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Abstract

Let W be a simply connected region inC, f : W → C analytic in W and γ a positively oriented Jordan
curve in W that does not pass through any zero of f . We present an algorithm for computing all the
zeros of f that lie in the interior of γ . It proceeds by evaluating certain integrals along γ numerically
and is based on the theory of formal orthogonal polynomials. The algorithm requires only f and not its
first derivative f ′. We have found that it gives accurate approximations for the zeros. Moreover, it is
self-starting in the sense that it does not require initial approximations. The algorithm works for simple
zeros as well as multiple zeros, although it is unable to compute the multiplicity of a zero explicitly.
Numerical examples illustrate the effectiveness of our approach.
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1. Introduction

Let W be a simply connected region in C, f : W → C analytic in W and γ a
positively oriented Jordan curve in W that does not pass through any zero of f . We
consider the problem of computing all the zeros of f that lie in the interior of γ .
The algorithm that we will present requires only f and not its first derivative f ′.
It proceeds by evaluating certain integrals along γ numerically and is based on the
theory of formal orthogonal polynomials. We have found that our algorithm gives
accurate approximations for the zeros. Moreover, it is self-starting in the sense that
it does not require initial approximations. The algorithm works for simple zeros as
well as multiple zeros, although it is unable to compute the multiplicity of a zero
explicitly.

Our approach to the problem of computing all the zeros of an analytic function that
lie in the interior of a Jordan curve can be seen as a continuation of the pioneering
work of Delves and Lyness [8].

Let N denote the total number of zeros of f that lie in the interior of γ , i.e., the
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number of zeros where each zero is counted according to its multiplicity. Suppose
from now on that N > 0. Delves and Lyness considered the sequence Z1, . . . , ZN

that consists of all the zeros of f that lie inside γ . Each zero is repeated according to
its multiplicity. Suppose that the first derivative f ′ is available. An easy calculation
shows that the logarithmic derivative f ′/f has a simple pole at each zero of f with
residue equal to the multiplicity of the zero. Cauchy’s Theorem implies that

N = 1

2π i

∫
γ

f ′(z)
f (z)

dz. (1)

This formula enables one to calculate N via numerical integration. Methods for
the determination of zeros of analytic functions that are based on the numerical
evaluation of integrals are called quadrature methods. A review of such methods
was given by Ioakimidis [22]. Delves and Lyness considered the integrals

sp := 1

2π i

∫
γ

zp f ′(z)
f (z)

dz, p = 0, 1, 2, . . . .

The residue theorem implies that the sp’s are equal to the Newton sums of the
unknown zeros,

sp = Z
p
1 + · · · + Z

p
N, p = 0, 1, 2, . . . . (2)

These sp’s can again be calculated via numerical integration along γ .

Delves and Lyness considered the monic polynomial of degree N that has zeros
Z1, . . . , ZN ,

PN(z) :=
N∏

k=1

(z − Zk) =: zN + σ1 zN−1 + · · · + σN .

They called PN(z) the associated polynomial for the interior of γ . Its coefficients
can be calculated via Newton’s identities.

Theorem (Newton’s identities).

s1 + σ1 = 0
s2 + s1 σ1 + 2 σ2 = 0

...

sN + sN−1 σ1 + · · · + s1 σN−1 +N σN = 0.

Proof: An elegant proof was given by Carpentier and Dos Santos [6]. �

In this way they reduced the problem to the easier problem of computing the zeros
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of a polynomial. Unfortunately, the map from the Newton sums s1, . . . , sN to
the coefficients σ1, . . . , σN is usually ill-conditioned. Also, the polynomials that
arise in practice may be such that small changes in the coefficients produce much
larger changes in some of the zeros. This ill-conditioning of the map between the
coefficients of a polynomial and its zeros was investigated by Wilkinson [30]. The
location of the zeros determines their sensitivity to perturbations of the coefficients.
Multiple zeros and very close zeros are extremely sensitive, but even a succession
of moderately close zeros can result in severe ill-conditioning. Wilkinson states
that ill-conditioning in polynomials cannot be overcome without, at some stage of
the computation, resorting to high precision arithmetic.

If f has many zeros in the interior of γ , then the associated polynomial is of high
degree and could be very ill-conditioned. Therefore, if N is large, one has to calcu-
late the coefficients σ1, . . . , σN , and thus the integrals s1, . . . , sN , very accurately.
To avoid the use of high precision arithmetic and to reduce the number of integrand
evaluations needed to approximate the sp’s, Delves and Lyness suggested to con-
struct and solve the associated polynomial only if its degree is smaller than or equal
to a preassigned number M. Otherwise, the interior of γ is subdivided or covered
with a finite covering and the smaller regions are treated in turn. The choice of M
involves a trade-off. If M is increased, then fewer regions have to be scanned.
However, if M is chosen too large, then the resulting associated polynomial may
be ill-conditioned. Delves and Lyness chose M = 5.

Botten, Craig and McPhedran [2] made a Fortran 77 implementation of the method
of Delves and Lyness.

Instead of using Newton’s identities to construct the associated polynomial, Li
[26] considered (2) as a system of polynomial equations. He used a homotopy
continuation method to solve this system.

