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Abstract

The solution of Schrédinger’s equation leads to a high number N of independent variables. Further-
more, the restriction to (anti)symmetric functions implies some complications. We propose a sparse-
grid approximation which leads to a set of non-orthogonal basis. Due to the antisymmetry, scalar
products are expressed by sums of N x N-determinants. Because of the sparsity of the sparse-grid
approximation, these determinants can be reduced from N x N to a much smaller size K x K. The

sums over all permutations reduce to the quantities detg (o1, ..., 0x) := > det (aff’f/?) .

1<iy in,enix <N o%p=
to be determined, where am) are certain one-dimensional scalar products involving (sparse-grid)
basis functions Py We propose a method to evaluate this expression such that the asymptotics
of the computatlonal cost with respect to N is O(N?) for fixed K, while the storage requirements
increase only with the factor N2. Furthermore, we describe a parallel version (N processors) with full
speed up.

AMS Subject Classifications: 65F40, 81-08.

Key Words: Determinants, Schrodinger equation, antisymmetric functions, sparse grids, evaluation of
scalar products.

1. Introduction

The background of our considerations is the numerical treatment of Schrddinger’s
equation characterised by the operator H,

ZAX,CIH— ) 2% oy 2O gy

1<i<j<N ‘x, J| 1<i<4 |§i —xj| 1<i<j<A |éi - fj’
1<j<N

Here, & € R, 1 < i< 4, are the fixed positions of 4 nuclei with charges Q; € N.
The eigenfunction ®, one is looking for, is a function in R*V, where N is the
number of electrons. Because of the Pauli principle, the eigenfunctions have to be
found in the space of antisymmetric functions, i.e.,

Oxr, ..y, xjy o, xy) = =0, .. x5, 00X, .. xy) foralli##j. (1.2)
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Therefore, the particular characteristics of this problem are
1. the high number of independent variables,
2. the subspace of antisymmetric functions.

Readers interested in the quantum mechanics background are referred to the
books [12], [13], [4] and the review articles [9], [11]. Symmetry properties of the
wave function are discussed in [10].

The standard discretisation technique in quantum chemistry uses basis functions
of GauB} type (cf. [8]). The Gaussian basis functions have a number of elegant
properties. On the other hand, there are severe disadvantages due to the global
support and the missing flexibility in local adaptation. In this paper, we allow the
use of finite elements and are therefore faced with other difficulties discussed
below.

Concerning Topic 1 from above, we propose to use sparse grids. It turns out that
sparse grids are even much cheaper when used for symmetric or antisymmetric
functions (see §2.2).

The computational subspace of the Galerkin method will be of the form
Ssym * Qanii, where ®@,,; 18 a fixed antisymmetric function, while fi,, varies in a
symmetrised sparse-grid space. Hence, f,, is spanned by S¢, where S is the
symmetrisation operator explained in Subsection 2 and ¢ is a product Hf\; | i(xi)
of sparse-grid basis functions ¢;. It is characteristic for Schrodinger’s equation
that already the computation of the entries of the Galerkin matrix is nontrivial. In
this paper we do not discuss the terms arising from the middle sums in (1.1), but
concentrate on the simple scalar product

(SO % Dy, SO 5 D) oo, (1.3)

arising from the Gram matrix (mass matrix) in the eigenvalue problem. Here we
mention that the first term > | A ® leads to a similar expression (cf. Lemma
2.11). Concerning the underlying product form fj,,, * ®,,; we refer to [1].

The difficulty in computing (1.3) is twofold:

(a) Since the symmetrisation operator S involves all permutations, a large sum of
single expressions is obtained.

(b) Each single expression is an N x N-determinant.

The precise definition of the problem to be solved is given in Subsection 3.1. The
dimension of the symmetric sparse-grid space with L levels is shown to be O(b%).
Therefore, the number of matrix entries is O(h*). The overall computational cost
amounts to O(N3b?*") (see Subsection 4.3), while the parallel version with N
processors leads to O(N2b*) (see Subsection 4.5). The storage amount is
O(N?*b?') and can be perfectly distributed in the parallel case.

The next Section starts with the notation of symmetric and antisymmetric func-
tions. In the following Subsection §2.2 we discuss the sparse-grid space used in our
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case. In §2.4 we describe the scalar products of simple product functions. Products
of symmetric and antisymmetric functions together with their scalar products are
discussed in §2.5.

2. Notations
2.1. Symmetric and Antisymmetric Functions
Let Py be the set of permutations of {1,...,N}. A permutation ¢ € Py can also
viewed as an operator on L?(X") defined by

o f(xt,...,xn) = Xy,  Xevy) =: (af)(x1,...,xn) for o € Py.

Here, X is a measurable set (for Schrédinger’s equation, X = R? is of particular
interest) and L?(X") is the set of measurable and square-integrable functions
defined on XV,

Definition 2.1. f € L*(XV) is called symmetric (notation: f € L? ( )) if f =aof
for all ¢ € Py. f € L*(XV) is called antisymmetric (notation: f e L2 (XM, if
f =sign(o) x af for all ¢ € Py.

