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Abstract

Graph matching and graph edit distance are fundamental concepts in structural pattern recognition. In
this paper, the weighted mean of a pair of graphs is introduced. Given two graphs, G and G', with
d(G, @) being the edit distance of G and G, the weighted mean of G and G’ is a graph G” that has edit
distances d(G,G") and d(G",G') to G and G, respectively, such that d(G,G") + d(G",G') = d(G, ).
We’ll show formal properties of the weighted mean, describe a procedure for its computation, and give
examples.
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1. Introduction

Graph matching is a fundamental technique in structural pattern recognition.
Given a pair of graphs representing an object each, the task considered in graph
matching is to find an optimal assignment of the nodes and edges of one graph to
the nodes and edges of the other graph, where the term optimal means that errors
and distortions in the underlying graph representations are to be corrected. One
approach to error correction is based on graph edit operations. These edit oper-
ations typically include the insertion, deletion, and substitution of nodes and edges.
In order to make the approach more general, a cost is usually assigned to each edit
operation. The costs of edit operations are application dependent and must be
chosen based on knowledge of the considered domain. Typically, the more likely a
particular type of error is to occur, the lower is the cost of the corresponding edit
operation. Given a pair of graphs and a set of edit operations together with their
costs, the edit distance of the two graphs is defined as the minimum cost taken over
all sequences of edit operations that transform one of the given graphs into the
other [1-6]. It is a generalization of the well-known concept of string edit distance
[7] from the domain of strings of symbols to the domain of graphs. Graph edit
distance provides both a similarity measure for two given graphs and an error
correcting correspondence between their nodes and edges. Applications of graph
matching include recognition of graphical symbols [8], character recognition [9,
10], shape analysis [11, 12], three-dimensional object recognition [13], video and
image database indexing [14, 15] and protein determination [16].
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Recently, the generalized median of a set of graphs was introduced [17]. It is
useful for applications where a set of (similar) graphs is to be represented by a
single prototype graph. The generalized median of a set of graphs is defined as a
graph that has the minimum average edit distance to the members of a given set.
In [17] a genetic algorithm for generalized median computation was introduced.
An application of the generalized median to the learning of prototypical symbols
in graphics recognition was described in [18]. The generalized median of a set of
graphs is an extension of a similar concept from the domain of strings, which was
addressed in a series of recent papers [19-24].

In the present paper we propose a modification of the generalized median of a set
of graphs for the case of just a pair of graphs, which will be called the weighted
mean of a pair of graphs. Consider two points in the n-dimensional real space,
x,y € R", where n > 1. Their weighted mean can be defined as a point z such that

z=px+(1-9)y, 0<y<I (1)

Clearly, if y = % then z is the (normal) mean of x and y. If z is defined according to
Eq. (1) then z—x= (1 —y)(y — x) and y — z = y(y — x). In other words, z is a
point on the line segment in n dimensions that connects x and y, and the distance
between z and both x and y is controlled via the parameter 7.

In this paper we describe a concept for the domain of graphs, which resembles the
weighted mean as described by Eq. (1). Given two graphs G and G’ and a number
y, the weighted mean of G and G’ is defined as a graph G”, for which
d(G,G") = (1 —v)d(G,G") and d(G",G’) = yd(G,G’') holds, where 0 <y < 1. We
also introduce a procedure for computing weighted means, describe some prop-
erties of weighted mean, and discuss potential applications.

In the next section, we will introduce our basic notation. Then in Section 3 it will be
shown how the weighted mean of two graphs can be computed based on any of the
known algorithms for graph edit distance computation. Application examples of
the weighted mean will be given in Section 4, and conclusions drawn in Section 5.

2. Definitions and Notations

Some of the following definitions are taken from [5]. The algorithms considered in
this paper work on labeled graphs. Let Ly and Lg denote the set of node and edge
labels, respectively.

Definition 1. A graph G is a 4-tuple G = (V,E, u,v), where

V is the set of nodes

e ECV xV is the set of edges

w:V — Ly is a function assigning labels to the nodes

e v:E — Lgis a function assigning labels to the edges []
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In this definition, the edges are directed, i.e. there is an edge form v; to v, if
(v1,v2) € E. For graphs with undirected edges, we require (v,,v) € E for any edge
(v1,v2) € E. A node v € V is called isolated if there exists no node v/ € V,v' # v,
such that (v,v') € E or (v/,v) € E.