Recently, the authors (in collaboration with Tetsuya Sakurai) argued that what is
wrong with these approaches is that they consider the wrong set of unknowns, cf.
our paper [24]. One should consider the mutually distinct zeros and their respective
multiplicities separately. The quadrature method that we presented is a general-
ization of the method of Delves and Lyness. It is again based on the numerical
evaluation of integrals along γ that involve the logarithmic derivative f ′/f , but by
using the theory of formal orthogonal polynomials we were able to obtain more ac-
curate approximations for the zeros. The Fortran 90 package ZEAL [25] contains
an implementation of our algorithm. In this approach, the mutually distinct zeros
are computed by solving a generalized eigenvalue problem whereas the multiplic-
ities are calculated by solving a linear system of equations that has Vandermonde
structure. The number of mutually distinct zeros is determined indirectly.

In some applications, the calculation of the derivative f ′ is more time-consuming
than that of f . Delves and Lyness used an integration by parts to derive a formula
for sp that depends only on a multi-valued logarithm of f and not on f ′. To
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apply this formula, they had to keep track of the sheet on which log f (z) lies as z

runs along the curve γ . Unfortunately, in most cases it is impossible to do this
in a completely reliable way, i.e., without accidentally overlooking any sheets.
Carpentier and Dos Santos [6] and Davies [7] derived similar formulae. See also
Ioakimidis and Anastasselou [23].

The approach that we took in [24] involves integrals along γ that contain the
logarithmic derivative f ′/f . In this paper we will show that essentially the same
results can be obtained via integrals that contain 1/f . The derivative f ′ is no
longer needed. Of course, in this new approach not the mutually distinct zeros but
rather the unknowns Z1, . . . , ZN are calculated and the multiplicities cannot be
computed explicitly. But apart from this, the algorithm has the same advantages
as the algorithm in [24]. In particular, it does not require initial approximations
for the zeros and we have found that it gives accurate results.

Formula (1) involves the derivative of f and hence it is no longer available to us
for computing the total number of zeros N . Instead one can use the well-known
principle of the argument, which states that N is equal to the winding number of
the curve f (γ ) with respect to the origin. This will be discussed in Section 2
along with various reliability issues. In Section 3 we will give an overview of
the algorithm for computing zeros of analytic functions that we proposed in [24].
This should enable the reader to contrast this approach with the derivative-free
algorithm that we will present in Section 4. We conclude with numerical examples
in Section 5.

2. Computing the Total Number of Zeros

The total number of zeros of f that lie inside γ is given by the integral

N = 1

2π i

∫
γ

f ′(z)
f (z)

dz, (3)

cf. Eq. (1). Our derivative-free algorithm requires the value of N or an upper
bound for it. However, as by assumption the derivative f ′ is not available to us,
we cannot obtain the value of N by evaluating the integral in the right-hand side
of (3) numerically. Instead we proceed as follows. By making the substitution
w := f (z) we obtain that

N = 1

2π i

∫
f (γ )

1

w
dw. (4)

Here f (γ ) denotes the image of the curve γ under f . This is a closed curve that
avoids the origin. The winding number of f (γ ) with respect to the origin is defined
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as the increase in the argument of f (z) along γ divided by 2π ,

n
(
f (γ ), 0

)
:= 1

2π

[
arg f (z)

]
z∈γ .

Informally speaking, one can say that it is equal to the number of times that the curve
f (γ ) “winds” itself around the origin. A classical theorem in complex analysis
(see, e.g., Henrici [20, p. 233]) says that this winding number can be expressed
as the integral that appears in the right-hand side of (4). Hence N = n

(
f (γ ), 0

)
.

This result is known as the “principle of the argument.”

The value of N can thus be computed via an algorithm for computing winding
numbers. The range of the function arg is (−π, π]. If the increase in argument
along the straight section

[α, β] := { z ∈ C : z = tα + (1− t)β, 0 ≤ t ≤ 1 }, α, β ∈ C,

satisfies ∣∣[ arg f (z)
]
z∈[α,β]

∣∣ ≤ π,

then [
arg f (z)

]
z∈[α,β] = arg

(f (β)

f (α)

)
,

as the reader may easily verify. Let us discretize the curve γ into the sequence of
points c1, . . . , cG. Define cG+1 := c1. Then it follows that

N = 1

2π

G∑
k=1

arg
(f (ck+1)

f (ck)

)
if ∣∣[ arg f (z)

]
z∈[ck,ck+1]

∣∣ ≤ π (5)

for k = 1, . . . ,G. In other words, if condition (5) is satisfied, then N can be
computed simply by evaluating f at the points c1, . . . , cG. These considerations
form the basis for Henrici’s algorithm [20, pp. 239–241]. See also Ying and
Katz [32].

Unfortunately, condition (5) may not be easy to verify for an arbitrary analytic
function f . If the discretization of γ is inadequate, then the computed value
of n

(
f (γ ), 0

)
and hence N may be wrong. In this sense Henrici’s algorithm is

unreliable. Indeed, a finite number of functional or derivative values are not enough
to determine the number of zeros of f , even if f is a polynomial. This was shown
by Ying in his PhD thesis [31].

There exist several reliable approaches for computing N . However, they all assume
that some kind of global information is available, which may not always be the
case in practice.
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• Ying and Katz [32] developed a reliable variant of Henrici’s algorithm. They
assume that an upper bound for |f ′′(z)| along an arbitrary line segment is
available.

• Herlocker and Ely [21] experimented with a numerical integration approach
based on Simpson’s rule and the corresponding formula for the integration
error. This formula involves the fourth derivative of the integrand evaluated at an
unknown point in the integration interval. Automatic differentiation combined
with interval arithmetic enabled them to bound the integration error.