The following operators produce symmetric and antisymmetric functions, re-

spectively:
S = Z g, A:= Z sign(o) * 0. (2.1)

gEPy gEPy

Scaling by the number N! = card(Py) of permutations, one obtains

N Z g, = Z sign(o (2.2)

gEPy oEPy

Remark 2.2. §' = S? is a pr 0]ectlon onto the subspace L2 SXYYyand A' = 4% is a
projection onto the subspace L2, .(XV).

anti

2.2. Sparse Grids
2.2.1. Basic Spaces

Let {V;} ey, be a hierarchy of finite dimensional and nested subspaces defined on
X (not XV). In the case of Schrodinger’s equation and conforming discretisations,
the discretisation is based on a subspace of H'(X), where H'(X) is the usual
Sobolev space (cf. [6, Chapter 6.2]). Since the functions from 7, will be multiplied
by an H'-function (cf. (1.3)), we require

WwCWhcC--—-CViiCcVc---cC(X). (2.3)

We assume that the dimension of ¥} increases by a fixed factor. For simplicity, we
write
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dim ¥, = b* (2.4)

(b = 8 corresponds to halving the grid size in! X = R?). The following consider-
ations remain true if we replace (2.4) by dim ¥, < b’, allowing local refinement.

The coarsest space }; (with dimension 1) is spanned by the constant function only:

Vo = span{l}. (2.5)

2.2.2. Sparse Grids in XV

Let a level number L € N be given, where
LN

is assumed. The sparse-grid space V;'¥ associated with L is

N
VY= span{l/;1 X Vi X -+ x Vg, + £; € Ny with Z& _L}.
=1

The dimension of V;, x V;, x --- x Vp, is

NZ
dim ¥, - dim ¥, ---dim ¥y, = b" - b = b2t i = pt.

The number of N-tuples (¢1,...,0y) € NY with SN ¢ =L amounts to
() = O(N*) for L < N.

Remark 2.3. Under the assumption (2.4), the sparse-grid dimension is bounded by
dim VY < O(b*N*1).

Since L = O(log b*) is only the logarithm of the space dimension dim ¥; = b, the
bound behaves much better than (dim VL)N is the full-grid case, but for large N,
the number N’ becomes dangerous.

Concerning literature about sparse-grids, we refer to [14] and [2]. Higher order
approximations are discussed in [3].

2.2.3. Sparse Grids for Symmetric Functions in XV

In the following, we consider a sparse-grid space consisting only of symmetric
functions. For this purpose, we make use of the symmetrisation S:

! Using sparse grids also in R® leads to b = 2, while N is to be replaced by 3N. However, notice that the
later mentioned antisymmetry does not hold for the variables in X = R>.
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symm,sg | __ sg
4 =57

N
= span{S(Vg, X Vi X ooo x V) i 4 € Ng with Zﬂi :L}.
i1

Since after symmetrisation ¥y, x --- X Vp X -+ X Vg x -+ XV and Vp, X --- X
Vi, X +o x ¥y, X - x Vp, lead to identical spaces, the ordering of the level num-
bers ¢; is irrelevant. Without loss of generality, one may order the N-tuples
(41,...,0y) by £y > £, > --- > {y. Hence,

VLWmm sg span{S(VZI X Wz NEEED S V[N) Zgj € NO

N
with Zé,-:L and 0 >0, > .- ZEN}.
i=1

The number of N-tuples (¢,...,¢y) with this properties is bounded by a
constant ¢; for all N, as explained below. This together with dim V> <

Zall admissible N-tuples (¢1,...,0x) dlm(wl X sz - X V/A) ylelds
Remark 2.4. The symmetric sparse-grid space satisfies dim V;>™"*9 < ¢ bt.

This remark shows that the symmetric sparse-grid functions are optimal for large

y P g pt g
N. The same holds for antisymmetric functions, since dim V""" < dim
ymmsd Here, V™™™ is defined as AV (4 from (2.1)).

The constant ¢; can be determined as follows. Let 5(¢,L) be the number of all
sequences ¢; > £, > --- such that > ¢, = L and ¢; < ¢. The induction with respect
to L starts with #(¢,0) = 1 (only the zero sequence exists). The recursive definition
of n is

~

= nk,L—k).

k=1

The right-hand side corresponds to the fact that a sequence starting with /| =k
can be followed by any of the 5(k,L — k) sequences ¢, > --- with sum L — k and
ly < k. For any N we have

i=1

N
card{zl >0 > >0y with > :L} <q(L,L).

The bounds #(L, L) are given in the table below. The function (¢, L) is known in
number theory as the partition function py(L). Concerning #(L, L), the asymptotic
behaviour?

21 thank my colleague Prof. Dr. A. Srivastav (Kiel) for providing this information.
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n(L,L) = (ﬁ + 0(1)) —exp(n{m)

is described in [7].

However, the estimates by means of n(L, L) are too pessimistic. If it happens that
by >4, >--- > ¥y contains k identical members ¢:=/; ) =Vlip = =Llisy,
dim SV} ) is overestimated by dimV} = (dlm V,)¥. The exact bound is
dimS(V}f) = card{(zl,zz, ) e{l,...,dim VY i <iy <--- <i;}, which is
approximately (dim W) /k' Therefore we should count the equal (non-zero)
members in the sequence and divide by their faculty:

L
1

wlly > by > > Ly) = HF’ where k, = card{i: {; = a}.
a=1"%"

Instead of (L, L), we get the weighted cardinality

Nu(L) = > w(ty > 6> - > y) < (L, L).
all admissible N-tuples (¢1,...,0x)

The number ¢; * b" can also be interpreted as follows. Let J; be the indices of the
basis functions in ¥} (dlSJOlIlt for different levels £) and set J := | J;_,J;. The basis
in 1" is given by S([TL, ¢, (x;)) where the indices o € J form a subset of
those indices with the side conditions SV level(%;) =L and level(o;) >
level(op) > - -+ > level(ay). Further restrictions hold if equal levels ¢, =

-+ = ;4 appear. Here, level (o) = £ is defined by a € J;. The result is stated in the
next remark.

