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Abstract

The mosaic-skeleton method was bred in a simple observation that rather large blocks in very large
matrices coming from integral formulations can be approximated accurately by a sum of just few rank-
one matrices (skeletons). These blocks might correspond to a region where the kernel is smooth
enough, and anyway it can be a region where the kernel is approximated by a short sum of separable
functions (functional skeletons). Since the e�ect of approximations is like that of having small-rank
matrices, we ®nd it pertinent to say about mosaic ranks of a matrix which turn out to be pretty small
for many nonsingular matrices.

On the ®rst stage, the method builds up an appropriate mosaic partitioning using the concept of a tree
of clusters and some extra information rather than the matrix entries (related to the mesh). On the
second stage, it approximates every allowed block by skeletons using the entries of some rather small
cross which is chosen by an adaptive procedure. We focus chie¯y on some aspects of practical im-
plementation and numerical examples on which the approximation time was found to grow almost
linearly in the matrix size.

AMS Subject Classi®cations: 65F05, 65F30, 65F50.

Key Words: Matrix approximation, low-rank matrices, mosaic ranks, mosaic block partitioning,
integral equations, asymptotically smooth functions.

1. Introduction

The mosaic-skeleton method [22, 23] was bred in a simple observation that rather
large blocks in very large matrices coming from integral formulations can be
approximated accurately by a sum of just few skeletons (some say dyads or rank-
one matrices). These blocks might correspond to a region where the kernel is
smooth enough, and anyway it can be a region where the kernel is approximated
by a short sum of separable functions (in other words, functional skeletons).
From a historical point of view, we may note that the earliest mention of low-rank
blocks in dense matrices we are aware of was made in [27] (yet in the context
entirely di�erent from ours).

The mosaic-skeleton approximations are easy to result in fast approximate ma-
trix-vector multiplication algorithms close by nature to those of multipoles [11,
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16, 17, 20, 21], panel clustering [13], interpolation [2, 3, 18], and, to some extent,
wavelet-based approaches [1, 14] (we apologize for not mentioning here many
other important works related to these utterly topical ®elds). All the said tech-
niques involve some hierarchy of interface regions and function approximants.
What the mosaic-skeleton method di�ers in from others is a matrix analysis view
on largely the same problem. Such a view can be very useful due to the generality
of matrix theory approaches. Since the e�ect of approximations is like that of
having small-rank matrices, we ®nd it pertinent to say about mosaic ranks of a
matrix which turn to be pretty small for many nonsingular matrices.

From a practical point of view, the mosaic-skeleton method is the only one that
works explicitly with the entries of a matrix. It is crucial that it works only with a
small part of the entries. These are entries of some cross in every block allowing
for a low-rank approximation. First of all, we need to ®nd the list of such blocks
(and other blocks as well). On this stage, we fall back to the concept of a tree of
clusters due to Hackbusch and Novak [13]. Further development of this concept
was recently presented in [12]. Apart from the entries, however, we need some
extra information related to the mesh. In this sense, I rather like to say that we
discuss a grey box solver, in contrast to black box solvers, for large dense un-
structured matrices (T. Chan told me that he already used this term, luckily in the
same sense).

The ®rst stage of the method is discussed in Section 3. Then, in Section 4, we get
to the second stage where (allowed) blocks are to be approximated by skeletons. It
is done using the entries of some rather small cross in the block. Since only a part
of the whole block is involved, we call the approach an incomplete cross ap-
proximation. The cross is selected by an adaptive procedure involving more (yet
not many) rows and columns step by step. On the whole, the procedure is inspired
by the concept of maximal volumes which is of tremendous value in the
approximation theory and now adopted to matrix approximation problems.
In Section 5, we present numerical examples showing that the solution time
depends almost linearly on the matrix size.

In spite of our intention to focus here only on practical aspects, in the next section
we begin still with a brief discussion why and when mosaic ranks appear to be
small. We discuss estimates on mosaic ranks with a special stress on some im-
portant assumptions worthy to be put explicitly (though it is not the case in many
papers on compression strategies). We also present some relations between mosaic
ranks of matrices and their inverses.