• The total number of zeros can also be computed as the topological degree of
the mapping

F(x, y) := (Re f (x + iy), Im f (x + iy)
)

with respect to the interior of γ (interpreted as a subset ofR2) and the point (0, 0).
(We will not go into the details of degree theory. For an excellent introduction,
we refer the interested reader to Lloyd’s book [27].) Boult and Sikorski [3] con-
sidered the case that γ is the boundary of the unit square [0, 1]× [0, 1]. They
proved that, in case F satisfies the Lipschitz condition with constant K > 0
and if the infinity norm of F on γ is at least d > 0 where K/(4d) ≥ 1, then
at least 4bK/(4d)c function evaluations are needed to compute the topological
degree. See also Traub, Wasilkowski and Woźniakowski [28, pp. 193–194].

These algorithms are reliable but they can only be used if certain global information
(an upper bound for the modulus of a higher derivative of f or the Lipschitz
constant of F = (Re f, Im f ) or a lower bound for the infinity norm of F on γ )
is available or can easily be computed (for example, via automatic differentiation
and/or interval arithmetic). If this is not the case and f ′ is not available, then
Henrici’s algorithm is really the only algorithm that one can use to compute N .
The reader should realize, though, that the computed integer may in fact only be
a strictly lower bound for N and hence the output of Henrici’s algorithm should
be handled with caution. When given an upper bound for N , our algorithm will
determine the value of N via the stopping criterion that we will discuss below.
However, our algorithm will fail in case the value of N that it is given is in fact
strictly smaller than the actual value of N .

An Algorithm Based on f ′/f

Let n denote the number of mutually distinct zeros of f that lie inside γ . Let
z1, . . . , zn be these zeros and ν1, . . . , νn their respective multiplicities. The quadra-
ture method that we recently proposed in [24] generalizes the approach of Delves
and Lyness. Our approach assumes that f as well as its first derivative f ′ are avail-
able. By using the theory of formal orthogonal polynomials, we showed how the
mutually distinct zeros can be calculated by solving generalized eigenvalue prob-
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lems. The value of n is determined indirectly. Once n and z1, . . . , zn have been
found, the problem becomes linear and the multiplicities ν1, . . . , νn are computed
by solving a linear system of equations that has Vandermonde structure. In this
section we will give a brief summary of these results. This should enable the reader
to compare this approach with the derivative-free algorithm that we will present in
Section 4. For more details (including proofs and a pseudo-code formulation of
the algorithm), we refer to [24].

Let P be the linear space of polynomials with complex coefficients. One defines a
symmetric bilinear form

〈·, ·〉 : P× P→ C

by setting

〈φ,ψ〉 := 1

2π i

∫
γ

φ(z)ψ(z)
f ′(z)
f (z)

dz =
n∑

k=1

νkφ(zk)ψ(zk) (6)

for any two polynomials φ,ψ ∈ P. The latter equality follows from the fact
that f ′/f has a simple pole at zk with residue νk for k = 1, . . . , n. Note that
〈·, ·〉 can be evaluated via numerical integration along γ . In what follows, we will
assume that all the “inner products” 〈φ,ψ〉 that are needed have been calculated.
Let sp := 〈1, zp〉 for p = 0, 1, 2, . . . . These ordinary moments are equal to the
Newton sums of the unknown zeros,

sp =
n∑

k=1

νkz
p
k , p = 0, 1, 2, . . . .

In particular, s0 = ν1 + · · · + νn = N , the total number of zeros. Hence, we may
assume that the value of N is known. Let Hk be the k × k Hankel matrix

Hk :=
[
sp+q

]k−1

p,q=0
=


s0 s1 · · · sk−1

s1 . .
. ...

... . .
. ...

sk−1 · · · · · · s2k−2


for k = 1, 2, . . . . A monic polynomial ϕt of degree t ≥ 0 that satisfies

〈zk, ϕt (z)〉 = 0, k = 0, 1, . . . , t − 1, (7)

is called a formal orthogonal polynomial (FOP) of degree t . (Observe that condition
(7) is void for t = 0.) The adjective formal emphasizes the fact that, in general,
the form 〈·, ·〉 does not define a true inner product. An important consequence of
this fact is that, in contrast to polynomials that are orthogonal with respect to a true
inner product, formal orthogonal polynomials need not exist or need not be unique
for every degree. (For details, see Draux [9, 10], Gutknecht [18, 19] or Gragg and
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Gutknecht [17].) If (7) is satisfied and ϕt is unique, then ϕt is called a regular FOP
and t a regular index. If we set

ϕt (z) =: u0,t + u1,t z + · · · + ut−1,t z
t−1 + zt

then condition (7) translates into the Yule–Walker system
s0 s1 · · · st−1

s1 . .
. ...

... . .
. ...

st−1 · · · · · · s2t−2




u0,t

u1,t

...
ut−1,t

 = −


st
st+1

...
s2t−1

 . (8)

Hence, the regular FOP of degree t ≥ 1 exists if and only if the matrix Ht is
nonsingular.

The following theorem characterizes n, the number of mutually distinct zeros. It
enables one, theoretically at least, to calculate n as rank HN .

Theorem 2. n = rank Hn+p for every nonnegative integer p. In particular,
n = rank HN .