Remark 2.5. The dimension of V;"""* is bounded by the numbers listed in Table 1.

2.3. Separable Functions

The standard ansatz for function in L>(X") are linear combinations of products of
the form f(xy,...,xn) =[] @;(x:) := @ (x1) * - - - % @y (xn), where the basis func-
tions ¢, belong to any of the spaces V. Symmetrisation yields

fs}m—Sf ZH@;xoz ZH()DJ[ xl

o€Py i= o€Py i=

Table 1. Bounds for the constant ¢, in dim 7;>""* < ¢ * b*

L 1 2 3 4 5 6 7 8 9 10 20 30

n(L,L) 1 2 3 5 7 11 15 22 30 42 627 5604
(L) 1 1.5 2167 3.042 4.175 5.626 7.467 9.781 12.67 16.24 134.7 746.4
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Similarly, the antisymmetrisation yields
N N
O=Af = sign(o) * [ [ o:i(xo) = D sign(o) * [ oo ().

gEPy i=1 oEPy i=1

The latter is also called the Slater determinant

@1(x1)  @(x1) o y(x1)
© — det (Pl(:x2) wz(:xz) (PN:(xz) . 26)
oilon) aley) oo oulxy)

2.4. Scalar Products
The L*-scalar product on XV is denoted by (-, -)y:

<f,(1>N5=/ SOy xn)g(er, -, xy)dxy .. dxy.
XV

An obvious result is stated in
Remark 2.6. 4 = A" is selfadjoint, i.e., (Af,g)y = {f,Ag)y for all f,g € L*(XV).
Product functions ¢ =[[¥, ¢;(x;) and ¢ =TIV, ¥:(x;) satisfy (o, )y =
H?’Zl (@;,;),, enabling a reduction to one-dimensional integrals. In the case of 4¢
and Ay, one obtains a determinant of one-dimensional expressions.
Lemma 2.7. Let ¢ =[], ¢:(x;) and = T, ¥:(x;). Then

(A, A)y = Nldet({o;, lpj>1)ixj:1,.4.<N' (2.7)

The proof can be performed by induction over N using the induction hypothesis

(. Ap)y = det(<(P[?¢j>l)i¢j:1,..4.N' (2.8)

Corollary 2.8. If the function systems {@;} and {\;} are biorthonormal (i.e.,
(@i W01 = i), we have (A, AY)y = N!. The function systems are in particular
biorthonormal, if ¢; =\, is an orthonormal system.

2.5. Composition of Symmetric and Antisymmetric Functions

Lemma 2.9. a) If f € L}, (XV) and g € L}, (X") then fg € L,,;(X").

anti anti
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b) Let f € L*(XN) and g = A'g € L2, .(XN). Then A'(fg) = (S'f)g is the antisym-
metrised product.

¢) Let f € L], (XV) and g € L*(X"). Then A'(fg) = f(4'g) is the antisymmetrised
product.

In the following, we shall deal with antisymmetric functions of the form
N N
(S@) * (4y) with @ = [ ei(x) and ¢ = [T wi(x).
i=1 i=1

Below the scalar product ((S¢)* (4y), Alﬂ)N with ¢,y as above and
Y= Hl L W;(x;) will be characterised. Due to 4 = N4’ and the projection prop-
erty of A’, one obtains

(@) + (W), i) = NY((So) = (49). ) .

By definition of S,

0Py j=1

(1500 a01.4), =03 ) 00 [Tt
N
=Ny <Aw, ﬂ(%@ (x)) * %(x/))>

0E€Py j=1

holds. Since the scalar products are of the form (2.8), it follows that

((Sg) * (4p), 4)) =N! > aet((1 000+ 1)), )

J=1,..., N.

Similarly, ((Se) * (4¢), (S®) * (Atﬁ))N —N'<(Sq0) (AY), (S) * ) is treated (cf.
Lemma 2.9¢). Using ((S¢)* (4y), (S) * ¥)y Z(;GPV ZTEP\, (Ay, H] 1((/’0(, (x))
* Do) (X)) * lﬁj( x;)))y» One proves

Ll/ejﬂ;n;a 2.10. <(S(/>) « (A), (S) = (A)y = N'Yogep, Yeen, det({(Wr @40 * oy
* i,j=1,

.....

Finally, we mention the bilinear form associated with the first term — va: 1 Ay, of
Schrédinger’s operator.

Lemma 2.11. Define V') (1 < i,j < N) as the identity for i # j while V) := V¥ is
the gradient. Then
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N

> (T (50) % (AW), V. (59) + ()

i=1

_NIZZZdet(< Vo »>*‘pk),V(i‘é)(¢r<i>*‘h)>1)”:1 29

g€Py 1€Py i= e

3. Description of the Problem
3.1. Definition of the Linear Space
We assume that the following data are given:

1. An orthonormal system {¢,,..., ¢y} C L*(X).

Then
N
O :=A]] ¢i(x) (3.1)
i=1
denotes the antisymmetric function generated by {¢,,...,¢y}. In the case of

Schrodinger’s equations, a good approximation is given by the solution
{¢y,..., ¢y} of the Hartree-Fock equation (cf. [12]).

2. A family {¢, € L*(X) : o € J;} of basis functions of ¥, for 0 < ¢ < L (cf. (2.3)).

Usually, the index sets J; are disjoint; however, in the case of a hierarchical basis
Jo—1 C J; holds. The basis functions may be of standard finite element type, but
one may also think about wavelet basis functions. The union of all (disjoint) index
sets is

J = OJ@. (3'2)

Since ® will be only a rough approximation of the first eigenfunction of (1.1), we
are looking for better approximations contained in the linear space?