2. Mosaic Ranks

Consider a matrix A of size m� n, and let Ak be a submatrix which is mk � nk.
Denote by P�Ak� a matrix of the same size as A with zeroes in the positions that
are not occupied by Ak. A ®nite set of submatrices Ak is called a covering of A if
A �Pk P�Ak�, and a mosaic partitioning if the submatrices have no common
entries. If Ak is of rank rk, then Ak is a sum of k skeletons (rank-one matrices), and
the memory for retaining Ak is mem �Ak� � minfrk�mk � nk�;mknkg: The mosaic
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rank associated with the given mosaic partitioning is de®ned as [23]
mr�A� �Pk mem�Ak�=�m� n�: If m � n and A is of rank r, then we can store A
using only 2rn memory cells. The same holds true if A is a nonsingular matrix and
r is its mosaic rank.

We are also interested in the case when Ak are approximated by matrices ~Ak of
rank rk with relative accuracy e. If the Frobenius norm is used, then
jjAÿPk P� ~Ak�jjF � e jjAjjF : In such cases, we consider approximate mosaic ranks
(e-ranks). Further on, if A denotes the whole coe�cient matrix in the Galerkin or
collocation methods, then m � n.

Very large nonsingular matrices coming from integral equations are usually dense
and unstructured. Nevertheless, they may be approximated by matrices of low
mosaic rank.

For example, consider two typical single layer potential equations related to the
Dirichlet boundary value problems for the Laplace (Dw � 0) and Helmholtz
(�D� k2�w � 0) equations in two dimensions. The ®rst one is

ÿ 1

2p

Z
@X

log jxÿ yjU�y�ds�y� � F �x�; x 2 @X; �1�

and the second is

i

4

Z
@X

H �1�0 �Kjxÿ yj�U�y�ds�y� � F �x�; x 2 @X; �2�

here ds�y� is the arclength element (theory is especially simple if @X is an in®nitely
smooth closed curve cutting the plane into two parts, but more general curves are
treated as well in practice). The kernels for the equations are the fundamental
solutions for the Laplace and Helmholtz equations in two dimensions. H �1�0 is the
Hankel function of order 0 of the ®rst kind. We assume that X is such that (1) and
(2) have only trivial solution in case F �x� � 0.

Let @X be an ellipse with half-axes a � 1 and b � 0:5. We use the Galerkin
method with piecewise constant functions. Let us see how approximate mosaic
ranks behave as n increases. In Table 1, there are results computed for Eq. (1)
with e � 10ÿ4. We also output the compression factor which is the total memory
(that would have been needed to keep the original matrix) over the memory used
to keep skeletons of the mosaic approximations. In Table 2, there are results
computed for Eq. (2) with e � 10ÿ3; here K � 1 and the ellipse parameters are
a � 1 and b � 0:25.

As is seen from Table 1, in matrix-vector multiplications we can work with the
nonsingular matrix of order n � 32768 as if its classical rank were about 106. It is
equal to say that the memory used is equal to 0:65 of n2.

Table 1. Mosaic ranks for the logarithmic-kernel equation

Matrix order 512 1024 2048 4096 8192 16384 32768
Mosaic rank 63.46 71.49 78.46 86.84 93.60 100.84 107.10
Compression factor 24.79% 13.96% 7.66% 4.24% 2.29% 1.23% 0.65%
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An important observation from the tables is that the compression factor becomes
about twice smaller as n increases twice. This means that the memory and
arithmetic work for the matrix-vector multiplication manifest about linear
behavior in n.

It is important to understand why and when this is the case. On the whole, it is
su�cient to do this for matrices of the form

An � �f �xin; yjn��; 1 � i; j � n;

where f �x; y� is a function of x and y from a bounded region S in the l-dimen-
sional space, and xin and yjn are the nodes of some meshes.

Assumption 1. Let f be asymptotically smooth in the sense that there exist c; d > 0
and a real number g such that, for x 6� y and all integer p � 0,

j@pf �x; y�j � cpjxÿ yjgÿp �3�

where

cp � cdpp!: �4�

Here, @p is any p-order derivative in y � �y1; . . . ; yl�:

@p � @

@y1

� �i1

� � � @

@yl

� �il

; i1 � � � � � il � p:

Assumption 2. Let the meshes be quasi-uniform in the sense that there are positive
constants c1 and c2 such that

c1
mes S0

mes S
n � sn�S0� � c2

mes S0

mes S
n;

where S0 is any subregion of S and sn counts how many nodes of the mesh with n
nodes fall into S0, and mes is the Riemann measure (thus, S and S0 are assumed
measurable; we could con®ne ourselves to those S0 which are intersections of a
®nitely many cubes with S).

