,1 can be splitted as
Wl = ‘1”11 + ‘Pé7i =W(t) + Yau(), (3.3)
where
9
W) = —Lui(t) + fi(t) — By u(x;, 1) for0<r<1,
0
Wy (t) = — | 0aui(t) — = ulx;,t)| forz<t<I, (3.4)

ot

and the obvious notation d;0(f) = [v(¢) — v(t — 7)]/7 is used. Note that the cor-
responding discrete functions ¥, and ¥} ; are defined for i =1,...,N — 1 and
j=0,....,Korj=1,...,K respectively.

Integrating (1.2) w.r.t. x over [x;_1/2,X:41/2] we get

/x,+|/2 gu(x7 t) dr — [(Au)(Xj+1/27 t) _ (AM)(Xifl/Za t)} + Xit1/2 f(X, t)dx

Xi-1/2 ot Xi-1/2
which, combined with LV = —DA", implies
N 1 Xit1/2
\Plﬁl‘(t) :D[A u[(t) — (Au)(x,—,l/z,t)} ,( ) h f(x, t)dx
iJxip

0 Xit1/2 0
— lau(xi, t) — /x au(x, t) dX] .

i~1/2

Now it can be easily verified that

Wii(0) = Dni(0) + [Dni(0) + ()] + ¥i(0), (3:5)

where

0i(0) o= AVuy(1) = (Au)(xio1y0,0), Wi(0) o= — lgf(xt 1/2:1)/8; (3.6a)

el [ e
Xi-1/2 Xi-1/2

Xig1/2 Xir1/2 92
+/ [ o [ sl

(3.6b)
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. a 1 Xit1/2 8
V() = — | Lula, 1) — — 9 ulx, 1) d|. 3.6
(1 [atuoc 01 / ) ] (3.6¢)
Thus we proved.

Lemma 3. For the truncation error 1/3{, we have (3.3)—(3.5), where n,(¢), 1;(¢), 1;(t)
and V() are defined in (3.6). Also Wi(t) can be represented as

Wi(t) = —[Digi(1) + (1)), (3.7)
where
82
ni(t) = _hizﬁu(xi—lﬂat)/& (3.8a)
1
(1) [ ax [ as u(E.1)de
otV R
Xit1/2 Xit1/2 3
+/ / dx/ ds/ / 828t (&, 1) dE|. (3.8b)

3.2. Stability Inequalities

Note that our four-point space difference operator L does not yield an M-matrix,
which makes our stability analysis more difficult (we shall follow, partly,
the analysis [10]). The main result of this Subsection is the hybrid stability
inequality given by Lemma 5. But to prove it, we need a weaker L, stability
stated in

Lemma 4. Suppose p(x) satisfies (1.3), (1.4), and our mesh w x . satisfies (2.1),
(3.1) and © < 19 := 0.5/(1 + 3P); then for the discrete function y;, satisfying

Sl + LNyl =f] fori=1,... N-1 j=jo+1,....K,  (39)

vo=y =0 forj=j,... K, (3.9b)

we have

V] < Cl Iy + for j = jo,...,K.

J
> Al

I=jo+1

This Lemma is proved in Appendix A.

Lemma 5. Let y{ satisfy (3.9) with jo =0, and let fl-j be splitted arbitrarily as
f=fi+f fori=1,...,N—1,j=1,....K with f}; also defined (arbitrarily)
fori=1,...,N — 1; then, under the conditions of Lemma 4, we have
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1l < C(IIfl0 =L+ AL+ 10+ 1

+ max {1031 + 1071} ) (3.10)

.....

Remark 4. Though f?, is defined arbitrarily, since there is 5tf1, on the right-hand
side of (3.10), we need fl ; close to i ; to get a sharp estimate. Note that we prove
this Lemma to estimate the error z/ satisfying (3.2), where f7 :=/ implies,
by Lemma 3, the natural definition of = ‘{’?,l

Proof: It follows from (3.9) with f/ = fiiJ + f‘2"_’i that y/ admits the representation
R
where v/ and w/ are the solutions of the following discrete problems:
N =fl, fori=1,...,N—1, v)=vj=0 forj=0,....K, (3.11)
N = f], = 0w — 0w fori=1,... .N—1,j=1,. K
wl =30 —0 fori=0,....N, wj=wy=0 for;j=0,...,K. (3.12)
Then, applying Lemma 1 to (3.12) and recalling (2.3), we have
1l < 101l + C(I60 oo + 171+ 1f3llc)  forj=1,....K,  (3.13)

where W/ = 5;w{, defined for i =0,...,N, j=1,...,K, is the solution of the
problem

S+ LNW! =51, — 0] fori=1,... . N—1,j=2,...K  (3.14a)

W+ MW = (Y, = LN + 3, — ) fori=1,... . N—1,  (3.14b)

1

W =wi=0 forj=1,. (3.14c)

Note that (3.14b), which serves as an initial condition here, is derived from (3.12)
for j=1.