= {fxD: f € VPIY (3.3)

Symm,sg

Obviously, the dimension of this space equals dim V]
in Remark 2.4.

, which is characterised

In the case of Schrodinger’s equation, a typical correction of ® may be a factor f,
where f(x1,x2) = f(Jx; —x2|) is a function of only two variables due to the in-
teraction of two electrons. The direct approximation of f by f => a,p, as a

3 Instead of one product, one may also introduce the space | {fo:lf“* O, : f, € VY
based on M different antisymmetric functions (3.1).
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function of x; — x; leads to the difficulty that scalar products in L>(X") involving
(Sf) * @ cannot be reduced to one-dimensional scalar products (-, -),. Therefore,
f(x1,x2) = f(Jx; — x2|) will be approximated by

fx1,x) =S Z Sup * @y(x1) * @p(x2) + remainder. (3.4)
o, fESy

Since ¢,, ¢ € V;, the sum in (3.4) belongs to the sparse-grid space V' with
L:=2¢ (formally we may add the factors ¢y(x3) == @ylxy):=1¢€ Wg;
cf. (2.5)). This argument gives an idea how large L should be: The level £ = L/2
should be sufficiently high to yield a small enough remainder in (3.4).

3.2. Galerkin Coefficients

Using the Galerkin method in the space 7,2, already for the Gram matrix (and
similarly for the bilinear form corresponding to the Laplace operator) scalar
products of the form

Ligys = (S(@,(x1) * @g(x2)) * ©,8(0, (x1) * @5(x2)) % @), (3.5)

appear, where the index pairs (o, f) and (y, 0) correspond to different terms from
(3.4). Products of two basis functions as in (3.4) are only particular examples of
sparse-grid basis functions. Next, we consider the general case.

3.2.1. General Case

In general, scalar products of the form

k ¢
L=l py. p = <S (H ?,, (x,~)> * O S( go/fl_(xj)> * (D> (3.6)
i1 =1 N

occur, where 1 < k,¢ < N. The subscripts «;, §; € J are arbitrary indices from J,
which are not necessarily different and may belong to different levels. Due to
Lemma 2.10,

Ly .op:py..p, = N! Z det<<¢i7 o) * Po(j) * ¢_;>1)_ _ (3.7)

o.iePy ij=1,..,

holds, where

o J, forl<i<k - o for1<i</
q)"'_{l fork<i<n [ %=1 fore<icnf  CY

322 . The Case k=/¢=1

For the convenience of the reader, we discuss the simplest case £k = ¢ = 1 before
the general problem is presented in §3.2.3.
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Fork=(=1,0, = ¢, (=) and ¢, = @4 (B = B;) holds, while ¢; = ¢; = 1
for j > 1. The factors ¢,(;) * @,(; in (3.7) take one of the following four values:

@y for a(j) =1(j) =1,
0, fora(j) = 1,7(j) # I,
oy for 7(j) = 1,0(j) # 1,
1 otherwise.

Po(j) * o) =

This shows that the only interesting fact about the permutation ¢ is the value
o~ '(1). The set Py of permutations can be decomposed into

PN:PIEII)U})](\?)UUP](VN)’ WhereP _{O—EPN O—( ):1}

Remark 3.1. #P)) = (N — 1) for 1 <v<N.

The double sum > _, in (3.7) can be rewritten as N =1 ZJ€P< ZTGP First
we consider the case v = u. Using Remark 3.1, we conclude that "

¢, forj=v .
‘N'Z Z det<< {1 fornév} "’f>1>,-j1 \

=1 ;¢ P(‘ J=1,...,

N .

Pypp  forj=v
—1)!2§ det<<¢,.,{ , }*¢>> .
- 1 for j#v v L=l N

,,,,,

Since the system {¢;,..., ¢y} C L*>(X) is assumed to be orthonormal, the scalar
products are (---); = d;; for j # v, so that

N .
(D1 0,05 % ), fOfJV}
I' =NI(N et USRS .
; <{ J for j#v ij=1,..N

(0;;: Kronecker symbol). For fixed v, the N x N-matrix (- - -) is the identity matrix
in which the vth column is replaced by ((¢;, ,¢p * ¢,)1),—; . n- Expanding the
determinant with respect to this column (or elimination of the column entries for
i # v by means of the ith column (=unit vector)) yields det(---) = (¢,, 9,05

*¢,),; hence,

I'=NI(N -1

v

(Drs @ * )1 (3.9)
1

N
Remark 3.2. The evaluation of I' requires the computation of N one-dimensional

scalar products. The summation needs O(N) operations. If ¢,,, ¢ are basis functions
with disjoint support, I' = 0 holds.
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Finally, we consider the remaining case v # u. Then

N o, forj=v
I"=NYy "y ZZdet <¢>[, oy forj=p *¢,>

1 (1) i
=1 pe{l,..N}\v 5epl) repl! 1 otherwise 1/ ij=1,.N

o, forj=v
=NI(N-1) |ZZZdet <d),~, o forj=p *(]5]>

v .
HAY 1 otherwise 1/ ij=1,..N

<¢)n§01*¢v>1 fOl‘j: v

=NV = D)P> > “det| (dppx ¢); for j=p
vty 0y otherwise /..,

The latter matrix is the identity matrix in which the vth column is replaced by
(i, @y * dy)1),— . v and the uth column by ((¢;, @4 * ¢,)1),—;__y- Elimination

yerny

by the jth columns (j ¢ {v,u}) reduces the determinant to the 2 x 2-determinant

<¢va§0a*¢v>l <¢v7@[g*(]§ >1)
det( <¢l“ Py * d)v)l <¢;n QD/)’ * ¢,:>1 ’ (310)

if v < p. In the case v > p, the indices v, u are to be interchanged, but the deter-
minant remains invariant. Finally, the following remark enables a simplification.

