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Abstract

Let W beasimply connectedregioninC, f : W — C analyticin W and y apositively oriented Jordan
curvein W that does not pass through any zero of f. We present an algorithm for computing all the
zerosof f that lieintheinterior of y. It proceeds by evaluating certain integralsalong y numerically
and is based on thetheory of formal orthogonal polynomials. Theagorithmrequiresonly f and not its
first derivative f'. We have found that it gives accurate approximationsfor the zeros. Moreover, it is
self-startingin the sensethat it doesnot requireinitial approximations. The agorithmworksfor smple
zeros as well as multiple zeros, athough it is unable to compute the multiplicity of a zero explicitly.
Numerical examplesillustrate the effectiveness of our approach.

AMS Subject Classification: 65H05.

KeyWbrds: Zerosof analytic functions, quadrature method, derivative-free approach, formal orthogonal
polynomials.

1. Introduction

Let W be asimply connected region inC, f : W — C analyticin W and y a
positively oriented Jordan curvein W that does not passthrough any zero of /. We
consider the problem of computing all the zeros of f that liein the interior of y .
The agorithm that we will present requires only f and not its first derivative f'.
It proceeds by evaluating certain integrals along y numerically and isbased on the
theory of formal orthogonal polynomials. We have found that our algorithm gives
accurate approximationsfor the zeros. Moreover, itissaf-starting in the sensethat
it does not requireinitial approximations. The algorithm worksfor simple zeros as
well as multiple zeros, although it is unable to compute the multiplicity of azero
explicitly.

Our approach to the problem of computing all the zeros of an analytic function that
lieintheinterior of a Jordan curve can be seen as a continuation of the pioneering
work of Delves and Lyness [8].

Let N denote the total number of zeros of f that liein theinterior of y, i.e., the
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number of zeros where each zero is counted according to its multiplicity. Suppose
fromnow onthat N > 0. Delvesand Lyness considered thesequence Z1, ... , Zy
that consistsof all thezerosof f thatlieinsidey. Each zeroisrepeated according to
itsmultiplicity. Supposethat thefirst derivative f’ isavailable. Aneasy calculation
showsthat the logarithmic derivative f’/f hasasimple pole at each zero of f with
residue equal to the multiplicity of the zero. Cauchy’s Theorem implies that

1 f'(@)
N=—— dz. 1
Zni/),f(z) ‘ ™)

This formula enables one to calculate N via numerical integration. Methods for
the determination of zeros of analytic functions that are based on the numerical
evaluation of integrals are called quadrature methods. A review of such methods
was given by loakimidis [22]. Delves and Lyness considered the integrals

1 '@
sy = —— [ 7 L2 gz, —0,12,....
P 2;“'// f@ P

The residue theorem implies that the s,’s are equal to the Newton sums of the
unknown zeros,

sp=Zf—|—---+Zp, p=012.... 2
These s,,’s can again be calculated via numerical integration along y .
Delves and Lyness considered the monic polynomial of degree N that has zeros
Zlv LRI ZN!
N
Pv@) =[[e-z=2"+o1" T+t oy
k=1

They caled Py (z) the associated polynomial for theinterior of y. Its coefficients
can be calculated via Newton's identities.

Theorem (Newton’sidentities).

s1+o01=0
§s2+s1014+202=0

SN +sy_101+---+s1onv_1+Noy =0.
Proof: An elegant proof was given by Carpentier and Dos Santos [6]. O

In thisway they reduced the problem to the easier problem of computing the zeros
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of a polynomia. Unfortunately, the map from the Newton sums s1, ... , sy to
the coefficients o1, ... , oy isusudly ill-conditioned. Also, the polynomials that
arise in practice may be such that small changes in the coefficients produce much
larger changes in some of the zeros. Thisill-conditioning of the map between the
coefficients of apolynomial and its zeros was investigated by Wilkinson [30]. The
location of the zerosdeterminestheir sensitivity to perturbations of the coefficients.
Multiple zeros and very close zeros are extremely sensitive, but even a succession
of moderately close zeros can result in severe ill-conditioning. Wilkinson states
that ill-conditioning in polynomials cannot be overcome without, at some stage of
the computation, resorting to high precision arithmetic.

If £ has many zerosin theinterior of y, then the associated polynomial is of high
degree and could be very ill-conditioned. Therefore, if N islarge, one hasto calcu-
latethecoefficientsoy, . .. , o, andthustheintegralsss, . .. , sy, very accurately.
To avoid the use of high precision arithmetic and to reduce the number of integrand
evaluations needed to approximate the s,,’s, Delves and Lyness suggested to con-
struct and solve the associated polynomial only if itsdegreeis smaller than or equal
to apreassigned number M. Otherwise, theinterior of y is subdivided or covered
with afinite covering and the smaller regions are treated in turn. The choice of M
involves a trade-off. If M isincreased, then fewer regions have to be scanned.
However, if M is chosen too large, then the resulting associated polynomia may
beill-conditioned. Delves and Lyness chose M = 5.

Botten, Craig and McPhedran [2] made aFortran 77 implementation of the method
of Delves and Lyness.

Instead of using Newton's identities to construct the associated polynomial, Li
[26] considered (2) as a system of polynomial equations. He used a homotopy
continuation method to solve this system.