Definition 2. A bijective function f : V — V' is a graph isomorphism from a graph
G= (V,E,u,v) toagraph G' = (V' E (V) if:

o u(v)=pW(f(v)) forallveV

o for any edge e = (v1,v2) € E there exists an edge ¢’ = (f(v1),f(v2)) € E' such
that v(e) =V (¢'), and for any ¢ = (v},v)) € E' there exists an edge
e=(f1(v)),f 1(vh)) € E such that v'(¢') = v(e) O

Graph isomorphism is a useful concept to find out if two objects are the same, up
to invariance properties inherent to the underlying graph representation. How-
ever, real world objects are usually affected by noise such that the graph repre-
sentations of identical objects may not be isomorphic any longer. In order to
model graph distortions, a set of edit operations are introduced.

Definition 3. Given a graph G = (V,E, v, ), a graph edit operation 6 on G is any
of the following:

L. p(v) = 1, vE€ V, I € Ly: substituting the label u(v) of node v by / (for the
correction of node label distortions)

2.v(e) = I', e € E, I' € Lg: substituting the label v(e) of edge e by // (for the
correction of edge label distortions)

3. v — $, v € V: deleting the node v from G (for the correction of missing nodes);
here it is required that v € V' is an isolated node

4. $ — v,v & V:inserting a (new) node in G with label / € Ly (for the correction of
extraneous nodes)

5. e — $, e € E deleting the edge e from G (for the correction of missing edges)

6.8 —>e=(v,n),ed E,v,vy € V:inserting a (new) edge in G with label / € Lg
between two existing nodes v;,v, of G (for the correction of extrancous
edges) [

In order to completely specify the insertion of a node v (an edge ¢), not only the
node (edge) to be inserted, but also the corresponding label / must be given.
Hence, the notation $ — (v,/) and $ — (e, ) may be preferable over $ — v and
$ — e, respectively, for certain applications. In the context of the present paper,
however, the labels of inserted nodes and edges are not important and will not be
explicitly included in the notation.

The six edit operations in Definition 3 are powerful enough to transform any
graph G into any other graph G'. In order to model the fact that certain distor-
tions are more likely than others, each graph edit operation ¢ is assigned a certain
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cost C(0) which is a non-negative real number. The costs of the graph edit
operations are strongly application dependent and must be defined on the basis
of heuristic knowledge.

Definition 4. Given a graph G = (V,E, u,v) and an edit operation J, the edited
graph, 6(G), is a graph 6(G) = (V5, Es, s, vs) With

vu{vl iféo=($—v)
1. V;;—{V{v} ifo=(@w—19)

vV otherwise
EU{e} ifo=(%$—e)
2.Es =< E—{e} ifo=(e—39)

EnN (Vs x V) otherwise

_J! if 6 = (u(v) = 1) or 6 =($ — v)
> palo) = {M(U) i)therwilsle >
4,\;5(6):{1 if5=(v(e)—>l)or5:($_>e)D

v(e) otherwise

Definition 5. Given a graph G = (V,E,u,v) and a sequence of edit operations
A = (01,02,...,0r), the edited graph, A(G), is a graph

A(G) = (... 5,(8,(G))...)

The total cost of the transformation of G into A(G) is given by
C(A) =31, C). O

Edit operations are used to transform a given graph G into another graph G'.
According to Definition 3, the substitution of a node label p(v) (or an edge label
v(e)) requires that v (or e) exists in G. Conversely, the insertion of a node v (or an
edge e) requires that v (or ¢) doesn’t yet exist in G. More severe constraints are
imposed on edge insertions and node deletions. The insertion of an edge (u,v) is
possible only if both incident nodes, u and v, exist in G. Node deletions are defined
for isolated nodes only. If a non-isolated node u is to be deleted from a graph,
then all its incident edges (u,v) and (v, u) need to be deleted prior to the deletion
of u. Similarly, if an edge (u,v) is to be inserted in a graph, but u (or v) doesn’t
exist, then u (or v) must be inserted prior to the insertion of (u,v). As a conse-
quence of these constraints, A(G) may not exist for certain graphs G and certain
sequences A. In the remainder of this paper we’ll consider, for any graph G, only
such sequences of edit operations, A, for which A(G) exist.