Remark 3.3. Since for v = pu the determinant (3.10) contains identical rows, it
vanishes and the summation %", ,, may be changed into Zi\fﬂ:l.

Hence, the part I” takes the form

_ 2 <¢17(P1 ¢v>l <¢v7(p[3*¢> )
I" =N!(N —1)! Zdet( Do s b, <¢w(/’/3*¢i>1 . (3.11)

Remark 3.4. The evaluation of I" requires the computation of 2N* one-dimensional
scalar products (¢, @y * )15 (Dys @p* Pu)1> 1 < v, 0 < N. The summation needs
O(N?) operations.

Together with the results about I’ we obtain the following remark.

Remark 3.5. In the case of k = { =1, the computation of I,.p requires the compu-
tation of O(N?) one-dimensional scalar products of the form {(¢,, @ * ¢y with
¢ = @y Pp, Py ¥ @ and further O(N?) additions. The underlying representation of
Ip is
N

*Oy)1 Dy, @pxP)
Lyg=NI(N—1)P PPk )+ det<¢”’¢“ KA
O UCR I RTEID Y (e

v=1 v,u=1
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In the general case of k > 1 or £ > 1, we are not able to obtain an O(N?) bound
for the computational cost. Instead we shall describe an O(N?3)-algorithm in §4.

3.2.3. Representation of the Scalar Product in the General Case

Let ¢;, @; as in (3.8). In the general case, the factor in (3.7) for fixed o, T € Py takes
one of the following values:

Py PBe forl <o(j) <k, 1 <z(j) <4,

Po(j) * Pr(j) = z:(uj :i (l)'(f) (;(llz? i zg; ; ﬁ (3.12)
1 for a(j) > k,t(j) > .
Here, the important part of the permutation ¢ is the k-tuple
Tr:=0'(1,...,k) == (a7 '(1),...,07 ' (K)), (3.13)
while 7, :=t7!(1,...,¢) contains the essential properties of t. Correspondingly,

we define the subsets

Py(Ti; k) :={o€Py:0a(T;)=(1,...,k)},
PN(TH;Z) = {T € Py: ‘L'(T[]) = (1, ,Z)}

of Py for all k-tuples 7; € {1,...,N}* and all ¢-tuples T, C {1,...,N}". The
summation ZUePN ZTE},N can be replaced by ZT, ZT,, ZaeR\/(T,:k) ZTEPN(T”;Z)’
where the first two sums run over all tuples defined above.

While 7; and 7j; describe tuples (for which the ordering of the components is
essential), the corresponding sets are denoted by M(7;) and M (Ty;):

M(T)) = {iy:v=1,....k} for Ty =(ir,...,ix).

For a complete description, we have to consider all possible intersections of M (7})
and M(Ty). The dimension of the arising determinants is the largest when
M(T;) "M (Ty) = 0. Therefore, we first discuss this case.

Case of M(T;) N M(T;;)=(). Under the condition M (T;) N M (Ty;) = 0, the first case
in (3.12) cannot appear, while the second (third) one occurs for
JE€M(T;)(j € M(Ty)). The fourth case holds for j¢ M(T;) UM(Ty). For fixed
17, Ty, we define the (pairwise different) indices

JUs gk e+ 10, jlk + 4]

by concatenating the k-tuple 7; and the ¢-tuple 7j;. Hence, the j[-]-values are
defined by
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1] = o (k) for 1 <x<k
TE= Ve (k—k) fork+1<wk<k+/

(cf. (3.13)). Again, the determinant in (3.7) is the identity matrix in which all
columns corresponding to the indices j[k], 1 < k < k + ¢, are replaced by

o forl <k <k
i = { (3.14)

Py fork+1 <k<k+/?

where the properties o(j[x]) = k and 7(j[x]) = k — k are used.

As in §3.2.2, the N x N-determinant can be reduced to the format
(k+0) x(k+2):

det({¢9: 00 b)) . (3.15)

Agc=1,....k+/

Note that all information about the basis functions S(Hf;1 ¢,,(x;)) and
S(H.f:] @p,(x;)) (cf. (3.6)) is expressed by the factors w, (k=1,....k + ).

Remark 3.6. The ordering of j[1],. .., jk], jlk + 1],...,jlk + €] or the order in which
the indices A, x in (3.15) take the values 1,... k+{ is arbitrary, since a simulta-
neous permutation of the rows and columns does not change the determinant.

The summation » 7. > 7 > ccp, () 2ocepy (1) Can be replaced by
N=RIN=0! >,

(] [2,--oflk+0))

where the summation is performed over all pairwise different (¢ -+ k)-tuples
G, j120, ..., jlk+ ) € {1,...,NY**. For fixed T; = (j[1],...,j[k]), the deter-
minant does not depend on o € Py(T7; k); hence, the summation over g € Py(T}; k)
can be replaced by the factor (N — k)! = #Py(T1; k). Analogously, the Py(Ty; ¢)-
summation yields the factor (N — £)! = #Py(Ty; £).

As in Remark 3.3, we observe that the determinant (3.15) vanishes if
UI11,712],- - -, jlk + £]) contains at least two equal entries. This allows us to include
also tuples which are not pairwise different and proves the first part of the fol-
lowing lemma.