Recently, the authors (in collaboration with Tetsuya Sakurai) argued that what is
wrong with these approaches is that they consider the wrong set of unknowns, cf.
our paper [24]. Oneshould consider the mutually distinct zerosand their respective
multiplicities separately. The quadrature method that we presented is a general-
ization of the method of Delves and Lyness. It is again based on the numerical
evauation of integralsalong y that involve thelogarithmic derivative '/ f, but by
using thetheory of formal orthogonal polynomialswewere ableto obtain more ac-
curate approximations for the zeros. The Fortran 90 package ZEAL [25] contains
an implementation of our algorithm. In this approach, the mutually distinct zeros
are computed by solving a generalized eigenval ue problem whereas the multiplic-
ities are calculated by solving alinear system of equations that has Vandermonde
structure. The number of mutually distinct zeros is determined indirectly.

In some applications, the calculation of the derivative f’ is more time-consuming
than that of f. Delves and Lyness used an integration by partsto derive aformula
for s, that depends only on a multi-valued logarithm of f and not on f’. To
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apply this formula, they had to keep track of the sheet on which log f (z) liesas z
runs along the curve y. Unfortunately, in most cases it is impossible to do this
in a completely reliable way, i.e., without accidentally overlooking any sheets.
Carpentier and Dos Santos [6] and Davies [7] derived similar formulae. See also
loakimidis and Anastasselou [23].

The approach that we took in [24] involves integrals along y that contain the
logarithmic derivative f//f. In this paper we will show that essentially the same
results can be obtained via integrals that contain 1/f. The derivative f’ is no
longer needed. Of course, in this new approach not the mutually distinct zeros but
rather the unknowns Z1, ... , Zy are caculated and the multiplicities cannot be
computed explicitly. But apart from this, the algorithm has the same advantages
as the algorithm in [24]. In particular, it does not require initial approximations
for the zeros and we have found that it gives accurate results.

Formula (1) involves the derivative of f and hence it is no longer available to us
for computing the total number of zeros N. Instead one can use the well-known
principle of the argument, which states that N is equa to the winding number of
the curve f(y) with respect to the origin. This will be discussed in Section 2
along with various reliability issues. In Section 3 we will give an overview of
the agorithm for computing zeros of analytic functions that we proposed in [24].
This should enable the reader to contrast this approach with the derivative-free
agorithm that we will present in Section 4. We conclude with numerical examples
in Section 5.

2. Computing the Total Number of Zeros

The total number of zeros of f that lieinside y is given by the integra

1 '@

i ), @

dz, ©)

cf. Eq. (1). Our derivative-free agorithm requires the value of N or an upper
bound for it. However, as by assumption the derivative f’ is not available to us,
we cannot obtain the value of N by evaluating the integral in the right-hand side
of (3) numerically. Instead we proceed as follows. By making the substitution
w = f(z) we obtain that

1 1
N=-—" ~dw. 4
2 i ) w

Here f(y) denotes the image of the curve y under f. Thisisaclosed curve that
avoidstheorigin. Thewinding number of f (y) with respect totheoriginisdefined
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astheincreasein the argument of f(z) aong y divided by 27,

1
n(f(),0) = >—[ag /@ ],

Informally speaking, onecansay that itisequal to thenumber of timesthat thecurve
f(y) “winds’ itself around the origin. A classical theorem in complex analysis
(see, eg., Henrici [20, p. 233]) says that this winding number can be expressed
astheintegral that appears in the right-hand side of (4). Hence N = n(f(y), 0).
Thisresult is known as the “ principle of the argument.”

The value of N can thus be computed via an algorithm for computing winding
numbers. The range of the function arg is (—x, r]. If the increase in argument
aong the straight section

[, 8] ={zeC:z=ta+1—1B, 0=<r=<1} a,BeC,

satisfies
|[arg (@) ]ze[a,ﬁ]} =7
[arg f(2) ]ze[a,ﬁ] - arg(m)’

as the reader may easily verify. Let us discretize the curve y into the sequence of
pointsci, ..., cg. Definecg11 := c1. Thenit followsthat

1 & S (ck+1)
N=_
2 27 e )

|[argf(z) ]ZE[Ckka+1]| = ®)
for k = 1,...,G. Inother words, if condition (5) is satisfied, then N can be
computed simply by evaluating f at the pointsci, ..., cg. These considerations

form the basis for Henrici’'s algorithm [20, pp. 239-241]. See aso Ying and
Katz [32].

Unfortunately, condition (5) may not be easy to verify for an arbitrary analytic
function f. If the discretization of y is inadequate, then the computed value
of n(f(y),0) and hence N may be wrong. In this sense Henrici’s algorithm is
unreliable. Indeed, afinite number of functional or derivative valuesare not enough
to determine the number of zeros of f, evenif f isapolynomial. Thiswas shown
by Ying in his PhD thesis[31].

Thereexist several reliable approachesfor computing N. However, they all assume
that some kind of global information is available, which may not aways be the
casein practice.
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e Ying and Katz [32] developed areliable variant of Henrici’s agorithm. They
assume that an upper bound for | f”(z)| dong an arbitrary line segment is
available.

e Herlocker and Ely [21] experimented with a numerical integration approach
based on Simpson’s rule and the corresponding formula for the integration
error. Thisformulainvolvesthefourth derivative of theintegrand evaluated at an
unknown point in the integration interval. Automatic differentiation combined
with interval arithmetic enabled them to bound the integration error.

e The total number of zeros can aso be computed as the topological degree of
the mapping

F(x,y) :=(Re f(x +iy).Im f(x +iy))

withrespect totheinterior of y (interpreted asasubset of R2) andthepoint (0, 0).
(Wewill not go into the details of degree theory. For an excellent introduction,
werefer theinterested reader to LIoyd'sbook [27].) Boult and Sikorski [3] con-
Sidered the case that y isthe boundary of the unit square [0, 1] x [0, 1]. They
proved that, in case F satisfies the Lipschitz condition with constant K > 0
and if the infinity norm of F on y isat least d > 0 where K/(4d) > 1, then
a least 4| K /(4d) | function evaluations are needed to compute the topol ogical
degree. See aso Traub, Wasilkowski and Wozniakowski [28, pp. 193-194].