A subsequence A’ of a sequence of edit operations, A = dy,. .., &, is obtained from
A by deleting i edit operations where 0 < i < k. Only such subsequences A’ will be
considered, for which A'(G) is defined. For example, if §; and §; denote the insertion
of node u and v, respectively, and J; the insertion of edge (u,v), where i < j < &,
then dropping 6; or §; from A without dropping d; will result in a sequence A’ for
which A'(G) is undefined. Similarly, if §;,,...,d; denote the deletion of all edges
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incident to node u, and J; denotes the deletion of u, where ij,...,i, < j, then
dropping any of the d;, without dropping d; will result in a sequence A" such that
A'(G) is undefined. Next we combine the concepts of edited graph and graph
isomorphism into the concept of error correcting graph isomorphism.

Definition 6. Given two graphs G and G, an error-correcting graph isomorphism
(ecgi) @ from G to G’ is a 2-tuple ¢ = (A, fa) where A is a sequence of edit
operations and f is a graph isomorphism from A(G) to G'.

The cost of an ecgi ¢ is the cost of the edit operations in A, i.e. C(@) = C(A). It is
easy to see that there is usually more than one sequence of edit operations A such
that there exists an isomorphism fx from A(G) to G’ and, consequently, there is
usually more than one ecgi from G to G'. For the distance measure defined in the
following, we are particularly interested in the ecgi with minimum cost.

Definition 7. Let G and G’ be two graphs. The graph edit distance from G to G,
d(G, @), is given by the minimum cost taken over all ecgi’s ¢ from G to G

d(G,G) = mAin{C(A)|q) = (A, fa) is an ecgi from G to G'} [

An ecgi ¢ = (A, fa) with d(G,G") = C(A) is also called an optimal ecgi from G
to G

Lemma 1. Let G, G’ and G” be graphs. Then
d(G,G") <d(G,G)+d(G,G") (2)

Proof: Let ¢ = (A, fa), @' = (A, f3) and ¢” = (A", f{) be optimal ecgi’s from G
to G”, Gto G, and G’ to G”, respectively. Consider the sequence A = (A', A”), i.e.
the concatenation of A" and A”. Clearly A is a sequence of edit operations that first
edit G into a graph that is isomorphic to G, and then edit this graph into a graph
that is isomorphic to G”. Hence A is a sequence of edit operations that transform
G into a graph that is isomorphic to G”. Let f; denote the corresponding graph
isomorphism from A(G) to G". Clearly, ¢ = (A, f3) is an ecgi from G to G", which
has cost C(A) = C(A’) + C(A"). Because of the optimality of ¢, we conclude
C(A) < C(A') + C(A"), which implies the assertion. []

In the remainder of this paper we’ll assume that
C(9) < C(¢') +€(3") (3)
for any three edit operations, where &' followed by 8" has the same effect as 4, i.e.

8'(8"(G)) = 6(G). This is not a real restriction because in the computation of
d(G,G") we are searching for a sequence of edit operations with minimum cost.
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Hence if Eq. (3) is not satisfied by any special triple 6,6 and &”, we can always
change the cost such that C(6) = C(¢') + C(8") without affecting d(G, G').

As already mentioned in the introduction, many algorithms are known from the
literature for the computation of d(G,G’). Any of those can be used in con-
junction with the methods discussed in the remainder of this paper.

3. Weighted Mean Graph Computation

In this section the weighted mean of a pair of graphs will be formally introduced,
and a procedure for its computation developed.

Definition 8. Let G and G’ be graphs

a) The mean of G and G’ is a graph G” such that
d(G,G")=d(G",G) and (4)

d(G,G) =d(G,G")+d(G",G) (5)
b) The weighted mean of G and G’ is a graph G” such that

d(G,G")=a and (6)

d(G,G') = 2 +d(G",G) (7)

where 0 < o < d(G,G') is a constant. []

According to this definition, a mean G” has the same edit distance to G and G’ and
is — intuitively speaking — a graph ‘centered between’ G and G'. Egs. (4) and (5)
are special cases of Egs. (6) and (7) if a=d(G",G') or, equivalently,
o =1-d(G,G). In the introduction it was stated that for the weighted mean G” of
G and G the equations d(G,G") = (1 —v)d(G,G') and d(G",G") =yd(G,G")
hold, where 0 < y < 1. Obviously, this is equivalent to Egs. (6) and (7) if we let
o= (1—-17)d(G,G). In the rest of the paper we will always use Egs. (6) and (7).