Lemma 3.7. a) Let w, be defined as in (3.14). The part of 1, . 4,.p,..p, corresponding
to M(T))NM(Ty)=0 (e, the sum (3.7) taken over all o,T € Py with
o ') A1) forall w e {1,...,k}, € {1,...,£}) is of the form
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N

NIV =RIN =01 Y- det(<¢j[,,],wh.*¢j[,{]>l) L 319)

b) Denote the sum Zj‘\[ll],j[ﬂ,m,j[k«r/{]:l det(---) in (3.16) by Dyye(wi, ..., wke). Then

Dyy¢ is a symmetric multi-linear form in w1, ..., 0y, i.e.,
/ /! / //
Dk+[(aw] + ﬂw] Yy war[) = OCDk+€(wl7 B 7wk+f) + ﬁDk+é(w1 PR 7wk+€)
for o, p € C,
D/H_pj(...,CO)N,...,CU,C,...) :Dk+[(...,w,c,...,wz,...).
Its normalisation reads Dy ¢(1,...,1) = N¥,

Proof: The linearity of D;., with respect to each argument follows from its
definition in (3.16). Concerning Dyi¢(..., W5, . @y ...) = Dprg(c o 0y ooy
@,,...) exchange the /Jth and xth rows and columns in det((¢;,, ®w*
@) 1) sw=1.... k10> Which does not change the sign. Since j[4] and j[x] may change

.....

their names without altering Z]j\[/l]?j[Z],m,j[k +g—1 det(---), symmetry is proved. [

Case of #(M(T;) N M(T;;))=1. The sets M (T;) and M(Ty;) are assumed to overlap
by exactly one index, which we denote by b*. Let T; = (j'[1],...,/[k]),
Ty = ('[1],...,7'[f])) and &*:=j[k*] =/"[A"] for some «x*e€{l,...,k} and
2re{l,...,¢}. We order the k + ¢ — 1 elements of M(T;) UM(Ty;) by

G, jlk+€—1])
= (6%, =10, <+, kL, A = 10 A+ 1,0 )

(note that by Remark 3.6 the ordering is not essential).

The summation 3 7. > 7. > cp, (1) 2urepy (1) Under the side condition # (M (7;)N
M(Ty)) = 1 can be written as

(N—k)!(N—é)!zk:zé: :

=1 =1 G2}l e—1])

where the summations over Py(7;;k) and Py(7j;k) are replaced by the factors
(N —k)! and (N — ¢)!. The summation over (j[1],...,j[k+ ¢ —1]) involves all
pairwise disjoint tuples from {1,...,N}*™!. The determinants det({14), Obx,

,,,,,

¢y, *@p, forb=1

Poyy_ for 2 < b < k*
Wp e+ )* = (p% for x* +1 < b < k (317)
P, . fork+1<b<k+i —1

Py fork+ 4" <b<k+(—1.
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The dependence of the factors w on k*, A" is obvious in the case of b = 1. Fur-
thermore, the meaning of j[1],..., j[k + ¢ — 1] depends on x*, 1%, as seen from the
distinction of the cases b<x* and b>«* as well as b<k+1"—1 and
b>k+ 2 —1.

Using again the argument of Remark 3.3, we can also allow tuples
(11,412, - - ., jlk + £ — 1]) which are not pairwise disjoint. This leads to the fol-
lowing result.

Lemma 3.8. a) Let wy, ;- be defined as in (3.17). The part of I, ,,.p,.p, corre-
sponding to tuples Ty, Ty with #(M(T;) "M (Ty)) = 1 is given by the sum

kot N
N!(N — k)N — £)! Z Z | Z det(<¢j[a]awbjc*7/l* * ¢j[b]>1)

ab=1, =1

(3.18)

b) If ¢, ¢y are finite element functions, most of the products ¢, * @z vanish
because of the disjoint supports supp ¢, and supp @;.

In terms of the function Dj.y_; introduced in Lemma 3.7, the sum
N )

Zj[l].j[2],...,j[k+£—1]:1 det(---) in (3.18) equals Dii¢—1(q,,. * (Pﬁz*,(/’wnwfl’ﬁ), where

®,,. and @ are omitted from the list ¢, , ..., ¢g . Because of the symmetry (cf.

Lemma 3.7b), the ordering of (¢, . * @z, @y, .., ¢p,) is arbitrary.

Case of #M(T) NM(Ty)>1. If #M(T;))NM(Ty) > 1, one obtains similar

expression as in (3.16) or (3.18). The determinant is of the format
(k4+€—m) x (k+ ¢ —m), where m := #(M(T;) "M (Ty)).

4. Reformulated Problem

The expressions (3.16) and (3.18) as well as those arising from (2.9) are of the form
D (Y ..., ¥g). In the case of (3.16), we have K := k + £ and ¥, = w, defined in
(3.14), while in the case of (3.18), K:=k+{¢—1 and (Y,...,¥) =
(@a.* Pps Puys- -, @p,) (see sentence following Lemma 3.8).

In the next subsections we fix the K-tuple (Y, ..., k). The required entries of the
determinants are al(-f) =P Yxd) (1<L<SK, 1<4,j<N).

4.1. Basic Problem
The function Dg (Y, ..., ¥x) (with fixed (¥, ..., ¥g)) is redefined in

Problem 4.1. Let N x N-matrices AY) = (aff))lgi’jSN be given for £=1,...,K,

where K < N is a natural number. We abbreviate the K-tuple of matrices by
of = (A", ... 4%, The number to be computed is
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dete(/) = 3 det( ,) e (4.1)

1<iyi,nix<N 0 HPT e

Note that the K x K-determinants involve columns from different matrices A%, It
may happen that some of the matrices A, ..., 4%) coincide, but we will not
exploit this fact.