Theorem 1. [23] Under Assumptions 1 and 2, for any d > 0 there are splittings
An � Tn � Rn where

Table 2. Mosaic ranks for the Hankel-kernel equation

Matrix order 256 512 1024 2048 4096
Mosaic rank 46.08 53.76 61.44 71.68 81.92
Compression factor 36% 21% 12% 7% 4%
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mr Tn � O�logl�1 n�; jjRnjjF � O�nÿd�: �5�

Note that the concept of asymptotical smoothness in the sense of (3) was intro-
duced by Brandt [2]. However, any proof for compression strategies would be
incomplete if we do not say how cp may grow in p. Thus, (4) should be regarded as
an essential complement to (3). (It appeared explicitly, likely ®rst, in [23].)

Theorem 1 can be generalized in several ways. First of all, we can substitute
Assumption 1 with the following.

Assumption 10. Assume that for any y0 there are a�p� functions ui�x; y0� and
vi�y; y0� such that, whenever jjy ÿ y0jj < jjxÿ y0jj,

f �x; y� �
Xa�p�
i�0

ui�x; y0�vi�y; y0� � Ep; �6�

where

jEpj � b�p� jjy ÿ y0jj
jjxÿ y0jj
� �p

: �7�

Moreover, for some positive c, d, and c,

a�p� � c pc; b�p� � c dp: �8�

Theorem 2. Under Assumptions 10 and 2, for any d > 0 there are splittings
An � Tn � Rn where

mr Tn � O�logc�1 n�; jjRnjjF � O�nÿd�: �9�

We omit the proof because, on the whole, it would repeat part of the proof from
[23].

In comparison with Theorem 1, the new formulation has at least two advantages.
First, with some special expansions other than the Taylor series, it might be proved,
sometimes, that c < l, and this leads to a ®ner estimate. Second, some oscillatory
kernels as that of Eq. (2) are not asymptotically smooth. It is still possible to prove
that these kernels ful®l Assumption 10 [7]. Unfortunately, the mosaic ranks for the
Hankel-kernel equation depend on the wave number K linearly; for oscillatory
kernels in the 3D case, they depend on K even quadratically [7].

We can not do without any assumption on meshes. However, Assumption 2
seemed to be essential chie¯y for the algebraic technique proposed and used in
[23], and we always thought that it could be weakened. Now it is done in [7]. More
precisely, the lower estimate on sn�S0� is no longer in need. Consequently, S could
be a closed curve on the plane or a surface in the 3D case [7].
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In practice and in our numerical illustrations, matrices may be produced, for
example, by the Galerkin method. Note that the above theorems could be
extended to the cases of standard boundary or volume ®nite-element tech-
niques, because ``allowed'' blocks are approximated by a product of the form
PFQ, where F consists of the kernel's values at some mesh (P and Q depend on
the test functions), and hence, if F is of low rank, then the same applies to
PFQ.

Now, we ®nish the discussion of theoretical estimates (which is not the main
purpose in this paper) and get to practical issues.

3. Mosaic Partitionings

On the ®rst stage of the mosaic-skeleton method, we are to choose a suitable
mosaic partitioning. To do this, we do not compute any entries of the given
matrix. Instead of this, we rely on some (rather weak indeed) geometrical infor-
mation.

We require that every entry is associated with two points, xi and yj, in the
m-dimensional space. We think it is su�cient to have one mesh instead of two
(xi � yi), though we could keep the two if necessary.

We call a cluster any subset of nodes x1; . . . ; xn furnished with a ®nite (independent
of the number of nodes) set of attributes. In the present algorithms, we use only
two attributes: the center c, de®ned as the mean radius-vector for the nodes, and
radius r, de®ned as the maximal distance between c and the nodes. Prior to
forming the list of blocks we construct a tree of clusters suggested in [13] and
recently developed in [12].

The root of this tree is the cluster containing all the nodes. Apart from the nodes,
there are two input parameters in our algorithm: the maximal number of levels
Lmax and a separator for any given cluster (the procedure that subdivides a cluster
into several subclusters, if possible). The tree of clusters is described by a list of
clusters T and an integer array P containing a permutation of f1; 2; . . . ; ng. Each
cluster is identi®ed by its index in the list T. Every item in T has the following
components:

� Level where the cluster belongs.

� Index of the parent cluster.

� Number of kid-clusters.

� Index of a cluster that is followed contiguously by the kid-clusters.

� Number of nodes in the cluster.

� Reference to the position in the permutation array P which is followed con-
tiguously by indices of the nodes forming the cluster.