We claim that

W2 < ClOYs = L) + £y = dwp | < CLY = LI + [l || + 153 )-
(3.15)



190 N. Kopteva

This claim is proved in Appendix B.

Further, it follows from (3.11), by Lemma I, that ||o/|, < C[|f{|, for j >0,
1570/ < Cllorf . for j = 1. ||6707|| < ClI&7 A/ for j = 2.

Now, applying Lemma 4 to problem (3.14a), (3.14c) for W/ with j, =1 and
recalling (3.13), (3.15), we derive

1l < C<||f1° =LY +mflx{||f{|| + oAl + 1A 1+ AL + ||5Lf{|w}>'

Since for any discrete function ¥/ and any norm |[-| we have
|Y/]] < ||Y7°|| + max;s;, ||0:Y/|| for j > jo, we get (3.10). O

3.3. Convergence

Theorem 2. Let u(x,t) be the solution of (1.2) with sufficiently smooth p(x), f(x,1)
and ¢(x), and ufv] be the solution of (1.17) with the initial condition ¢~ defined by
the solution of

LNoY = (Lo)(xi) for i=1,....N—1, @) =¢(0), o¥=0p(), (3.16)

on the mesh o X w., where the space meshnodes x; = x(&;) are defined by a) (1.5),
(1.6) and (1.7) or (1.10); b) (1.11). Then, provided that the mesh parameter 1 > 2/f,
we have

@) max 4"~ ulxi, 1), < CV2 4 0)

. 3.17
b) max i — u(x; 1)) < CN 212N +x). 17
J

Remark 5. Our initial condition ¢ defined by (3.16) is artificial and caused by
our analysis. On the other hand, since the analysis of Section 1 applied to problem
(3.16) implies |@Y — ;| < CN~2, our initial condition is only slightly different
from the natural initial condition ¢V := ;.

Remark 6. Theorem 2 also holds for the space meshes defined as in Theorem 1
and satisfying (3.1), i.e. for meshes that can, in general, be essentially nonuniform.

Proof: Applying Lemma 5 to problem (3.2) and recalling Lemma 3, we get

127l < C(ll‘l’? = LY@ = @)l + Y1 + 1071 + 1¥3
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The first right-hand term, by (3.16) and (1.1) at ¢ = 0, vanishes:

ou

\P(l).,i - LN((/’ZV — ;) = {_LN(/H + £i(0) — ot

= (L(p)l.—LN(pﬁv =0.

(x1,0)| — [ZN oY — LV ¢,

Further, using the Mean Value Theorem, we obtain
y 0 0?
1l < Cmaxy [F1OI. + | 5 101 + [l 55 F1 (O]
0
W2 (1)l + ||5T2(t)llm}- (3.18)

To estimate this, we shall use the following decomposition of u(x, ) [17, p. 221,]

k41

Okx0't

-1

u(x,t) = U(x,t) + V(x,1), Fxdlt

ulsc,

V‘ < CeFexp(—yx/e), (3.19)

for £,/ =0,1,2,3, with any positive constant y satisfying y < 5. Then, by (3.4),
Taylor series expansions yield

max{”‘l’z( Moo + I|%‘P2(t)|m} < Cr. (3.20)

t€

The terms with W ;(¢) in (3.18) are estimated, by (3.5), (2.3), as

SISOl < IOl + 1 SOl + 1 380+ 17 E0,
(3.21)

m
t€[0, 1]

for I =0, 1,2. Now we shall split \P;(z) as \P,(r) = ¥V (¢) + P/ (¢), where the right-
hand terms are defined as ‘i‘i(t) in (3.6) and admit the representations as (3.7),
(3.8) with U(x, 1), 7Y (¢), i (¢) and V (x,1), i1 (¢), il (¢) instead of u(x, t), 7;(¢), i;(?)
respectively. By (2.3), this yields

I o
I B0, <21 2 Ol + 1 5 01

+2max{| S O+ 9o O]+ max  S¥0) - (2)

with the number 7 defined by the condition 4; < ¢ < hz . Further, combining
(3.21) with (3.22), recalling (3.19) and using a slightly modified analysis [2, 9], we
derive, by Taylor series expansions, that

|| Y], < C[ml'_ax(min{hf/sz, 1} exp(—pxi—_1/¢)) +N‘2] (3.23)

ot
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for / =0,1,2. Finally, combining (3.18), (3.20) and (3.23), we get the bound
max |[u} Y — u(x;, 1) < C|max(min{#?/e*, 1} exp(—yxi_1/e)) + N2+ 1/,
J i

which, as in the proof of Theorem 1, yields (3.17).