It is to be noted that the weighted mean of two graphs is usually not unique.
Consider, for example, the graphs G and G’ shown in Fig. 1. If we assign a cost
equal to one to each of the edit operations of Def. 3, then d(G, G') = 4 (resulting
from two node and two edge insertions). Let o = 2. Then both G| and G; in Fig. 1
are a weighted mean, as d(G, G,) =d(G, G,) =d(G,,G) =d(G,,G) = 2.

Next we turn to the computation of weighted mean. Consider graphs G and G’
and let 0 be an edit operation of an optimal ecgi ¢ = (A, fa) for computing
d(G,G"). If we apply 0 to G then we obtain a new graph G”. Obviously,
d(G,G") = C(0) as o transforms G into G”, and any other combination of edit
operations that also transform G into G” must have a cost ¢’ > C(6) because of

Eq. (3).
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A B A C
G: @ G’ @—»®<—@
B A A C
G,: @—D G,: W=—=3)

Figure 1. Four graphs, G,G', G| and G,. The numbers inside the circles are the node identifiers, i.e.,
they denote elements of V, while the letters next to the circles are node labels. There are no edge labels
in this example

(x2,y2)
D = \\\Dn
’ D21\\\\\\
(ur,vy) (uz,v2)

Figure 2. Graphical illustration of substitution cost Dy = Dy; + Dj2, D, = Dy + D2 (see text)

Now consider the edit distance d(G”, G') between G” and G'. Clearly, d(G",G’)
can’t be larger than d(G, G") — C(J) because if we take the sequence A and drop
edit operation § we get a sequence of edit operations that transforms G” into &,
and this sequence has cost d(G, G') — C(9). But there could exist another sequence
of edit operations that also transforms G” into G’, and has a cost smaller than
d(G,G") — C(9). Actually, it is easy to show that such a sequence does not exist.
Assume that d(G”,G") < d(G,G') — C(9). Because d(G, G") = C(9) it follows that
d(G",G) < d(G,G") —d(G,G"). But this is a contradiction to Eq. (2). Hence we

have proven the following lemma.
Lemma 2. Let G and G’ be graphs, ¢ = (A, fa) an optimal ecgi from G to G', é an
edit operation of A and o = C(J). Then we can construct a graph G” for which
Egs. (6) and (7) hold. [

Next we show an extension of this lemma to the case where we apply not a single,
but a whole sequence of edit operations to derive graph G”.

Lemma 3. Let G, G’ and ¢ = (A, f5) be the same as in Lemma 2 and A" a sub-
sequence of A. Furthermore let oo = 5., C(9). Then we can construct a graph G”

for which Egs. (6) and (7) hold.

Proof: 1f we apply all edit operations of A’ to G, we obtain a graph G” such that
d(G,G") < a, because A’ has cost « and transforms G into G”. Furthermore,
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d(G",G') <d(G,G') — « because if we drop all edit operations belonging to A’
from sequence A, we get a sequence of edit operations with cost d(G, G') — o, and
this sequence transforms G” into G'. There cannot be any cheaper sequence for the
transformation of G” into G, because from d(G",G') <d(G,G)—oa and
d(G,G") <a it follows that d(G",G") <d(G,G)—d(G,G"). But because of
Eq. (2) it must be d(G",G)=d(G,G')—d(G,G"). Hence d(G,G") =a and
d(G",G) =d(G,G) —a. [

Lemma 3 suggests the following computational procedure. To compute a weighted
mean of two graphs G and G’, we first compute their edit distance d(G, G’). From
the optimal edit sequence A, we may select any subsequence A’ of edit operations
and apply them to G. This results in a graph G”, for which Egs. (6) and (7) hold
with o being equal to the cost of the edit operations of subsequence A’.