Therefore Hn is nonsingular whereas Ht is singular for t > n. Note that H1 = [s0]
is nonsingular by assumption. The regular FOP of degree 1 exists and is given by
ϕ1(z) = z − µ where

µ := s1

s0
=
∑n

k=1 νkzk∑n
k=1 νk

is the arithmetic mean of the zeros. Theorem 2 implies that the regular FOP ϕn of
degree n exists and tells us also that regular FOPs of degree larger than n do not
exist. The polynomial ϕn is easily seen to be

ϕn(z) = (z− z1) · · · · · (z− zn). (9)

It is the monic polynomial of degree n that has z1, . . . , zn as simple zeros. This
polynomial has the peculiar property that it is orthogonal to all polynomials (in-
cluding itself),

〈zp, ϕn(z)〉 = 0, p = 0, 1, 2, . . . . (10)

Once n is known, the mutually distinct zeros z1, . . . , zn can be calculated by
solving a generalized eigenvalue problem. Indeed, let H<

n be the Hankel matrix

H<
n :=


s1 s2 · · · sn

s2 . .
. ...

... . .
. ...

sn · · · · · · s2n−1

 .
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Theorem 3. The eigenvalues of the pencil H<
n − λHn are given by z1, . . . , zn.

Proof: Let Vn be the Vandermonde matrix based on the points z1, . . . , zn,

Vn :=
 1 z1 · · · zn−1

1
...

...
...

1 zn · · · zn−1
n

 ,

and define the diagonal matrices Dn and D
(1)
n as

Dn := diag (ν1, . . . , νn) and D(1)
n := diag (ν1z1, . . . , νnzn).

Then Vn as well as Dn are nonsingular. One can easily verify that the Hankel
matrices Hn and H<

n can be factorized as

H<
n = V T

n D(1)
n Vn and Hn = V T

n DnVn.

Now let λ? be an eigenvalue of the pencil H<
n − λHn with eigenvector x. Then

H<
n x = λ?Hnx

⇔ V T
n D(1)

n Vnx = λ?V T
n DnVnx

⇔ D(1)
n y = λ?Dny if y := Vnx

⇔ diag (z1, . . . , zn)y = λ?y.

This proves the theorem. �

Once z1, . . . , zn have been found, the multiplicities ν1, . . . , νn can be computed
by solving the Vandermonde system

1 · · · 1
z1 · · · zn
...

...
zn−1

1 · · · zn−1
n




ν1
ν2
...

νn

 =


s0
s1
...

sn−1

 . (11)

Note. Vandermonde matrices are often very ill-conditioned [15, 16]. In this case,
however, the components of the solution vector of (11) are known to be integers,
and therefore there is no problem, even if the linear system (11) happens to be
ill-conditioned, as long as the computed approximations for the components of the
solution vector have an absolute error that is less than 0.5.

Theorems 2 and 3 suggest the following approach to compute n and z1, . . . , zn.
Start by computing the total number of zeros N . Next, compute s1, . . . , s2N−2. As
already mentioned, this can be done via numerical integration along γ . The number
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of mutually distinct zeros is then calculated as the rank of HN , n = rank HN .
Finally, the zeros z1, . . . , zn are obtained by solving a generalized eigenvalue
problem. However, this approach has several disadvantages:

• Theoretically the N − n smallest singular values of HN are equal to zero. In
practice, this will not be the case, and it may be difficult to determine the
rank of HN and hence the value of n in case the gap between the computed
approximations for the zero singular values and the nonzero singular values is
too small.

• The approximations for z1, . . . , zn obtained via Theorem 3 may not be very
accurate. Indeed, the mapping from the Newton sums to the zeros and their
respective multiplicities,

(s0, s1, . . . , s2n−1) 7→ (z1, . . . , zn, ν1, . . . , νn), (12)

is usually very ill-conditioned. (See, e.g., the papers by Gautschi [12, 13,
14] who studied the conditioning of (12) in the context of Gauss quadrature
formulae.) Indeed, a classical adage in numerical analysis says that one should
avoid the use of ordinary moments.

The algorithm that we proposed in [24] gives more accurate approximations for
z1, . . . , zn. The idea is the following. The inner products that appear in the Hankel
matrices Hn and H<

n are related to the standard monomial basis. Why not consider
a different basis? In other words, why not try to use modified moments instead of
ordinary moments? The fact that

Hn =
[
〈zp, zq〉

]n−1

p,q=0
and H<

n =
[
〈zp, zzq〉

]n−1

p,q=0

suggests that one should consider the matrices[
〈ψp,ψq〉

]n−1

p,q=0
and

[
〈ψp,ψ1ψq〉

]n−1

p,q=0
(13)

where ψk is a polynomial of degree k for k = 0, 1, . . . , n − 1. Of course, even
if one succeeds in writing Theorem 3 in terms of the matrices that appear in (13),
the question remains which polynomials ψk to choose. We found that very ac-
curate results are obtained if one uses the formal orthogonal polynomials. In
other words, the zeros of ϕn(z) will be computed from inner products that in-
volve ϕ0(z), ϕ1(z), . . . , ϕn−1(z). The value of n will be determined indirectly.
Before we can explain this in more detail, we have to say a few words about the
orthogonality properties of FOPs.