Mosaic-Tree Construction. Let N�T� denote the number of items in T and l the
maximal level in the subtree already constructed.
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Step 1. Set Nbeg � 0, Nend � 1, and form Item no. 1 in T (the number of kid-
clusters is 0).

Step 2. For every i from Nbeg � 1 to Nend, check if the ith cluster is a leaf (has no
kid-clusters). If so, try to split it into subclusters using the given separator. Every
subcluster, if any, is successively added to the current end of T. Also, the con-
tiguous indices of P corresponding to the ith cluster are permuted to make the
indices associated with every subcluster run contiguously. Correct the kid-infor-
mation in Item no. i of T.

Step 3. Increase l by 1 and quit if it is equal to Lmax. If not, set Nbeg � Nend,
Nend � N�T� and go to Step 2.

The complexity of this algorithm depends on the separator used. If the separation
time is linear in the number of nodes of a cluster under separation and the number
of subclusters on output is upper bounded uniformly in n, then the working time
is O�Lmaxn�.
At present, we tested two methods of separation. The ®rst is strictly motivated by
the asymptotical-smoothness property. The second is somewhat heuristic. As we
found, both lead to about equal results in practice.

1. Find a (minimal) parallelepiped containing all the nodes of a cluster, subdivide
it into 2l parallelepipeds, and make up subclusters of the nodes fallen into each of
them.

2. Let a cluster consist of the nodes x1; . . . ; xk with a center c. Find a hyperplane
passing through c so that the sum of squared projections of xi ÿ c onto this
hyperplane is maximal. 1 If h is a unit vector normal to the hyperplane in question,
then we need to minimize

U �
Xk

i�1
j�xi ÿ c; h�j2 � hT Mh; M �

Xk

i�1
�xi ÿ c��xi ÿ c�T :

It is easy to see that h is the eigenvector of M for its minimal eigenvalue. The
hyperplane subdivides the space into two subspaces which accumulate the nodes
of two possible subclusters.

When we proceed to preparing the list of blocks, we con®ne ourselves to con-
sidering only those blocks that are associated with pairs of clusters in the tree of
clusters (or two of them, in case there are two meshes). We permute the original
rows and columns in line with P; then the tree-of-clusters blocks contain con-
tiguous rows and columns.

It is possible to produce many di�erent lists of blocks based on the same tree of
clusters. Our ®nal goal is a tree-of-cluster mosaic partitioning minimizing ap-
proximate mosaic rank. However, it might be a di�cult discrete optimization
problem. We use the following heuristic approach: low-rank blocks should be of

1 This idea of separation was suggested by S. Rjasanow.
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maximal possible size. We also assume that, for every pair of clusters, there is an
easily computable tag showing if the block is allowed to be compressed or not; for
brevity, call the former allowed blocks.

Mosaic-List Construction. Let M be the target list of blocks and M1;M2 auxiliary
lists.

Step 1. Put in M1 the root-cluster block (original matrix).

Step 2. Take up successively the blocks from M1. If the block is allowed, relegate
it immediately to M. If not, consider the clusters a and b de®ning this block. Add
to M2 all the blocks associated with the subclusters of a and b. If there are no
subclusters, move this block to M.

Step 3. Quit ifM2 is empty. Otherwise, substituteM1 withM2, emptyM2, and go
to Step 2.

This algorithm looks, and is, rather general and may work with various rules for
obtaining admissibility tags from the attributes of the couple of clusters tied with
a block in question. For our applications, this tag depends on the radii and
distance between the centers of clusters. On the base of constructions in [7], it can
be shown that the algorithm proposed could yield a mosaic partitioning providing
the mosaic-rank estimates of Theorems 1 and 2. In practice, the algorithms of this
section consume rather negligible part of the whole time for the mosaic-skeleton
method.

4. Incomplete Cross Approximation

On the second stage of the mosaic-skeleton method, we browse in the list of
blocks and try to compress (approximate by skeletons) every allowed block. It
can be done by the Lanczos bidiagonalization method. Although we eventually
compute all the entries and the compression time does not behave any close to
linear in n, the multiplication time is about linear in n and it might be still
useful for some practical problems [10]. Here we propose an entirely di�erent
approach.

Let A denote an allowed block of size m� n. If rank A � r then we can obtain
skeletons using any r rows and columns for which the intersection block is
nonsingular. The problem is that A is of rank r only up to some small pertur-
bation. We rely on the following (nontrivial) result.