Now we turn to an extension of Lemma 3 to the case of decomposable edit
operations. We call an edit operation 0 decomposable into ¢ and 9, if there exist
edit operations d; and J, such that the application of §; followed by J, always
results in the same graph as the application of 9, i.e. 02(01(G)) = 6(G) for any
graph G, and C(9) = C(d,) + C(d,). We write 6 = d; o d, if d is decomposable into
01 and 0. If 6 = 0; 0 0, then §; is called a partial realization of 6. If we allow
identical node substitutions u(v) — ! with u(v) =1 and identical edge substitu-
tions v(e) — I’ with v(e) = I’ and set the cost of identical substitutions equal to
zero, then any edit operation is in fact decomposable. A decomposition 6 = d; o 9,
where either §; or J, is an identical substitution is called a trivial decomposition.
Decomposable edit operations including non-trivial decompositions are useful, for
example, in domains where node and edge labels represent numerical quantities,
such as lengths of line segments or distances of points in the image plane.

Let G and G’ be graphs and 6 be an edit operation of an optimal sequence A for
computing d(G,G’). Let 6 be decomposable into J; and 5, i.e. d = J; 0 d, and
C(0) = C(01) + C(92). If we apply edit operation ; to G, we obtain a graph G”.
Clearly, d(G,G") = C(d,). To edit G” into G’, we apply all edit operations of A to
G", except for 6, which is replaced by J,. Hence d(G",G') <d(G,G') — C(d)+
C(02). Because C(9) = C(d1)+ C(d2), we conclude d(G",G')<d(G,G)—
C(6,) =d(G,G)—d(G,G"). But because of Eq.(2) it must be actually
d(G",G") =d(G,G) — d(G,G"). This result can be summarized as follows.

Lemma 4. Let G, G’ and ¢ = (A, fa) be the same as in Lemma 2. Furthermore let
0 = J1 0 J; be a decomposable edit operation of A and « = C(d,). Then we can
construct a graph G” for which Egs. (6) and (7) hold. [

Moreover, we can extend this result in the following way.

Lemma 5. Let G, G’ and ¢ = (A, fa) be the same as in Lemma 2. Furthermore, let
A = (81,...,0;) be a subsequence of A, where each J; is decomposable, i.c.
Si=00d/,1<i<land o=, C(5)). Then we can construct a graph G” for
which Egs. (6) and (7) hold.
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Proof: The proof is similar to that of Lemma 3 and 4. If we apply all edit oper-
ations d; to G, we get a graph G” such that d(G, G") < «. Furthermore, d(G”,G') <
d(G,G) — Y, C(8:) + Y1, C(8]) = d(G,G) = 31, C(8) = d(G,G) —a <
d(G,G") —d(G,G"). Because of Eq. (2) we actually conclude d(G,G") = o and
d(G",G)=d(G,G)—a [

Lemma 5 is an extension of Lemma 3 in the following sense. From an optimal
sequence of edit operations for the computation of d(G, G’), we may select any
subsequence A’. Next each edit operation is replaced by one of its partial real-
izations (notice that such a partial realization may be identical to the considered
edit operation or it may be an identical substitution). The resulting sequence of
edit operations is applied to G, yielding a graph G” for which Eqgs. (6) and (7)
hold, with « being equal to the cost of the applied edit operations. Because the
sequence of edit operations applied to G may include identical substitutions,
Lemma 3 is a special case of Lemma 5. Also Lemmas 2 and 4 are special cases,
where sequence A’ is of length one. In Section 2 it was pointed out that for any
given graph G only sequences of edit operations, A, will be considered for which
A(G) exists. This condition applies in particular to any sequence A’ that is derived
from another sequence A by replacing edit operations by a partial realization. As
an example, assume that the cost of deleting an edge e = (u,v) with label / is
equal to the cost of substituting / by I’ and subsequently deleting e with label 7'.
Then in a sequence A that contains the deletion of e with label /, followed by the
deletion of u or v, we must not replace the deletion of / by the substitution of / by
I, because this would violate the condition that only isolated nodes can be
deleted.

Lemma 5 implies a procedure for constructing, for given G and G, graphs G”
for which Egs. (6) and (7) hold true. We can ask, conversely, if there is any
graph G” fulfilling Egs. (6) and (7) that cannot be constructed according to
Lemma 5. The answer to that question is negative, as we will show in the
following.