Theseagorithmsarereliablebut they can only beused if certain global information
(an upper bound for the modulus of a higher derivative of f or the Lipschitz
constant of F = (Re f, Im f) or alower bound for the infinity norm of F on y)
isavailable or can easily be computed (for example, via automatic differentiation
and/or interval arithmetic). If thisis not the case and f’ is not available, then
Henrici’s algorithm is really the only agorithm that one can use to compute N.
The reader should realize, though, that the computed integer may in fact only be
astrictly lower bound for N and hence the output of Henrici’s algorithm should
be handled with caution. When given an upper bound for N, our agorithm will
determine the value of N via the stopping criterion that we will discuss below.
However, our algorithm will fail in case the value of N that it is given isin fact
strictly smaller than the actual value of N.

An Algorithm Based on f'/f

Let n denote the number of mutually distinct zeros of f that lie inside y. Let
71, ..., Zy Dethesezerosand vy, . . ., v, their respectivemultiplicities. Thequadra-
ture method that we recently proposed in [24] generalizes the approach of Delves
and Lyness. Our approach assumesthat f aswell asitsfirst derivative f’ areavail-
able. By using the theory of formal orthogonal polynomials, we showed how the
mutually distinct zeros can be calculated by solving generalized eigenvalue prob-
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lems. The value of n is determined indirectly. Oncen and z1, ..., z, have been
found, the problem becomes linear and the multiplicities vy, ..., v, are computed
by solving a linear system of equations that has Vandermonde structure. In this
sectionwewill giveabrief summary of theseresults. Thisshould enablethereader
to compare this approach with the derivative-free algorithm that we will present in
Section 4. For more details (including proofs and a pseudo-code formulation of
the algorithm), we refer to [24].

Let P be the linear space of polynomials with complex coefficients. One defines a
symmetric bilinear form
() iPxP—C

by setting

f'(@) 4
f(@)

1 n
W) =5 [ SIS =Y wcova  ®
T 1 y =1

for any two polynomias ¢, ¥ € P. The latter equality follows from the fact
that f//f has asimple pole a z; with residue vy for k = 1,...,n. Note that
(-, -) can be evaluated vianumerical integration along y . In what follows, we will
assume that al the “inner products’ (¢, ¥ ) that are needed have been calculated.
Lets, := (1,z7) for p =0,1,2,.... These ordinary moments are equa to the
Newton sums of the unknown zeros,

n
sp=kaz,f, p=01212....
k=1

In particular, so = v1 + - - - + v, = N, thetotal number of zeros. Hence, we may
assume that the value of N isknown. Let H; bethe k x k Hankel matrix

so  S1 - Sk—1
k—1 .
. S1
Hk = |:Sp+q] =
p-q=0 : :
Sk_l PEREY PEEEEY szk_z

fork=1,2,.... A monic polynomia ¢; of degreer > 0 that satisfies

(Z*, 01(2)) =0, k=01, ...,t—1, )

iscalledaformal orthogonal polynomial (FOP) of degreer. (Observethat condition
(7) isvoid for + = 0.) The adjective formal emphasizes the fact that, in general,
the form (-, -) does not define atrue inner product. An important consequence of
thisfact isthat, in contrast to polynomials that are orthogonal with respect to atrue
inner product, formal orthogonal polynomials need not exist or need not be unique
for every degree. (For details, see Draux [9, 10], Gutknecht [18, 19] or Gragg and
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Gutknecht [17].) If (7) issatisfied and ¢, isunique, then ¢, iscalled aregular FOP
and ¢ aregular index. If we set

0 (2) =t uoy +urz+ -+ ut—l,zZ[_l + 7

then condition (7) translates into the Yule-\Walker system

SO ST ccc si—1 1o, 5
- : Ul Sr+1

* ' ' S =- 8)
Sp—1 v e 8212 Ur—1t §2r—1

Hence, the regular FOP of degree r > 1 exists if and only if the matrix H; is
nonsingular.

The following theorem characterizes n, the number of mutually distinct zeros. It
enables one, theoretically at least, to calculate n asrank Hy.

Theorem 2. n = rank H,4, for every nonnegative integer p. In particular,
n=rank Hy.

Therefore H,, isnonsingular whereas H; issingular for ¢ > n. Notethat H1 = [so]
isnonsingular by assumption. The regular FOP of degree 1 exists and is given by
¢1(z) = z — n where
. S_]_ . ZZ:]_ VikZk
S0 D k=1 Vk

isthe arithmetic mean of the zeros. Theorem 2 implies that the regular FOP ¢,, of
degree n exists and tells us aso that regular FOPs of degree larger than n do not
exist. The polynomial ¢, iseasily seento be

on(@)=(z—z1) - (z — zn). 9

It is the monic polynomia of degree n that has z1, . .. , z, assimple zeros. This
polynomial has the peculiar property that it is orthogonal to all polynomials (in-
cluding itself),

(27, gn(2)) = 0, p=0,12.... (10)

Once n is known, the mutually distinct zeros z1, ..., z, can be caculated by
solving a generalized eigenvalue problem. Indeed, let H,= be the Hankel matrix

Sl sz ... sn

Sp S2n—1
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Theorem 3. The eigenvalues of the pencil H,- — AH, aregivenby z1, ... , z,.