If Hn is strongly nonsingular, i.e., if all its leading principal submatrices are non-
singular, then we have a full set {ϕ0, ϕ1, . . . , ϕn} of regular FOPs.
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What happens if Hn is not strongly nonsingular? By filling up the gaps in the
sequence of existing regular FOPs it is possible to define a sequence {ϕt }∞t=0, with ϕt

a monic polynomial of degree t , such that if these polynomials are grouped into
blocks according to the sequence of regular indices, then polynomials belonging to
different blocks are orthogonal with respect to 〈·, ·〉. More precisely, define {ϕt }∞t=0
as follows. If t is a regular index, then let ϕt be the regular FOP of degree t . Else
define ϕt as ϕrψt,r where r is the largest regular index less than t and ψt,r is an
arbitrary monic polynomial of degree t − r . In the latter case ϕt is called an inner
polynomial. These polynomials {ϕt }∞t=0 can be grouped into blocks. Each block
starts with a regular FOP and the remaining polynomials are inner polynomials.
Note that the last block has infinite length. The block orthogonality property is
then expressed by the fact that the Gram matrix Gn := [〈ϕr, ϕs〉]n−1

r,s=0 is block
diagonal. The diagonal blocks are nonsingular, symmetric and zero above the
main antidiagonal. (See Bultheel and Van Barel [4] for more details.)

Theorem 3 can be interpreted in the following way: the zeros of the regular FOP
of degree n can be calculated by solving a generalized eigenvalue problem. The
following theorem shows that this zero/eigenvalue property holds for all regular
FOPs. This will enable us to compute regular FOPs in their product representation.
The theorem also provides a solution to the problem of how to switch from ordinary
moments to modified moments. Define the matrices Gk and G

(1)
k as

Gk :=
[
〈ϕr, ϕs〉

]k−1

r,s=0
and G

(1)
k :=

[
〈ϕr, ϕ1ϕs〉

]k−1

r,s=0

for k = 1, 2, . . . .

Theorem 4. Let t ≥ 1 be a regular index and let zt,1, . . . , zt,t be the zeros of
the regular FOP ϕt . Then the eigenvalues of the pencil G

(1)
t − λGt are given by

ϕ1(zt,1), . . . , ϕ1(zt,t ). In other words, they are given by zt,1 − µ, . . . , zt,t − µ

where µ = s1/s0.

Corollary 5. The eigenvalues of G
(1)
n − λGn are given by z1 − µ, . . . , zn − µ

where µ = s1/s0.

Regular FOPs are characterized by the fact that the determinant of a Hankel matrix
is different from zero, while inner polynomials correspond to singular Hankel
matrices. To decide whether ϕt(z) should be defined as a regular FOP or as an
inner polynomial, one could therefore calculate the determinant of Ht and check
if it is equal to zero. However, from a numerical point of view such a test “is
equal to zero” does not make sense. Because of rounding errors (both in the
evaluation of 〈·, ·〉 and in the calculation of the determinant) one would encounter
only regular FOPs. Strictly speaking one could say that inner polynomials are not
needed in numerical calculations. However, the opposite is true! Let us agree
to call a regular FOP well-conditioned if its corresponding Yule–Walker system
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(8) is well-conditioned, and ill-conditioned otherwise. To obtain a numerically
stable algorithm, it is crucial to generate only well-conditioned regular FOPs and
to replace ill-conditioned regular FOPs by inner polynomials. Stable look-ahead
solvers for linear systems of equations that have Hankel structure are based on this
principle [1, 5, 11]. In this approach the diagonal blocks in Gn are taken (slightly)
larger than strictly necessary to avoid ill-conditioned blocks.

The algorithm for calculating the mutually distinct zeros z1, . . . , zn that we pro-
posed in [24] proceeds by computing the polynomials

ϕ0(z), ϕ1(z), . . . , ϕn(z)

in their product representation, starting with ϕ0(z) ← 1 and ϕ1(z) ← z − µ.
At each step, to decide whether it is numerically feasible to generate the next
polynomial in the sequence as a regular FOP, the algorithm uses a heuristic method.
By doing a large number of numerical experiments, we reached the conclusion that
this heuristic approach leads to accurate results. For more details, we refer to [24].

How does one obtain the value of n? Theorem 2 and Eqs. (6) and (9) imply the
following.

Theorem 6. Let t ≥ n. Then ϕt(zk) = 0 for k = 1, . . . , n and 〈zp, ϕt (z)〉 = 0
for all p ≥ 0.

The value of n can be determined as follows. Suppose that the algorithm has just
generated a (well-conditioned) regular FOP ϕr(z). To check whether n = r , the
algorithm scans the sequence( |〈zτϕr(z), ϕr(z)〉|

)N−1−r

τ=0 . (14)

If all the elements are “sufficiently small,” then the algorithm concludes that indeed
n = r and it stops.

As we have already mentioned, once n and (approximations for) z1, . . . , zn have
been found, the multiplicities ν1, . . . , νn are computed by solving the Vander-
monde system (11).

This concludes our discussion of the algorithm presented in [24]. From now on
we will refer to this algorithm as “algorithm ZEROS/FDF.”

4. A Derivative-Free Algorithm

The results obtained in the previous section are based on the symmetric bilinear
form (6), which involves the logarithmic derivative f ′/f . Instead, let us consider
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the form
〈·, ·〉? : P× P→ C

defined as

〈φ,ψ〉? := 1

2π i

∫
γ

φ(z)ψ(z)
1

f (z)
dz (15)

for any two polynomials φ,ψ ∈ P. Again, this form can be evaluated via numerical
integration along γ and in what follows we will assume that all the “inner products”
〈φ,ψ〉? that are needed have been calculated.

We will show that essentially the same results can be obtained with the form 〈·, ·〉?
as previously with 〈·, ·〉.