4. Numerical Results

We consider test problems (1.1) and (1.2) with p(x) = (x + 1) and the other data
such that their solutions are

ﬁexp (—%/Oxb(s) ds) + exp(—x/2)

(this example is from [4]) and

u(x) =

u(x, 1) zlﬁexp (—%/Oxp(s)ds) sin 27 + exp(—x/2) sin¢,

respectively.
The problems were solved numerically on the Bakhvalov space mesh (1.5), (1.6),
(1.10) with C =2.3, b =0.5, & = b/A.

In Table 1 for test problem (1.1), solved using difference scheme (1.12), (1.13), we
give the error in the discrete L., norm in the odd lines and the numerical rate of
convergence, computed by the formula log, ([|u?Y — u(x;)||/|luY — u(x;)|), in the
even lines. The numerical tests confirm e¢-uniform second-order convergence
claimed by Theorem 1. Note that similar results for a steady problem on the
Shishkin mesh are given in [8].

Table 2 shows the maximum nodal error max; ) — u(x;, t;)|| for test problem
(1.2) solved by (1.17). The numerical results correspond with the e-uniform error
estimate given by Theorem 2.

A. Appendix: Proof of Lemma 4

Without loss of generality we shall only prove the Lemma for j, = 0. Multiplying
(3.9a) by y/ as in (2.2), by simple calculations, we get

1P = 077 + o[- ) + (0]
= 0/ ) e[S+ LSPIY I + (709)]

with
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Table 1. Two point boundary value problem, maximum nodal error and computational rate

of convergence

N =1 e=10"2 e=10"* e=10""° e=10"% max
16 4.96e — 3 2.82e -2 31le-2 3.12¢ -2 3.12¢ -2 3.12e -2
2.00 1.86 1.88 1.88 1.88 1.88
32 1.24e - 3 7.78¢ - 3 8.42¢ - 3 8.44e - 3 8.44e - 3 8.44e — 3
2.00 1.94 1.94 1.94 1.94 1.94
64 3.0% - 4 2.02e - 3 2.1% -3 2.20e - 3 2.20e -3 2.20e - 3
2.00 1.99 1.97 1.97 1.97 1.97
128 7.7le = 5 5.10e — 4 5.59 - 4 5.60e — 4 5.60e — 4 5.60e — 4
2.00 2.01 1.99 1.99 1.99 1.99
256 1.92¢ - 5 1.26e — 4 l4le — 4 l.4le — 4 l.4le — 4 l.4le — 4
2.00 2.04 1.99 1.99 1.99 1.99
512 4.80e — 6 3.07e - 5 3.54e - 5 3.55¢ -5 3.55¢ -5 3.55¢ -5
Table 2. Parabolic problem, maximum nodal error
7! N e=1 e=10"2 e=10"* e=10"° e=10"8
16 16 9.28¢ — 4 1.40e - 2 1.54e - 2 1.54e - 2 1.54e = 2
32 448¢ -3 1.04e — 2 l4le -2 1.43e — 2 1.43¢ - 2
64 5.3% -3 1.30e - 2 1.58¢ - 2 1.5% -2 1.5% -2
128 S5.6le - 3 1.42¢ - 2 1.62e — 2 1.63e - 2 1.63e - 2
256 5.67e - 3 1.45¢ -2 1.63e — 2 1.64e — 2 1.64e — 2
512 5.68e - 3 1.46e - 2 1.64e - 2 1.64e - 2 1.64e — 2
1024 16 4.7% -3 2.40e - 2 2.54e - 2 2.55¢e =2 2.55¢ =2
32 1.14e - 3 6.60e — 3 6.88¢ — 3 6.8% — 3 6.8% — 3
64 22le -4 1.5% - 3 1.65¢ — 3 1.66e — 3 1.66e — 3
128 1.55¢ =5 2.77e — 4 295 - 4 2.96e — 4 2.96e — 4
256 7.13¢e - 5 1.75¢ — 4 24le — 4 243¢ - 4 243¢ - 4
512 8.52e - 5 2.10e — 4 2.55¢ — 4 2.57e — 4 2.57e — 4

N
§' = =LYy, p7) = LSPIy/|1> = = > hi(4¥y]) (D7p]) — L5P|y7|%.
i=1

Here we used LY = —DA". Further, by the Schwarz inequality for the terms
(v/,3771) and (f7,7), we have [|ly/|* < (1 —2) 7' [Ip/ 7> + (287 + |/7]1*)] with
7 := (1 4+ 3P)t, and consequently

where

S=(—-z/ ' +(1 -7/ 2" +...