Proof: Let V,, be the Vandermonde matrix based on the points z1, .. . , zj,

-1
Vai=11 N E

and define the diagonal matrices D,, and D,(ll) as
D, :=diag(vs,...,v,) ad DY :=diag(viz1, ..., vazn).

Then V,, as well as D, are nonsingular. One can easily verify that the Hankel
matrices H, and H,~ can be factorized as

H==vIpLVv, ad H,=VID,V,.
Now let 2* be an eigenvalue of the pencil H,~ — A H, with eigenvector x. Then

H~x = AHyx
S VIDVV,x = 2*VID,V,x
& D,(ll)y =AD,y ify:=Vyx
& diag(z1, ... ,20)y = A%y,

This proves the theorem. O

Once z3, ... , z, have been found, the multiplicities vy, . .. , v, can be computed
by solving the Vandermonde system
1 cee 1 V1 S0
71 L Z V2 S1
: ; = | (1)
n—1 n.—l
Zl « e Zn vn Sn—l

Note. Vandermonde matrices are often very ill-conditioned [15, 16]. In this case,
however, the components of the solution vector of (11) are known to be integers,
and therefore there is no problem, even if the linear system (11) happens to be
ill-conditioned, aslong as the computed approximations for the components of the
solution vector have an absolute error that islessthan 0.5.

Theorems 2 and 3 suggest the following approach to compute n and z1, . .., z,.
Start by computing thetotal number of zeros N. Next, computess, ... , soy—2. AS
already mentioned, thiscan bedonevianumerical integrationalongy. Thenumber
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of mutually distinct zeros is then calculated as the rank of Hy, n = rank Hy.
Findly, the zeros z1, ..., z, are obtained by solving a generalized eigenvaue
problem. However, this approach has several disadvantages:

e Theoretically the N — n smallest singular values of Hy are equal to zero. In
practice, this will not be the case, and it may be difficult to determine the
rank of Hy and hence the value of n in case the gap between the computed
approximations for the zero singular values and the nonzero singular valuesis
too small.

e The approximations for z1, ... , z, obtained via Theorem 3 may not be very
accurate. Indeed, the mapping from the Newton sums to the zeros and their
respective multiplicities,

(S07 Sl’ LI aSZn—l) = (Zlv LRI ava Ulv cet vl’l)s (12)

is usually very ill-conditioned. (See, e.g., the papers by Gautschi [12, 13,
14] who studied the conditioning of (12) in the context of Gauss quadrature
formulae.) Indeed, aclassical adagein numerical analysis saysthat one should
avoid the use of ordinary moments.

The agorithm that we proposed in [24] gives more accurate approximations for
71,... ,2n. Theideaisthefollowing. Theinner productsthat appear in the Hankel
matrices H, and H,~ arerelated to the standard monomial basis. Why not consider
adifferent basis? In other words, why not try to use modified moments instead of
ordinary moments? The fact that

H, = [(zp, zq)] __0 and HS5 = [(zp, qu)]n_l_o
p.q= p.9=
suggests that one should consider the matrices
n—1 n—1
[Wpvg)| _y and [wpvavg)| (13)
where y; isapolynomial of degreek for k = 0,1,... ,n — 1. Of course, even

if one succeeds in writing Theorem 3 in terms of the matrices that appear in (13),
the question remains which polynomials v to choose. We found that very ac-
curate results are obtained if one uses the forma orthogona polynomials. In
other words, the zeros of ¢, (z) will be computed from inner products that in-
volve ¢o(z), 91(2), ... , vn—1(z). The value of n will be determined indirectly.
Before we can explain thisin more detail, we have to say afew words about the
orthogonality properties of FOPs.

If H, isstrongly nonsingular, i.e., if al itsleading principal submatrices are non-
singular, then we have afull set {¢o, ¢1, ... , ¢,} of regular FOPs.
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What happens if H, is not strongly nonsingular? By filling up the gaps in the
sequenceof existing regular FOPsit ispossibleto defineasequence {¢; };° ,, with ¢
amonic polynomial of degree ¢, such that if these polynomials are grouped into
blocks according to the sequence of regular indices, then polynomial s bel onging to
different blocks are orthogonal withrespect to (-, -). More precisely, define {¢,}7°,
asfollows. If r isaregular index, then let ¢, bethe regular FOP of degreer. Else
define ¢; as ¢y, where r isthe largest regular index less than r and ¥, , isan
arbitrary monic polynomial of degreer — r. Inthelatter case ¢, iscaled aninner
polynomial. These polynomials {¢;}7°, can be grouped into blocks. Each block
starts with a regular FOP and the remaining polynomials are inner polynomials.
Note that the last block has infinite length. The block orthogonality property is
then expressed by the fact that the Gram matrix G, = [{¢;, gos)]:l’;zlo is block
diagona. The diagona blocks are nonsingular, symmetric and zero above the
main antidiagonal. (See Bultheel and Van Barel [4] for more details.)