Theorem 3. [8, 9] Let A and F are m� n, rank�A� F � � r, and jjF jj2 � e. Then
there exists a cross in A with columns C and rows R, for which, for some r � r matrix
G,

jjAÿ CGRjj2 � e 1�
�������������
t�r;m�

p
�

������������
t�r; n�

p� �2� �
with
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t�r; n� � max
U

min
P2M�U�

rÿ1min�P �;

where U means any r columns of a unitary matrix of order n, M�U� is the set of all
r � r submatrices in U , and rmin designates the minimal singular value.

It was proved also [9] that

t�r; n� � tV �r; n� �
��������������������������
�r�nÿ r� � 1

p
;

though we believe that t�r; n� � ���
n
p

(not proved so far). The idea behind the proof
of Theorem 3 was the splitting of the singular value decomposition of
A � U1R1V1 � U2R2V2, where the ®rst term corresponds to r senior singular
triplets, and, then, choosing those submatrices in U1 and V1 that have the reci-
procal to the minimal singular value majorized by t�r;m� and t�r; n�, respectively.
The rows chosen in U1 and columns in V1 determine the cross at issue.

The choice of the above submatrices in U1 and V1 can be performed construc-
tively: it is su�cient to ®nd the submatrices of maximal determinant in modulus
(we call this quantity a volume) [9].

Unfortunately, the singular value decomposition of A is too heavy a tool to be
practical for our purposes. Instead, we would fall back to the concept of maximal
volumes.

To give more motivation, recall the role of maximal volumes in the interpolation
theory. Assume that X is a compact domain in the m-dimensional space. Assume
that f �x� is to be interpolated by /�x� �Pk

l�1 ai/l�x� in the nodes x1; . . . ; xk 2 X.
Then, as is readily veri®ed,

/�x� �
Xk

l�1
f �xl� Ml

M
;

where M � detf/i�xj�gk
ij�1 and Ml is obtained from M by replacing the lth column

by �/1�xl�; . . . ;/k�xl��T . If we are allowed to choose the nodes, which is a
reasonable choice? A classical result (see [6]) is that a good idea is to maximize
j detM j over x1; . . . ; xk 2 X.

Theorem 4. Let M maximize j detM j and jjf jjC � maxx2X jf �x�j. Then
jjf ÿ /jjC � �1� k� Ebest, where Ebest � infb1;...;bk

jjf ÿPk
l�1 bl/ljjC.

Luckily, this theorem is as profound as elementary allowing for a one-line

Proof: jf ÿ /j � jf ÿ /bestj � j/ÿ /bestj � Ebest �
Pk

l�1 jf �xl� ÿ /best�xl�j Ml
M

�� ��;
where /best corresponds to the optimal choice of bl on which the best uniform
bound is attained. A matrix analogue of Theorem 4 is the following.

Theorem 5. Let A be m� n and C consist of the ®rst k columns of A. Assume that
rank C � k and let B be the maximal-volume submatrix in C. Denote by R the rows
of A de®ned by B. Then
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jjAÿ CBÿ1Rjj2 � �1� tV �k;m�� inf
W
jjAÿ CW jj2: �10�

At the same time, if l�A� is the maximal entry of A in modulus, then

l�Aÿ CBÿ1R� � �1� k� inf
W

l�Aÿ CW �: �11�

Proof: Let A � �C;A2� and, similarly, W � �W1;W2�. Then

Aÿ CBÿ1R � �A2 ÿ CW2� � CBÿ1�BW2 ÿ R�:

Since B is of maximal volume in C, all the entries of CBÿ1 are not greater than 1 in
modulus. Indeed, the postmultiplication of C by any nonsingular matrix does not
change the ratio of volumes for any two submatrices. With no loss of generality,
let

H � CBÿ1 �
" I

hk�11 . . . hk�1k

. . . . . . . . .

#
:

If jhk�ljj > 1, then H would have a submatrix of volume greater than 1. This
submatrix would be I with row j substituted with row k � l. Now, (10) are (11) are
evident. (

The above proof incorporates an algorithm which we use to ®nd maximal-volume
submatrices. On input, we have C and some c � 1. On output, we obtain a
submatrix B whose volume is greater than or equal to the maximal volume divided
by c. With such a B, we modify the estimate (11) to the form

l�Aÿ CBÿ1R� � �1� ck� inf
W

l�Aÿ CW �: �12�

Thus, instead of maximal-volume submatrices, we may look for those of su�-
ciently big volume.

Big-Volume Search.

Step 1. Reduce C to H by column transformations using a complete pivoting.

Step 2. Find the maximal in modulus entry below the kth row of H . Let it have
indices k � l; j. Quit if it does not exceed c.