The integrand that appears in the right-hand side of (15) has a pole at every zero
of f that lies in the interior of γ and the order of the pole is equal to the multiplicity
of the zero. Therefore, the residue theorem implies that 〈φ,ψ〉? is equal to the
sum of the residues of the function φψ/f at these poles. The following result can
easily be verified.

Proposition 7. If all the N zeros Z1, . . . , ZN of f that lie inside γ are simple,
then

〈φ,ψ〉? =
N∑

k=1

φ(Zk)ψ(Zk)

f ′(Zk)
.

In general, if f has multiple zeros, then an elegant expression for 〈φ,ψ〉? written
as a sum is much more difficult to obtain. Fortunately, it is not necessary to have
such an expression available. The proofs of Theorems 2 and 3 given in [24] depend
completely on the details of the way in which 〈φ,ψ〉 can be written as a sum, cf.
Eq. (6). However, as we will see, the corresponding theorems can be proved in a
different way.

Define s?
p := 〈1, zp〉? for p = 0, 1, 2, . . . and let H?

k be the k × k Hankel matrix

H?
k :=

[
s?
p+q

]k−1

p,q=0

for k = 1, 2, . . . . The formal orthogonal polynomials associated with 〈·, ·〉? can
be defined as before. The coefficients of regular FOPs can be computed by solving
a Yule–Walker system, cf. Equation (8). Also, t ≥ 1 is a regular index if and only
if the matrix H?

t is nonsingular.

The residue theorem immediately implies that the polynomial

PN(z) =
N∏

k=1

(z− Zk)
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satisfies
〈zp, PN(z)〉? = 0, p = 0, 1, 2, . . . . (16)

In this sense, the polynomial PN(z) behaves with respect to the form 〈·, ·〉? in the
same way as the polynomial ϕn(z) behaves with respect to 〈·, ·〉, cf. Eqs. (9) and
(10). We will prove that N is the largest regular index for 〈·, ·〉?. This will enable
us to compute the zeros of the regular FOP PN(z), i.e., the zeros Z1, . . . , ZN , in
essentially the same way as algorithm ZEROS/FDF computes the zeros of ϕn(z), i.e.,
the mutually distinct zeros z1, . . . , zn.

The following lemma will play an important role. Define the set I as follows:

I := {φ ∈ P : : : 〈zp, φ(z)〉? = 0 for p = 0, 1, 2, . . . }.

Lemma 8. The set I is equal to the ideal generated by the polynomial PN . In
other words,

I = {φ ∈ P : ∃α ∈ P : φ = αPN }.

Proof: Suppose that a ∈ C lies in the interior of γ . Let the function g : W → C
be meromorphic and suppose that g has neither zeros nor poles on γ . Then the
coefficient of (z− a)−p−1 in the Laurent expansion of g at the point a is given by
the integral

1

2π i

∫
γ

(z− a)p g(z) dz

for p = 0, 1, 2, . . . . Let φ ∈ I. Then

〈(z− Zk)
p, φ(z)〉? = 1

2π i

∫
γ

(z− Zk)
p φ(z)

f (z)
dz = 0

for k = 1, . . . , N and p = 0, 1, 2, . . . and thus the function φ/f has a removable
singularity at the points Z1, . . . , ZN . Thus φ has to be a multiple of PN . This
proves the lemma. �

Theorem 9. The matrix H?
N is nonsingular.

Proof: We will prove that PN is the only monic polynomial of degree N that is or-
thogonal to all polynomials of lower degree. Suppose that QN is another such poly-
nomial. Then PN−QN is of degree at most N−1 and hence 〈PN−QN,QN 〉? = 0.
Equation (16) then implies that 〈QN,QN 〉? = 0. Thus QN is not only orthogonal
to all polynomials of degree ≤ N −1 but also to all polynomials of degree N . The
polynomial zPN − zQN has degree ≤ N and therefore 〈zPN − zQN,QN 〉? = 0.
As 〈zPN,QN 〉? = 〈PN, zQN 〉? = 0, it follows that 〈zQN,QN 〉? = 0. Thus QN

is also orthogonal to all polynomials of degree N + 1. By continuing this way,
one can prove that QN is orthogonal to all polynomials, QN ∈ I. As QN is a
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monic polynomial of degree N , the previous lemma then implies that QN = PN .
Thus there is only one monic polynomial of degree N that is orthogonal to all
polynomials of lower degree. This implies that the matrix H?

N is nonsingular. �

Theorem 10. The matrix H?
N+k is singular for k = 1, 2, . . . .

Proof: Instead of the basis of the monomials {zp}p≥0 we consider the basis
{ψp(z)}p≥0 whereψp(z) := zp for p = 0, 1, . . . , N−1 andψN+p(z) := zpPN(z)

for p = 0, 1, 2, . . . . Let

F?
l :=

[
〈ψp,ψq〉?

]l−1

p,q=0

be the corresponding l×l Gram matrix for l = 1, 2, . . . . Equation (16) then implies
that det F?

N+k = 0 for k = 1, 2, . . . . One can easily verify that det F?
l = det H?

l
for l = 1, 2, . . . . This proves the theorem. �

We have now identified PN(z) as the regular FOP of degree N and we have shown
that regular FOPs of degree larger than N do not exist. Note that s?

0 is equal to the
sum of the residues of 1/f at the points Z1, . . . , ZN and hence it is not necessarily
different from zero. Therefore, the regular FOP of degree 1 with respect to the
form 〈·, ·〉? does not always exist, in contrast to 〈·, ·〉.