Theorem 3 can be interpreted in the following way: the zeros of the regular FOP
of degree n can be calculated by solving a generalized eigenvalue problem. The
following theorem shows that this zero/eigenvalue property holds for al regular
FOPs. Thiswill enable usto compute regular FOPsintheir product representation.
Thetheorem al so provides asol ution to the problem of how to switch from ordinary

moments to modified moments. Define the matrices G, and G,((l) as

k-1 @ k-1
Gy = [(wr, %)] and Gy = [((pr, ¢1(ﬂs>]
r,s=0 r,s=0

fork=12,....

Theorem 4. Let r > 1 be aregular index and let z;.1, ... , z;; be the zeros of
the regular FOP ¢,. Then the eigenvalues of the pencil G§1) — AG, aregiven by
©1(zt.1), - -+ » 91(zr¢). Inother words, they aregiven by z;1 — i, ... , 200 — 1
where u = s1/s0.

Corollary 5. The eigenvalues of G — AG,, aregiven by z1 — u, ..., zn — 1

where u = s1/s0.

Regular FOPs are characterized by thefact that the determinant of aHankel matrix
is different from zero, while inner polynomials correspond to singular Hankel
matrices. To decide whether ¢;(z) should be defined as a regular FOP or as an
inner polynomial, one could therefore calculate the determinant of H; and check
if it isequal to zero. However, from a numerical point of view such atest “is
equal to zero” does not make sense. Because of rounding errors (both in the
evaluation of (-, -) and in the calculation of the determinant) one would encounter
only regular FOPs. Strictly speaking one could say that inner polynomials are not
needed in numerical calculations. However, the opposite istrue! Let us agree
to call aregular FOP well-conditioned if its corresponding Yule-Walker system
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(8) is well-conditioned, and ill-conditioned otherwise. To obtain a numericaly
stable algorithm, it is crucial to generate only well-conditioned regular FOPs and
to replace ill-conditioned regular FOPs by inner polynomials. Stable |ook-ahead
solversfor linear systems of equations that have Hankel structure are based on this
principle[1, 5, 11]. Inthisapproach the diagona blocksin G, aretaken (slightly)
larger than strictly necessary to avoid ill-conditioned blocks.

The agorithm for calculating the mutually distinct zeros z3, . . . , z, that we pro-
posed in [24] proceeds by computing the polynomials

0o(2), p1(2), ... , pu(2)

in their product representation, starting with ¢o(z) < 1 and ¢1(z) <« z — u.
At each step, to decide whether it is numerically feasible to generate the next
polynomial inthe sequence asaregular FOP, the algorithm uses aheuristic method.
By doing alarge number of numerical experiments, wereached the conclusion that
this heuristic approach leads to accurate results. For more details, we refer to [24].

How does one obtain the value of n? Theorem 2 and Egs. (6) and (9) imply the
following.

Theorem 6. Lett > n. Then ¢, (zx) =0fork = 1,... ,n and (z”, ¢;(z)) =0
forall p > 0.

The value of n can be determined as follows. Suppose that the algorithm has just

generated a (well-conditioned) regular FOP ¢, (z). To check whether n = r, the
agorithm scans the sequence

(1"r (@), 0r @) 5 (14)

If all theelementsare“ sufficiently small,” then the al gorithm concludes that indeed
n =r and it stops.

As we have already mentioned, once n and (approximations for) z1, ... , z, have
been found, the multiplicities vy, ... , v, are computed by solving the Vander-
monde system (11).

This concludes our discussion of the algorithm presented in [24]. From now on
we will refer to this algorithm as “agorithm zEROS/FDF.”
4. A Derivative-Free Algorithm

The results obtained in the previous section are based on the symmetric bilinear
form (6), which involves the logarithmic derivative f’/f. Instead, let us consider
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theform
(-, )% :PxP—>C

defined as

(P, V)= : fqb()lﬁ() ! d (15)
for any twopolynomiase, ¢ € P. Again, thisform can beeval uated vianumerical
integrationalong y andinwhat followswewill assumethat all the“inner products’
(¢, V), that are needed have been calculated.

We will show that essentially the same results can be obtained with theform (-, -,
as previously with (-, -).

The integrand that appears in the right-hand side of (15) has a pole at every zero
of f that liesintheinterior of y and the order of the poleisequal to the multiplicity
of the zero. Therefore, the residue theorem implies that (¢, ¥ ). is equa to the
sum of the residues of the function ¢/ f at these poles. The following result can
easily be verified.

Proposition 7. If all the N zeros Z1, ..., Zy of f that lieinside y are simple,
then

N
N P Z)Y(Zi)
(@, V) = k; iz

In generd, if f has multiple zeros, then an elegant expression for (¢, ¥ ), written
as asum is much more difficult to obtain. Fortunatély, it is not necessary to have
such an expression available. The proofsof Theorems 2 and 3 givenin[24] depend
completely on the details of the way in which (¢, ¥) can be written as a sum, cf.
Eq. (6). However, as we will see, the corresponding theorems can be proved in a
different way.