Consider graphs G, G’ and G” such that d(G,G') = d(G,G") +d(G",G). Let A,
be an optimal sequence of edit operations for computing d(G, G"). Similarly, let
A, be an optimal sequence of edit operations for computing d(G”, G’). Then
C(A)) =d(G,G") and C(A;) = d(G",G). If we concatenate sequences A; and A,
we get A = (A, A;). Obviously, A is a sequence of edit operations that transform
G into G' with cost C(A)=C(A))+ C(Ay) =d(G,G") +d(G",G'). Because
d(G,G") =d(G,G")+d(G",G") we conclude C(A)=d(G,G"). Hence A is an
optimal edit sequence for computing d(G, G'). We notice that A; is a subsequence
of A in the sense of Lemma 5. Hence any graph G” that fulfills
d(G,G') =d(G,G")+d(G",G") can be constructed according to the procedure
implied by Lemma 5. This result, together with Lemmas 2 to 5 can be summarized
as follows:

Theorem 1. Let G, G’ and G” be graphs and A an optimal sequence of edit
operations for computing d(G,G'). Then d(G,G") =d(G,G") +d(G",G') if and
only if G” is obtained from G by the following procedure:
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1. Select a subsequence A" of A.

2. Replace each edit operation of A’ by a partial realization (some or all of these
partial realizations may be identical to the original edit operations or may be
identical substitutions), resulting in sequence A”.

3. Apply the sequence of edit operations A” obtained in step 2 to G, resulting in
graph G”.

For any graph G” obtained under this procedure, o = C(A") = d(G, G"), where o
corresponds to Egs. (6) and (7). [

As a final remark in this section we want to point out that any weighted mean G”
of graphs G and G’ is a generalized median in the sense of [19]. The generalized
median of a set of graphs, S, is a graph that has the minimal average edit distance
to all members of S. Consider the case S = {G, G'}. Clearly, any weighted mean
G’ minimizes the average edit distance to G and G’, because d(G,G")+
d(G",G') =d(G,G') and there cannot be any other graph G with d(G,G)+
d(G,G') < d(G,G") because of Eq. (2). Notice in particular that for « = 0 and
o =d(G,G") (see Egs. (6) and (7)) we obtain G” = G and G” = @', respectively,
which means that both G and G’ are a generalized median of S. Hence, we can
conclude that for any pair of graphs, G and G, there exists always a generalized
median, and any generalized median G” is a weighted mean with « = d(G, G").
Notice that these properties hold true for both finite and infinite sets of node and
edge labels.

4. Application Examples

In this section we will show a few examples of weighted mean graph computation.
In the examples, graph representations of drawings consisting of straight line
segments will be considered. There is no standard way of transforming a line
drawing into a graph representation. As a matter of fact, many different repre-
sentations have been described in the literature [2, 5, 26-28]. The suitability of a
particular graph representation depends on a number of factors, for example, on
desired invariance properties of the pattern representation, or the type of expected
errors. In the examples shown in this section two different graph representation,
called R1 and R2, will be used.

Under representation R1, each straight line segment in a drawing is represented
by a node in the corresponding graph. Each node has the pair of coordinates of
the two endpoints of the corresponding line segment, ((x1,1), (x2,)2)), as label.
The order of the endpoints is arbitrary. As all information about a line drawing is
captured in the nodes and their labels, no edges are needed in representation R1.
Consequently, only edit operations on nodes have to be considered. The costs of
these operations are defined as follows:

e node insertion and deletion cost

CU((¥1,31), (¥2,32)) — &) = €& — ((x1, 1), (12,32))) = /(81 = %2)° + (1 = 92
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(3.5

((1.1),3.5))
((3.5).(5.1))
® ((1.3).(5.3)

(1,1) (5,1)

a) b) )

Figure 3. An example of graph representations R1 and R2; a original figure; b representation R1;
¢ representation R2

e node substitution cost

C(((x1,1), (x2,32)) = ((ur,v1), (u2,v2))) = p-min(Dy, D;) where

Dy =Dy, + D= \/(xl —u) + O — )+ \/(xz —w)* + (n —u)?

Dy =Dy + Dy = \/(Xl —w) + (1 — )+ \/(xz —u)) 4 (o —u)?