The zero/eigenvalue properties discussed in the previous section hold not only for
〈·, ·〉 but for every symmetric bilinear form. The zeros Z1, . . . , ZN can therefore
also be calculated by solving a generalized eigenvalue problem. The following
result can be proved in the same way as Theorem 3. Let H?<

k be the Hankel matrix

H?<
k :=


s?

1 s?
2 · · · s?

k

s?
2 . .

. ...
... . .

. ...
s?
k · · · · · · s?

2k−1


for k = 1, 2, . . . .

Theorem 11. The eigenvalues of the pencil H?<
N −λH?

N are given by Z1, . . . , ZN .

In the next section we will compare the accuracy obtained via Theorem 3 to the
accuracy obtained via Theorem 11.

Algorithm ZEROS/FDF can be seen as a general algorithm for computing zeros
of FOPs applied to the specific form 〈·, ·〉. The following theorem leads to an
analogous algorithm for the form 〈·, ·〉? and hence for the zeros Z1, . . . , ZN . We
will call this approach “algorithm ZEROS/F.”



84 P. Kravanja and M. Van Barel

Let {ϕ?
t }t≥0 denote the FOPs associated with 〈·, ·〉?. Define the matrices G?

k and
G?z

k as

G?
k :=

[
〈ϕ?

r , ϕ
?
s 〉
]k−1

r,s=0
and G?z

k :=
[
〈ϕ?

r , zϕ
?
s 〉
]k−1

r,s=0

for k = 1, 2, . . . . The following results can be proved in the same way as Theorem
4 and Corollary 5.

Theorem 12. Let t ≥ 1 be a regular index for 〈·, ·〉? and let z?
t,1, . . . , z?

t,t be the
zeros of the regular FOP ϕ?

t . Then the eigenvalues of the pencil G?z
t − λG?

t are
given by z?

t,1, . . . , z?
t,t .

Corollary 13. The eigenvalues of G?z
N − λG?

N are given by Z1, . . . , ZN .

If instead of N only an upper bound for N is available, then the value of N can be
computed via a stopping criterion similar to the one discussed after Theorem 6.

5. Numerical Examples

In the following examples we have considered the case that γ is a circle. The
computations have been done via Matlab 5 (with floating point relative accuracy
≈ 2.2204 10−16).

The following integration algorithm is used to approximate the form 〈·, ·〉?. Let γ

be the circle with centre c and radius ρ. Then

〈φ,ψ〉? = ρ

∫ 1

0
φ(c + ρe2πiθ )ψ(c + ρe2πiθ )

1

f (c + ρe2πiθ )
e2πiθ dθ. (17)

Since this is the integral of a periodic function over a complete period, the trape-
zoidal rule is an appropriate quadrature rule. If F? : [0, 1]→ C is the integrand
in the right-hand side of (17), then the q-point trapezoidal rule approximation to
〈φ,ψ〉? is given by

〈φ,ψ〉? =
∫ 1

0
F?(θ) dθ ≈ 1

q

q∑
k=0

′′F?(k/q) =: Tq.

The double prime indicates that the first and the last term of the sum are to be
multiplied by 1/2. As F? is periodic with period one, we may rewrite Tq as

Tq = 1

q

q−1∑
k=0

F?(k/q).
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This shows that Tq indeed depends on q (and not q + 1) points. As

T2q = 1

2
Tq + Tq→2q

where

Tq→2q := 1

2q

q−1∑
k=0

F?
(2k + 1

2q

)
,

successive doubling of q enables us in each step to reuse the integrand values
needed in the previous step. In the following examples we started with q = 16
and continued doubling q until |T2q − Tq | was sufficiently small.

Table 1. Ordinary moments sp and s?
p in Example 1

p sp s?
p

0 6.0 −7.5 10−2

1 2.0 2.8 10−1

2 −1.4 101 −9.1 10−1

3 −8.5 101 2.1
4 −3.0 101 −2.0
5 7.0 102 2.4
6 2.5 103 −2.3 101

7 −1.0 103 1.5 101
8 −3.1 104 9.9 101

9 −7.6 104 4.6 102

10 1.3 105 −4.8 102

11 1.2 106 −5.3 103

Example 1. Let f (z) = e3z − 2z cos z − 1. This function was also considered
in [24]. All its zeros are simple. Suppose that γ is the circle γ = { z ∈ C : : : |z| =
4 }. Then N = 6. Let us try an approach based on ordinary moments. Table 1
contains approximations for sp = 〈1, zp〉 and s?

p = 〈1, zp〉? for p = 0, 1, . . . , 11.
Note that in both cases the order of magnitude changes as p increases. The com-
puted approximations for the zeros Z1, . . . , ZN obtained via Theorem 3 and 11
are shown in Table 2 and 3, respectively. The digits that are not correct are un-
derlined. Observe that the approximations for the zeros are very accurate. Using
ordinary moments has the advantage that only 2N integrals have to be calculated
and hence, compared to algorithms ZEROS/FDF and ZEROS/F, the arithmetic cost is
rather limited. Also, a significant part of the computation required for each inte-
grand is the same for all of the integrands (namely, the computation of f ′/f or
1/f ). By programming the quadrature algorithm in such a way that it is able to
integrate a vector of similar integrals, these common calculations need be done
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Table 2. Approximations for the zeros obtained via the ordinary moments sp