Defines; = (L zP)forp=0,1,2 ... andlet H bethek x k Hankel matrix

N N k—1

fork =1,2,.... Theforma orthogonal polynomias associated with (-, -}, can
be defined asbefore. The coefficients of regular FOPs can be computed by solving
a Yule-Walker system, cf. Equation (8). Also, ¢t > 1isaregular index if and only
if the matrix H isnonsingular.

p.q=0

The residue theorem immediately implies that the polynomial

N

Py@ =]]G- 20

k=1
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satisfies

(zP, Pn(2))x = 0, p=012.... (16)
In this sense, the polynomia Py (z) behaves with respect to the form (-, -), inthe
same way as the polynomia ¢, (z) behaves with respect to (-, -), cf. Egs. (9) and
(20). We will provethat N isthe largest regular index for (-, -).. Thiswill enable
us to compute the zeros of the regular FOP Py (2), i.e, thezeros Z1, ... , Zy, in
essentially the same way as a gorithm zEROS/FDF computes the zeros of ¢, (z), i.e.,
the mutually distinct zeros z1, . . ., z,,.

The following lemmawill play an important role. Define the set 7 asfollows:

IT:={¢peP: :: (!, ¢(@)x=0 forp=0,1,2,...}.

Lemma 8. The set 7 is equal to the ideal generated by the polynomial Py. In
other words,
I={¢peP:JaecP:p=aPy}.

Proof: Supposethat a € C liesin theinterior of y. Let the functiong : W — C
be meromorphic and suppose that g has neither zeros nor poles on y. Then the
coefficient of (z —a) 7~ inthe Laurent expansion of g at the point a is given by
the integral

1
—.f(z—a)pg@dz
21 i y

forp=0,1,2,.... Let¢p € Z. Then

1
(2= Z", ¢ = ﬁf(z - Zk)p% dz=0
v

fork=1...,Nandp =0,1,2,... andthusthefunction ¢/f has aremovable
singularity at the points Z1, ..., Zy. Thus ¢ has to be amultiple of Py. This
provesthelemma. O

Theorem 9. The matrix Hy, isnonsingular.

Proof: Wewill provethat Py istheonly monic polynomial of degree N that isor-
thogonal to all polynomialsof lower degree. Supposethat QO x isanother such poly-
nomial. Then Py — Qy isof degreeat most N —1andhence (Py —Qn, On)x = 0.
Equation (16) then impliesthat (Qn, On)« = 0. Thus Qy isnot only orthogonal
to all polynomials of degree < N — 1 but also to al polynomials of degree N. The
polynomial z Py — zQy hasdegree < N and therefore (zPy —zOn, On)« = 0.
AS (zPn, On)x = (PN, z0OnN)x = 0O, it followsthat (zQy, On)« = 0. Thus Oy
is also orthogonal to all polynomials of degree N + 1. By continuing this way,
one can prove that Q is orthogona to all polynomials, Oy € Z. AsQy isa
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monic polynomial of degree N, the previous lemmathen impliesthat Oy = Pu.
Thus there is only one monic polynomia of degree N that is orthogona to all
polynomials of lower degree. Thisimplies that the matrix Hy isnonsingular. O

Theorem 10. The matrix H,(,Jrk issingular fork =1,2,....

Proof: Instead of the basis of the monomials {z”},>0 we consider the basis
{Vp ()} p=owherey, (z) :=zPforp =0,1,... ,N=1landy/y,(z) := 2" Py (2)
forp=0,1,2,.... Let

-1

F o= [ W ).

r.q=0

bethecorresponding! x! Grammatrixfor/ = 1, 2, .. .. Equation (16) thenimplies
that det F,(,Jrk =0fork =1,2,.... Onecan easlly verify that det F;* = det H
forl =1,2,.... Thisprovesthetheorem. O

We have now identified Py (z) astheregular FOP of degree N and we have shown
that regular FOPs of degree larger than N do not exist. Note that 57 is equal to the
sumof theresiduesof 1/f atthepoints Z1, ... , Zy and henceitisnot necessarily
different from zero. Therefore, the regular FOP of degree 1 with respect to the
form (-, -),. does not always exist, in contrast to (-, -).

The zero/eigenval ue properties discussed in the previous section hold not only for
(-, -) but for every symmetric bilinear form. The zeros Z1, ... , Zy can therefore
also be caculated by solving a generalized eigenvalue problem. The following
result can be proved in the same way as Theorem 3. Let H;~ be the Hankel matrix

TSy st
Hp = | %2 '
S]: e e SEk_l
fork=12,....
Theorem 11. Theeigenvaluesof thepencil Hy~ —AH} aregivenby Zy, ... , Zy.

In the next section we will compare the accuracy obtained via Theorem 3 to the
accuracy obtained via Theorem 11.

Algorithm zZEROS/FDF can be seen as a general agorithm for computing zeros
of FOPs applied to the specific form (-, -). The following theorem leads to an
analogous algorithm for the form (-, -}, and hence for the zeros Z1, ... , Zy. We
will call this approach “algorithm zEROSIF.”
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Let {¢;};>0 denote the FOPs associated with (-, -),. Define the matrices G; and
Gles

k—1

Gi=[when] “ ad G =[]

k-1

r,s=0

fork =1, 2,.... Thefollowing results can be proved inthe sameway as Theorem
4 and Corallary 5.

Theorem 12. Let r > 1 bearegular index for (-, -), and let z;’l, N o be the

zeros of the regular FOP ¢;. Then the eigenvalues of the pencil G;* — LG} are
given by TR

Corollary 13. The eigenvalues of Gy — LG}, aregivenby Zs, ..., Zy.

If instead of N only an upper bound for N isavailable, then the value of N can be
computed via a stopping criterion similar to the one discussed after Theorem 6.