Step 3. Interchange row j and k � l and eliminate nondiagonal zeroes in the upper
part of H using column transformations. Go to Step 2.

We are ready to formulate the incomplete cross approximation algorithm. Pres-
ently it is a succession of the prescribed number of cross-in¯ating cycles.

Cross-In¯ating Cycle. Given a cross with row indices I and column indices J , ®nd
the maximal-volume submatrices in the columns and the rows. Let the former has
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column indices Ĵ and the latter has row indices Î . Then update the cross changing
I onto I

S
Î and J onto J

S
Ĵ .

Thus, we form the cross adaptively adding to it new rows and columns. Using a
su�ciently large cross, we provide an accurate skeleton approximation for the
whole block. At the same time, we hope that we ®nish with a cross small enough.

5. Time Versus Size

An important issue is how we get an initial cross. Sometimes, as in our experi-
ments with the equation (1), it could be almost arbitrary (even of size 1� 1 or
2� 2). This is not entirely clear yet from the point of theory. However, below we
present a practical justi®cation. Consider more information related to Table 1. On
Fig. 1 we can see that the approximation time grows almost linearly in n. This is
due to the incomplete cross approximation approach. Note also that we sym-
metrized the mosaic-skeleton approximations and used the conjugate gradients
with the circulant preconditioner [4, 5, 25, 26]. We had only 3 iteration to reduce
the residual to a factor of 10ÿ4.

The time for iterations was about 30 of the total time, with a tendency to become
a smaller part as n increases.

The relative approximation accuracy was set to e � 10ÿ4 in all experiments. The
admissibility tag for a couple of clusters is up whenever min r1; r2 � aq and
r1 � r2 � q, where r1 and r2 are the radii of clusters, q is the distance between their
centers, and a is some constant (it was set to 0.3). We opted for the second method

Figure 1. log (TIME) versus log (SIZE)
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to separate a cluster. With this, the maximal number of levels in the Mosaic-Tree
Construction was chosen empirically as log2

n
4 (it minimized time yet the minimal

mosaic rank might correspond to a larger number of levels). In the Big-Volume
Search, we used c � 1:1 (however, this parameter could be increased with next to
no harm, at least for our examples). In all experiments, the size of initial cross was
2 and the allowed number of the cross-in¯ating steps was 5. The numerical results
con®rm that it is a sound choice. However, the proof of its optimality is a subject
of further research.

The maximal size we tested was n � 1 048 576. The computed mosaic rank was
159.72 and the corresponding compression factor was 0.03. We used about 9 Gb
of the disc space and 27 283 seconds on the Silicon Graphic workstation in the
University of Saarland.

6. Discussion

In this paper, we concentrated on numerical veri®cation of algebraic algorithms
for the mosaic-skeleton method. That is why we kept the relative approximation
accuracy e independent of the matrix size. In the context of solving integral
equations, this should not be the case (still, for the examples considered, we have
made a rather conservative choice for all sizes).

All the same, it is interesting to see how the mosaic ranks would behave depending
on e. As above, take up the logarithmic-kernel equation on an ellipse with half-
axes a � 1 and b � 0:5. In Table 3, there are mosaic ranks and compression
factors for n � 1024.

Remark that e � 10ÿ2 leads to a poor approximation and should not be used.
However, even those e may be of choice if the fast approximate multiplication
algorithm serves as a preconditioner for matrices related to some other operator.

One may also ask what happens with the mosaic ranks when a=b gets larger. In
Table 4, the answer is given for n � 1024 and e � 10ÿ4. Here, we vary b with a � 1
being ®xed. Curiously, the mosaic ranks increase for a while and then start de-
creasing as a=b!1.

The mosaic-skeleton method can be applied also to other types of equations and
to 3D problems (see [10]). Application of algebraic algorithms proposed in this
paper to such cases is a topic of forthcoming work.

Table 3. Mosaic ranks versus relative approximation accuracy

Relative approx. accuracy 100 10)1 10)2 10)3 10)5 10)6 10)7

Mosaic rank 40.51 42.67 52.75 63.93 82.72 91.34 101.05
Compression factor 7.91% 8.33% 10.30% 12.49% 16.16% 17.84% 19.74%

Table 4. Mosaic ranks versus a/b

a/b 1 4 16 64 256 10000
Mosaic rank 67.12 78.34 97.63 84.75 71.78 67.73
Compression factor 13.11% 15.30% 19.07% 16.55% 14.02% 13.23%
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