Note that t < 19 = 0.5/(1 + 3P), i.e. T < 0.5, implies

I<(l-n7<@-9"<a-9""<1C

+ St

with C = 1/4.

' j
/P < (=07 DI+ D ISP +2eS| forj=1,....K, (A.T)
I=1

(A2)

(A.3)
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Now, by (1.14), we get

N N
S ==& mID Y =05 hpiipGl, +¥)(D7Y)
i=1 i=1

N—-1

+0.5Y hipiap(D vl — DY) (D7y]) — L5PIY|.

i=1

The second term on the right, by (1.4), is estimated as

thpl 20 +y) (DY) < P|y/|*.

i=1

Pz+1/2)( )

Now, noting that (a —b)b = [(a®> —b*) — (a — b)*}/2, with a=D"yJ,, and
b=D"y/ we get

, . 1Nt . .
S/ < —¢ehy|D y}\/|2+zzhfpi71/z(|D )/,'IJr1|2 —|D Yz,|2)
V- B
~ 3 |y = D P (A4)

=1

Setting v; = D‘y{, we observe, by (3.1), that

N-1
Z hizpifl/2(vzg+l - Uiz)
i1

N
< hypn—1)20y + Z 1 (Picsjy — Pic12)v]
i

< h12va71/2U12\/ +4P||)"/'H2-

Further, combining this with (A.4), omitting some of the nonpositive terms and
recalling (2.1), we derive

Pn-1/2
4

' |2 _PN-1)2

4 H4}DD_y{vfl|2' (AS)

S/ < —eH|D y4|* + ——LH?|D y)
If ¢ ZPN_1/2H/4, then S/ < 0, which implies S < 0. Combining this with (A.1)
and (A.3), we complete the proof.

Otherwise, if & < py_;/,H /4, omitting the first term on the right in (A.5) and
combining (A.5) with (A.2), (A.3), we obtain that

2
§< pN41/ Z(b’N 1| _CH4|DD7.VN 1| ) (A.6)
=1
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Here we also used that y{v = (0 implies D‘yﬂ, = —y{vq /H. 1t follows from (3.9a)
fori =N — 1 that

Wl < (1 3/H) ™ (W42 + eelDD 7y + <l )

with the notation p:= 1.5py_3/2 —0.5py_1,2. Set 0:=wp/H, q:=(1+ o)
Then, by

(@+b+c) <(1+8)a+(1+1/8)(b+c) < (1+0)[a+ (2/3)(B* + )],
we have

Wi P <al AP +q@/OR with R =23 DDy, P+l [ (A7)

Further, using that ¢ + ¢> + - + ¢/ < q/(1 —q) = 1/6 = H/(zp), we derive that

ZlyN e R gzw M )ZRJ

Combining this with (A.6) and (A.7), we get

Hpy_1)2 v 2H?¢? / _ 2 d 2
S* 4 / | N 1| 4/ _CH4 Z|DD yN—1| +CH22|f]{7—l| .
P P =1 =1

Now we recall that C = 1/4 and, by (1.4), (py_12/p) < 4/3, which implies that
¢ < (pH /4)(pn-1/2/p) < pH /3. Then the second right-hand term is negative and
consequently

) J
2§ <3 17+ cer Y 1)1
=1

Combining this with (A.1) and (A.3), we complete the proof.

B. Appendix: Proof of (3.15)

Setting F; := (f, — )+f2l - 511)1, we prove that, under the conditions of
Lemma 5, (3.14c), (3 14b) imply ||W!||* < C||F|*. Multiplying (3.14b) by W', we
have

2
(W = F, W) — (LYW ).

The similar argument, as used in the proof of Lemma 4 (Appendix A) to derive
(A.S), gives
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S:=—L"w',w)
< —eH|D" W +
__Pn-1)2

4

pN;-l/2 H2|D, WAHz

H*|DD W [+1.5P| |2,

If ¢ > py_12H /4, then S < 0, and (3.15) is obvious. Otherwise, if & < py_1/2H /4,
ie., by (1.4), e <pH /2 with p := 1.5py_3/5 — 0.5py_1 />, omitting the first term on
the right and taking into consideration that W} = 0 implies D~ W} = —W, | /H,
and that (3.14b) for i = N — | yields Wy_, = [H/(H + tp)|[exDD~ Wy} | + Fyn_1],
we get

o < P2 (P - HDD WP ) + <P
L1 (282 _ 2H?
< P12 (%Hz - H4> To) SR A G e ) VI el | AN
4 p 4 (H+1p)

< c(HIEAP +<w'P) < c(IF1+ W' IP),

which again yields (3.15).
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