Remark 4.2. (a) If for some term in (4.1) at least two indices i, coincide (i.e., i, = iy
Jor y#y €{l,...,K}), the determinant has two identical rows (o =1y,y") and
vanishes so that (4.1) is identical to

detg (o Z det ( a;, lﬂ) itk (4.2)

(i151250-1iK)

where the sum is taken over all pairwise different K-tuples (i, ia,...,ig) €
{1,....N}"
(b) For a¥) = (D1, 0p % jip)y (i = jlol,ig = jIB]), the function in (4.2) coincides

ll}

with the expressian (3.16).

(c) For a = (P Op e * Py (i = Jlodsip = J[B]) with fixed x*, 1", we
obtain the sum from (3 18):

Z det(<¢j[“]’ Doy, * ¢j[b]>l)a7b:1,...ﬁk+é—l.

(1402, jlk+0-1))
We always assume that K is small compared with N. The idea is that K remains
fixed, while N — oco. The expression O(-) is understood in this sense.

Since the number of the input data is KN? (>1 = number of output data), we
conclude part a) of

Remark 4.3. a) The lower bound for the complexity of any algorithm computing
detg is O(N?).

b) The direct evaluation of the right-hand side in (4.1) leads to the complexity
O(NX).

.....

Proof: b) By assumption on K, the cost for the evaluation of det(a lﬁ 3/;)1 f1
O(1), while the number of indices 1 < iy, i,...,ix <N amounts to NK.

4.2. Auxiliary Problems A, B
The following auxiliary problem arises. Let .# be the set of k-tuples

I=(ki,...,x) C {1,...,K}k with Ky < -+ < Ky for arbitrary k € {l,...,K}.



52 W. Hackbusch

Except the first component, the k-tuples I € .# are ordered with respect to the size
of their components. Finally, let .7, be the subset of the completely ordered
k-tuples, i.e.,

Jo:={l € J K <K, if k =card(l) > 2}.

The Basic Problem 4.1 will occur for the k-tuples .7 (1) := (A®),... 409, ie.,
det (o7 (1)) is to be computed. This defines the first auxiliary problem.

Problem 4.4 (Problem A). Let I = (ky,...,k;) € Fo and k = card(I). Compute

dee(1) = > det (a“‘/f))% . (4.3)

i
1<iyin,ees ik <N
Besides Problem A we have the following auxiliary task.

Problem 4.5 (Problem B). (a) Let I = (xi,...,x;) € S and 2 <k =card(/) <
K — 1. Further, two indices iy, j; € {l,...,N} are given. Compute

dety(Z;41,/1) = Z det(a%/i)aﬂzl o where jg :=ig for f =2,... k.

1<iy,...ix <N

(4.4)

(b) Compute dety (111, j1) for all iy, j1 € {1,...,N} and all I € J with card(I) = k.

Note that the summation in (4.4) involves the £ — 1 indices iy, ...,i; but not .
The connection of both problems is explained in

Remark 4.6. (@) The Basic Problem 4.1 is the special case detg((1,...,K)) of
Problem A for I =(1,...,K) and k = K.

(b) detk(l) = ZIShSN detk(l; il,il).

(¢) The ordering of the indices iy, . .., i in (4.4) is irrelevant.

4.3. Simultaneous Solution of Problems A and B

We start the induction at k = 2, i.e., with pairs /. The sum in det,(Z; i}, j;) is taken
only over i, €{l,...,N} and therefore needs O(N) operations per
i1, j1 € {1,...,N}. Note that in Problem A the indices i;,/; € {l,...,N} may be
different so that N2 pairs exist. Thus the computation of det,(7; i, j;) for all i, j;
requires O(N?) operations. Due to the relation mentioned in Remark 4.6b, det, (1)
can be obtained by N further additions. This proves the following induction
hypothesis for k = 2:

Problems A and Bb (for induction variable k) require O(N*) operations. (4.5)
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The computed quantities det,(/;,/,) should be stored for all 71,7, € {1,...,N}
together with det, (7). Obviously, this leads to the second hypothesis:

Problems A and Bb require O(N?) storage size. (4.6)

Since K is a constant, the assertions (4.5) and (4.6) hold also if the Problems A,B
are posed for all k-tuples from .#. Since the number of quantities to be computed
is O(N?), the storage size (4.6) follows.

By induction we want to show: If (4.5) holds for £ — 1 < K, then the assertion
hold also for k. By Remark 4.6b, the solution of Problem A is an O(N)-problem as
soon as Problem Bb is solved. Therefore, only Problem B is to be discussed.
Consider the determinant det(a; ), 5y
Expansion by the first column yields

Kp) _ vl (1) Kp)
det( lxj/;> B=1 k_ Z (—1) 1/1 det( l"“”)a:l,..4,0(71‘9£+l,’__7k; =2 k. (47)

AR

Case o = 1 : The summand on the right-hand side has the form (—1)“*%53?*

det(a fff;)aﬂ k= I(IK}I * det(a l('”f;)aﬁ 5.4 since iy =j, for o =2,... k. The

summation 21 i<y from (4.4) leads to

.....

al™) Z det (a(K’-‘))

Laslp

ll jl

where by induction det;_;(/;) is already computed and stored.

Case o> 1: In the following we exploit i, =j,. The f-indices in det
(afffﬂ))a el ks 2.4 MUSt be reordered: In the sequence {2,...,k} of the
B-values the index o is placed at the top position: {a,2,. -1, + ... k}.
This rearrangement of the columns corresponds to a permutatlon With sign (—1)".