5. Numerical Examples

In the following examples we have considered the case that y is acircle. The
computations have been done via Matlab 5 (with floating point relative accuracy
~ 2.2204 1016),

The following integration algorithm is used to approximate the form (-, -),. Let y
be the circle with centre ¢ and radius p. Then

1

2mio
_—— de. (1
e+ peZiit) ()

1 . .
(B, V)e=p /O ¢ (c + pe? Yy (c + pe??)

Since thisis the integral of a periodic function over a complete period, the trape-
zoidal rule is an appropriate quadrature rule. If F* : [0, 1] — C isthe integrand
in the right-hand side of (17), then the g-point trapezoidal rule approximation to

(@, V)« isgiven by
1 14
W)= PO~ 2Pk =T,

k=0

The double prime indicates that the first and the last term of the sum are to be
multiplied by 1/2. As F* is periodic with period one, we may rewrite 7, as

142
T, ==Y F*(k/q).
9 k=0
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This shows that T, indeed depends on ¢ (and not g + 1) points. As

1
Iyq = ETq + T2

where
149 kg1
T_>24 = F*(—),

successive doubling of ¢ enables us in each step to reuse the integrand values
needed in the previous step. In the following examples we started with ¢ = 16
and continued doubling ¢ until |72, — T, | was sufficiently small.

Table 1. Ordinary momentss, and s; in Example 1

*

p Sp Sp
0 6.0 —751072
1 2.0 2.810°1
2 —1.410! —9110°1
3 —-8510! 2.1
4  -3010! -2.0
5 7.0102 2.4
6 25103 —2.310!
7 -1.0108 15101
8 —3.110% 9.910!
9 —-7.610% 46102

10 1.310° —4.8102

11 1.210° —-5.3103

Example 1. Let f(z) = ¥ — 2zcosz — 1. This function was aso considered
in[24]. All itszerosaresimple. Supposethat y isthecircley = {z € C: :: |z] =
4}. Then N = 6. Let us try an approach based on ordinary moments. Table 1
contains approximations for s, = (1, z”) and sy = (L z7). forp=0,1,...,11.
Note that in both cases the order of magnitude changes as p increases. The com-
puted approximations for the zeros Z1, ... , Zy obtained via Theorem 3 and 11
are shown in Table 2 and 3, respectively. The digits that are not correct are un-
derlined. Observe that the approximations for the zeros are very accurate. Using
ordinary moments has the advantage that only 2N integrals have to be ca culated
and hence, compared to agorithms ZEROS/FDF and ZEROSIF, the arithmetic cost is
rather limited. Also, a significant part of the computation required for each inte-
grand is the same for all of the integrands (namely, the computation of f//f or
1/f). By programming the quadrature algorithm in such a way that it is able to
integrate a vector of similar integrals, these common calculations need be done
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Table 2. Approximationsfor the zeros obtained via the ordinary moments s,

—2.18607949117582810-13  —  : 1.72762308312215310 12
5.30894930292942010 1 +  i:1.331791876750615
5.30894930292837610 1 —  i:1.331791876751221

—1.844233953262199 —  i:4.20449415204231710~ 14
1.414607177658190 +  i:3.047722062627169
1.414607177658185 —  i:3.047722062627173

Table 3. Approximationsfor the zeros obtained via the ordinary moments s;

5.87919848659344910~ 14 4+ i: 1.89683672639824910 14
5.30894930292936610 1 +  i:1.331791876751066
5.308949302929205101 —  i:1.331791876751080
—1.844233953262213 —  i:1.23119634742582610~ 15
1.414607177658181 +  i:3.047722062627166
1.414607177658180 —  i:3.047722062627167

Table 4. The number of correct significant digitsin case f(z) = Jo(z)

Exact zeros sy ZEROSIF Sp ZEROS/FDF
2.404825557695773 5 12 6 12
5.520078110286311 2 11 4 10
8.653727912911013 2 10 4 9
11.79153443901428 3 11 5 9
14.93091770848778 3 11 5 9
18.07106396791092 3 11 4 10
21.21163662987926 4 11 5 11
24.35247153074930 5 11 6 11
27.49347913204025 7 11 7 12

only once for each integrand evaluation point. However, asthe following example
shows, ordinary moments do not always lead to such accurate results.

Example 2. The Wilkinson polynomial and also functions that have clusters of
zeros aretypical, although somewhat extreme, examples where an approach based
on ordinary momentsislikely to fail. The following function is another example.
Supposethat f(z) = Jo(z), the Bessal function of thefirst kind and of order zero.
It is known that this function has only positive real zeros and that all these zeros
are simple (see, e.g., Watson [29]). In that sense it is related to the Wilkinson
polynomial. Supposethat y = {z € C: ::|z — 15| = 145}. Then N = 9.
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Table 4 givesfor each zero the number of correct significant digits obtained viathe
ordinary moments s (Theorem 11), algorithm zEROS/F, the ordinary moments s,,
(Theorem 3) and algorithm zZEROS/FDF.

Observe that the approximations for the zeros obtained via algorithms zEROSIF
and ZEROS/FDF are more accurate than the approximations obtained via ordinary
moments. Of course, there is clearly a trade-off between obtained accuracy and
cost. We advise the reader to start with the cheapest approach, i.e., the approach
based on the ordinary moments s*. If the computed approximations for the zeros
are not sufficiently accurate to berefined viaan iterative method (one that does not
need the derivative, of course), then one can use algorithm zEROS/F or switch to
one of the approaches that use both f and f'.