Thus the cost of a node insertion and deletion is equal to the length of the affected
line segment. For a graphical illustration of the substitution cost see Fig. 2. The
cost of a node substitution is proportional to the sums of the Euclidean distances
of the two pairs of endpoints of the affected line segments. As the order of the two
endpoints of a line segment is arbitrary, the minimum of D; and D; is taken. The
constant f§ is a weighting factor that controls the node substitution cost relative to
the cost of a node insertion or deletion.

An example of graph representation R1 is shown in Fig. 3'. Under graph rep-
resentation R1 and the cost of the edit operations given above, an optimal ecgi is
an assignment of the line segments represented by one graph to the line segments
represented by the other graph in such a way that the length, the rotation angle,
and the geometric adjacency of the end points is maintained as closely as possible.
However, it will not be attempted to maintain topological relationships between
corresponding pairs of line segments, for example, the intersection of a pair of line
segments, or the coincidence of endpoints.

' The fact that graphs under representation R1 do not have edges does not result in a significant
simplification of the task of finding an optimal ecgi. A minor simplification comes from the fact that no
edit operations on edges need to be considered. But for finding the mapping fa in the pair ¢ = (A, fa)
still all possible assignments from any subset of nodes of the one graph to all subsets of equal size of the
other graph need to be considered.
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Under representation R2, a node in the graph corresponds to an endpoint of a line
segment or a point of intersection between two line segments, and edges represent
lines that connect two adjacent intersections or end points which each other. The
label of a node represents the location of that node in the image. There are no
edge labels. The cost of the edit operations under R2 are defined as follows:

e node insertion and deletion cost
C((X,y) - 8) = C(S - (X,y)) = ﬂl

e node substitution cost

Cl(w1,m) — (12,32)) = /(81 —x2)” + (1 — )’
e cost of deleting or inserting an edge e
Cle—e)=C(e—e)=p,

The cost of a node substitution is equal to the Euclidean distance of the locations
of the two considered nodes in the image, while the cost of node deletions and
insertions, as well as edge deletions and insertions, are user defined constants, f5;
and f3,. As there are no edge labels, no edge substitutions need to be considered.

An example of the representation R2 is shown in Fig. 3c. Using graph repre-
sentation R2 and the cost function introduced above, an optimal ecgi will be an
assignment of line segments in such a way that the Euclidean distance between
corresponding end points and points of intersection, as well as the topology of the
two line drawings, is preserved to the maximum possible degree.

Given two line drawings and their graph representations, G and G, the algorithm
described in [17] is applied to compute the edit distance d(G, G’). It is an optimal
algorithm based on a best-first search procedure. If there are several optimal edit
sequences A one is randomly chosen. Then for a given value of « (see Eqgs. (6) and
(7)), a subsequence of edit operations or their partial realizations are selected from
A, the cost of which approximate « as closely as possible. These edit operations
are then applied to G, resulting in a weighted mean according to Theorem 1.

Figure 4 shows five instances of character F. In this example, graph representation
R1 has been used. The first and last character correspond to G and G’ in Egs. (6)
and (7), while all other characters G correspond to G” for increasing values of
a=1%-d(G,G),i=1,2,3. It can be clearly observed that with an increasing value
of o the characters represented by the weighted mean graph, G/, become more
similar to G'. Figure 5 shows another example using graph representation R1.

Under R1 no explicit information about the topology of a line drawing is
maintained. In the computation of d(G, G') the graph matching algorithm assigns
a line segment / in G to a line segment !’ in G’ taking only spatial proximity of
their end points into regard. Hence it is not attempted to preserve the connectivity
of the line segments. By contrast, under R2 both topological relations and spatial
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G G’l’ G’Z’ G’3’ G,

Figure 4. Sequence of weighted means for varying values of « using graph representation R1

G G’l’ G’z’ G’S’ G’

Figure 5. Sequence of weighted means for varying values of o using graph representation R1

G G’]’ G72’ G’39 G’

Figure 6. Sequence of weighted means for varying values of « using graph representation R2

proximity are maintained. The example of Fig. 4 using graph representation R2 is
shown in Fig. 6. Intuitively speaking, in the transition from G to G’ the system
moves the nodes of G towards their corresponding location in G’ with the edges

behaving like rubber bands that adjust their length according to the location of
the node.