Hence,

1 o ( K/f)>
t
(=1 I ) a1t ot L s B2,k

= —det( L ,)

) . (4.9)
b ) a=1,...a—1041,...k; b=02,....0—1a+1,.. k

After the rearrangement the index tuples  (ia),—y  , 1,414 and
I, = (;c;,)b 2 Ul wr1..4 belongs to . If we omit the summatlon over i, in
X<y, ix<N> WE obtain the value det;_(I,;i1,i,) which by induction is already
determined as a part of Problem Bb.
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Combining (4.7), (4.8) and (4.9), we are led to

dete(l;in, 1) = ) det(‘l(m)

iy.jp _
1<iy, .. it <N p=1,...k

=a)edetig () — >0 Y @l wdeti (it iy, (4.10)

0=2,...k 1<i,<N

Obviously, the latter row of this equality can be determined by O(N) operations.
Computing these expressions for all i1, j; € {1,...,N}, the total cost amounts to
O(N?). Hence, assertion (4.5) is proved by induction.

4.4. Solution Process

In Subsections §4.1-4.3, the computation of Dx (¥, ..., ) and of the auxiliary
function Dx (Y, ..., Wg;i,j) for a fixed K-tuple is discussed. Here we sketch the
overall procedure. However, in order to avoid too complicated notations, we
consider only a part of the problem. First, we consider the problem (3.5) char-
acterised by k = £ =2 implying K = 4. The related products ¢,(x1) * pg(x2) of
sparse grid functions belong to the pair of spaces (V;,V;_;) for A=1,...,|L/2].
Similarly, @, (x1)* @s(x2) corresponds to (¥, Vi) for another x € {l,...,
|L/2]}. Second, we fix two values 4,x € {1,...,|L/2]} and assume A < k. Note
that 4 > k does not appear because of symmetry (cf. Lemma 3.7b). If 1 = «,
simplifications are possible (see Remark 4.8a below).

We replace the notation of the basis function ¢, by its index o. The index sets are
Ji (cf. (3.2)). Note that #J, = dim ¥, = b’. Correspondingly, the function det (/)
from Problem A with 7 = (1,2,3,4) is written as

dety (o, B,7,0) = Da(@y, @, @y @5) fora € Jp s, f € Jpy,7 €J5,6 €. (4.11)
The number of cases is #J;_, * #J._ * #J; * #J, = b*.
Due to Remark 4.6b, all det4(a, 8,7, ) can be computed from
dety(a, p,y,0;i,i) forae€J,_),pE€J s,y €J;,0 €, 1 <i <N. (4.12)

Here, dety(o, 8,7, 0;1,i) corresponds to the function dets4(Z;,7) from Problem B.
The number of cases in (4.12) is N x b>~.

The computation of dets(, f5,y,d;i,i) by means of (4.10) requires the data
dets(f,y,6) and

det3(ﬁ,y,5;i,j),de@("/,ﬂ,5;i,j),det3(5,[f,y;i,j) forﬁGJfoaV EJ}.aé GJM 1< la]SN
(4.13)

Since dets(f,y,0) can be obtained immediately from dets(f,y,d;4,i), it is not
explicitly listed in (4.13).
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Remark 4.7. The function detx (o, ...,0x;i,j) is symmetric with respect to the
arguments oy, ... ox (o must be excluded). The corresponding function
Di( @y, -+ @yys 1, J) is multi-linear.

The number of data in (4.13) is 3N2bLH,

Again due to Remark 4.6b, the data in (42) can be computed from dety(y,J),
detz(ﬁ? 5)5 detz(ﬁ7 V) and

detz(v,5;i,j),det2(5,y;i,j),detz(ﬁ,5;i,j),detz(é,ﬁ; i,j)a
deta(B, y;1, ), deta(y, p;i,j) forall fe o,y €J;,0 €, 1 <i,j<N. (4.14)

The number of terms is 2N? x (b*+* + b* + bE=*t4) < 6N2pE. Each value det, can
be computed by O(N) operations.

The solution process would run from the bottom to the top. The quantities are to
be computed in the order (4.14), (4.13), (4.12) and (4.11).

Remark 4.8. a) If k=24, the functions dets(a,p,y,0d;i,i) in (4.12) and
dets(B, v, 0;i,j) in (4.13) are symmetric with respect to y,0 € J,. This fact halves the
number of cases.

b) Another reduction of operations is due to the inclusion Vy; C V1. Assume that one
of the previous (multi-linear) functions is already evaluated on - -- X Vyyy X -+ - L.e.,
detg (..., 0,...) is computed for all o € Jyi\ (and certain arguments at the place of
“...7). Take any B € Jy and note that g € Vi can be written as linear combination
Pp = D ues,., ©ay (usually the number of non-zero terms is O(1)). Then

detg(....B,...) = > w,detg(...,0,...)

o€Jp41

provides a cheap method to evaluate detg in --- X Vy X +--.

4.5. Parallelisation

The major part of the computation time and storage is due to the quantities
det(1;i,7) or dety(...;i,j), respectively, because of the N? different pairs (i, j).
However, the recursion of det,(. .. ; 1, j) is easy to parallelise. Formula (4.10) states
that det,(...;i,-) depends only on dety_;(...;i,-) for the same i € {1,...,N}.
Hence, N processors can be used without communication except finally when the
data from (4.12) (only detg_(...;i,i) for j = i) are summed up to the final results
in (4.11). Then the overall computing time is O(Nb*X + N?b**) in the example
from above. Also the storage is well-distributed among the N processors and
amounts to O(h** + Nb**) per processor.
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