Example 3. Let us illustrate how the stopping criterion of algorithm zEROS/F
can be used to determine the value of N in case only an upper bound for N is
known. Consider again the function f(z) = ¢ — 2z cosz — 1 and suppose that
y ={z € C: :.|z] =5} Then N = 7. Let us assume that only the upper
bound 20 isknown. Algorithm zEROS/F defines the FOP ¢7 asan inner polynomial
and ¢3 asaregular FOP. At this point the algorithm asks itself whether N isequal
to two. It computes |(¢3, ¢3).|. To take into account the accuracy lost during the
evaluation of the quadrature formula, this quantity is scaled in acertain way. (We
omit the details of this heuristic strategy. See [24].) The resulting floating point
number is given by
1.998545018990362,

which is certainly not “sufficiently small” (we use 10~ as athreshold) and hence
the algorithm continues. It defines ¢3 as an inner polynomia and ¢ as aregular
FOP. Then it checksif N isegual to four. It compares

1.981687581683116

to 10~8 and continues. The polynomial @z is defined as aregular FOP. The algo-
rithm again decides to continue and defines ¢ asaregular FOP. The corresponding
floating point number is given by

0.3794164188056766

and the algorithm continues. It defines ¢ as aregular FOP. We have now reached
theactual valueof N. The scaed counterparts of theinner productsthat correspond
to the sequence (14) are given by

0.190814944765118 1016
1.799485800789563 10~ 1°
4.008700446099430 10~ 1°
5.548436809880727 10~ 1°
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6.603511781861113 10~ °
5.538342691314587 1015
3.494634208761963 10~ 1°
4.116380174988637 1016
5.379567405602837 10~ 1°
8.806423950940129 10~ °
8.912210606016112 10~ 1°
5.866528582137192 10~ 1°
1.127215921207880 10~ 1°

and hencethea gorithm decidesthat N isequal to sevenandit stops. Thecomputed
approximations for the zeros are given by

—2.212860324230451 1011 + i 1 5.610894531592185 1012
5.308949303037738 101 + i1 1.331791876751059
5.308949303027991 101 — i:1.331791876755293

—1.844233953258748 — i 1 1.244550552500599 10~ 12
1.414607177657119 + i: 3.047722062626751
1.414607177657241 — i: 3.047722062626826

i

—4.603562881675490 + : 3.443757237606488 1014

The correct significant digits are underlined. Let us now compare this with the
approach based on ordinary moments. The following theorem generalizes Theo-
rem11.

Theorem 14. Lett beaninteger > N. The eigenvalues of the pencil H~ — A H/
aregivenbythezerosZy, ... , Zy andt— N eigenvaluesthat may assumearbitrary
values.

Proof: Instead of the basis of the monomias {z”},~0 we consider again the basis
{¥p(2)}p=owherey,(z) :=zPforp =0,1,... ,N—landyn4,(z) i= 2" Pn(2)
forp=0,1,2,...,cf.the proof of Theorem 10. Define

t—1

F= = [(%» Z¢q>*] and = [<WP’ wq)*]

p-q=0

t—1
p.q=0

Then one can easily show that the generalized eigenvalue problem H}<x = AH}x
isequivalenttotheproblem F <y = AF}y. Herey := U,‘lx where U; denotesthe
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unit upper triangular matrix that contai nsthe coefficients(in the standard monomial
basis) of the polynomias vo(z), ¥1(2), ... , ¥:—1(z). Equation (16) then implies
that
< H*< O
=17 o

§ o] e m=[ o

0 0]
This proves thetheorem. O

Each of these indeterminate generalized eigenvalues corresponds to two corre-
sponding zeros on the diagonals of the generalized Schur decomposition of the
Hankel matrices H = and H;}*. When actually calculated, these diagonal entries
aredifferent from zero because of roundoff errors, and Matlab returnstheir quotient
as an eigenvalue. Thus, by solving the 20 x 20 generalized eigenvalue problem
Hj5 — A Hj, we obtain approximations for the seven zeros Zy, ... , Zy and 13
spurious eigenvalues. The latter can be detected by evaluating f at the computed
eigenvalues and also by taking into account that the computed approximations for
thezeros arelikely to lieinside y or at least quite close to it. The approximations
for the zeros obtained in thisway are 1 to 3 digitsless accurate than the approxima-
tions obtained via algorithm zEROS/F. By solving the 7 x 7 generalized eigenvalue
problem, one obtains approximations that are about as accurate as those computed
by agorithm zEROSIF.

Example 4. Let us consider afunction that has multiple zeros. Suppose that

f(z) =73z — 2% €% cosz +z° — 1 —sinz]
andlet y = {z € C: ::|z] = 3}. Notethat f has atriple zero at the origin
and a double zero at 7 = 2. The total number of zeros of f that lieinside y is

equal to eight, N = 8. By using the ordinary moments s we obtain the following
approximations for the zeros:

: 8.840648137844101 10~
: 1.020522445441414 10~4

1.183531315599526 104 —
—5.994094794302300 10> —

~. L L L~

—5.84121833536418410~°  + : 1.029363093460768 104
2.000000113260292 + : 9.253727402009306 10~/
1.999999886743732 — : 9.253736788382785 10/

—4.60714119728599510~1  +  i: 6.254277693471380101

—4.60714119728724610~1  —  i: 6.254277693472881101
1.664682869740608 +  i:1.09330745522126510 12

The correct significant digitsare underlined. Algorithm ZEROS/F gives comparable
results. Note how the obtained accuracy diminishes as the multiplicity of the zero
increases.
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