In the examples considered until now, the line drawings corresponding to G and
G’ consist of the same number of strokes, which results in the number of nodes
and edges in G and G’ being identical. Consequently, no deletions and insertions
are needed to derive any of the weighted mean graphs shown. By contrast, G and
G’ in Fig. 7 consist of 3 and 4 nodes, respectively. Figure 7 is based on graph
representation R1. Hence one node insertion is needed for the transformation of
G into G'. This insertion occurs in the step from G to G{. Additionally, the lower
part of the vertical stroke in character F has been slightly tilted so as to make it
more similar to its corresponding stroke in character E. In G the lower part of the
vertical stroke in F has been completely aligned with the corresponding line
segment in E. Additionally, the horizontal stroke in the middle has been aligned.
In G edit operations involving 75% of the total cost of transforming G into G’
have been applied to G, resulting in a shape that is identical to £ up to the
horizontal stroke, on top. Finally, applying all edit operations results in G'.
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T - F

G G’l’ G’z’ G’3’ G7

Figure 7. Sequence of weighted means for varying values of o using graph representation R1; The two
graphs G and G’ represent line drawings of different letters

G G’]’ G92’ G’37 G’

Figure 8. Sequence of weighted means for varying values of « using graph representation R2; The two
graphs G and G represent line drawings of different letters

Figure 8 shows the same example under graph representation R2. Now G consists
of 5 nodes and 4 edges, while in G’ we have 6 and 5 nodes and edges, respectively.
Hence one node and one edge must be inserted when transforming G into G'. The
node and edge insertions occur in the step that leads from G to G}. The changes
occurring in the following sequence, G5, G5 and G, are similar to Fig. 7.

5. Conclusions

In this paper the weighted mean of a pair of graphs was introduced. The weighted
mean of G and G’ is a graph, G”, that has given edit distances o and d(G,G’') — o
to G and G, respectively, where 0 < o« < d(G, G'). Hence a weighted mean of a
pair of graphs resembles the weighted mean of a pair of numbers or vectors in the
n-dimensional real space, with o controlling the degree of similarity of G to G'. A
number of theoretical properties of weighted mean were studied. Also a procedure
for weighted mean graph computation was given. It was shown that this proce-
dure is correct and complete. That is, any graph G” that is generated for a given
pair of input graphs, G and G, is in fact a weighted mean of G and G’ and,
conversely, there does not exist any weighted mean of G and G’ that cannot be
generated by the given procedure.

The generalized median of a set of symbolic structures has received some attention
recently. The weighted mean of a pair of graphs is a concept that is closely related
to the generalized median. In fact, the set of weighted means is identical to the set
of generalized medians for any two given graphs, G and G'.

From the domain of line drawing analysis, a number of practical examples of
weighted mean graph were given. These examples demonstrate that weighted
mean is a useful concept to synthesize patterns G” that have certain degrees of
similarity to given patterns G and G'. In the examples the intuitive notion of shape
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similarity occurs to correspond well with the formal concept of graph edit dis-
tance.

As a further remark we want to point out that there are a number of well
established procedures in statistical pattern recognition where a given pattern
x € R” is to be changed so as to make it more similar to another pattern y € R".
An example is self-organizing map [25], where the following formula is applied:
x:=x + o(y — x). Obviously, this is very similar to weighted mean graph com-
putation as considered in this paper, because it is an operation that changes x so
as to make it more similar to y. Consequently, the procedure introduced in this
paper makes it possible to transfer the concept of self-organizing map from the
n-dimensional real space to the domain of graphs. Further examples of proce-
dures from statistical pattern recognition that become applicable in the domain of
graphs through weighted mean graph computation include vector quantization
and learning vector quantization [25].

The actual application of self-organizing feature map, vector quantization, or
learning vector quantization in the domain of graphs will be subject to future
research. Additional questions for future research include the generalization of
weighted mean computation from two given graphs to sets consisting of n > 2
graphs.

The results of this paper make heavily use of the triangular in Eq. (2), which
follows from the fact that edit costs are additive and edit distance is defined as
the minimum cost taken over all possible transformations from G to G'. In
particular, the results do not make any assumptions on the type of the under-
lying graphs. An interesting topic for future research may be the problem of
weighted mean computation of objects in metric spaces more general than
graphs.
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