−2.18607949117582810−13 − i : 1.72762308312215310−12

5.30894930292942010−1 + i : 1.331791876750615

5.30894930292837610−1 − i : 1.331791876751221

−1.844233953262199 − i : 4.20449415204231710−14

1.414607177658190 + i : 3.047722062627169
1.414607177658185 − i : 3.047722062627173

Table 3. Approximations for the zeros obtained via the ordinary moments s∗p
5.87919848659344910−14 + i : 1.89683672639824910−14

5.30894930292936610−1 + i : 1.331791876751066

5.30894930292920510−1 − i : 1.331791876751080

−1.844233953262213 − i : 1.23119634742582610−15

1.414607177658181 + i : 3.047722062627166
1.414607177658180 − i : 3.047722062627167

Table 4. The number of correct significant digits in case f (z) = J0(z)

Exact zeros s?
p ZEROS/F sp ZEROS/FDF

2.404825557695773 5 12 6 12
5.520078110286311 2 11 4 10
8.653727912911013 2 10 4 9
11.79153443901428 3 11 5 9
14.93091770848778 3 11 5 9
18.07106396791092 3 11 4 10
21.21163662987926 4 11 5 11
24.35247153074930 5 11 6 11
27.49347913204025 7 11 7 12

only once for each integrand evaluation point. However, as the following example
shows, ordinary moments do not always lead to such accurate results.

Example 2. The Wilkinson polynomial and also functions that have clusters of
zeros are typical, although somewhat extreme, examples where an approach based
on ordinary moments is likely to fail. The following function is another example.
Suppose that f (z) = J0(z), the Bessel function of the first kind and of order zero.
It is known that this function has only positive real zeros and that all these zeros
are simple (see, e.g., Watson [29]). In that sense it is related to the Wilkinson
polynomial. Suppose that γ = { z ∈ C : : : |z − 15| = 14.5 }. Then N = 9.
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Table 4 gives for each zero the number of correct significant digits obtained via the
ordinary moments s?

p (Theorem 11), algorithm ZEROS/F, the ordinary moments sp
(Theorem 3) and algorithm ZEROS/FDF.

Observe that the approximations for the zeros obtained via algorithms ZEROS/F
and ZEROS/FDF are more accurate than the approximations obtained via ordinary
moments. Of course, there is clearly a trade-off between obtained accuracy and
cost. We advise the reader to start with the cheapest approach, i.e., the approach
based on the ordinary moments s?

p. If the computed approximations for the zeros
are not sufficiently accurate to be refined via an iterative method (one that does not
need the derivative, of course), then one can use algorithm ZEROS/F or switch to
one of the approaches that use both f and f ′.

Example 3. Let us illustrate how the stopping criterion of algorithm ZEROS/F

can be used to determine the value of N in case only an upper bound for N is
known. Consider again the function f (z) = e3z − 2z cos z − 1 and suppose that
γ = { z ∈ C : : : |z| = 5 }. Then N = 7. Let us assume that only the upper
bound 20 is known. Algorithm ZEROS/F defines the FOP ϕ?

1 as an inner polynomial
and ϕ?

2 as a regular FOP. At this point the algorithm asks itself whether N is equal
to two. It computes |〈ϕ?

2, ϕ
?
2〉?|. To take into account the accuracy lost during the

evaluation of the quadrature formula, this quantity is scaled in a certain way. (We
omit the details of this heuristic strategy. See [24].) The resulting floating point
number is given by

1.998545018990362,

which is certainly not “sufficiently small” (we use 10−8 as a threshold) and hence
the algorithm continues. It defines ϕ?

3 as an inner polynomial and ϕ?
4 as a regular

FOP. Then it checks if N is equal to four. It compares

1.981687581683116

to 10−8 and continues. The polynomial ϕ?
5 is defined as a regular FOP. The algo-

rithm again decides to continue and defines ϕ?
6 as a regular FOP. The corresponding

floating point number is given by

0.3794164188056766

and the algorithm continues. It defines ϕ?
7 as a regular FOP. We have now reached

the actual value of N . The scaled counterparts of the inner products that correspond
to the sequence (14) are given by

9.190814944765118 10−16

1.799485800789563 10−15

4.008700446099430 10−15

5.548436809880727 10−15
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6.603511781861113 10−15

5.538342691314587 10−15

3.494634208761963 10−15

4.116380174988637 10−16

5.379567405602837 10−15

8.806423950940129 10−15

8.912210606016112 10−15

5.866528582137192 10−15

1.127215921207880 10−15

and hence the algorithm decides that N is equal to seven and it stops. The computed
approximations for the zeros are given by

−2.212860324230451 10−11 + i : 5.610894531592185 10−12

5.308949303037738 10−1 + i : 1.331791876751059

5.308949303027991 10−1 − i : 1.331791876755293

−1.844233953258748 − i : 1.244550552500599 10−12

1.414607177657119 + i : 3.047722062626751
1.414607177657241 − i : 3.047722062626826
−4.603562881675490 + i : 3.443757237606488 10−14

The correct significant digits are underlined. Let us now compare this with the
approach based on ordinary moments. The following theorem generalizes Theo-
rem 11.

Theorem 14. Let t be an integer ≥ N . The eigenvalues of the pencil H?<
t − λH?

t
are given by the zeros Z1, . . . , ZN and t−N eigenvalues that may assume arbitrary
values.

Proof: Instead of the basis of the monomials {zp}p≥0 we consider again the basis
{ψp(z)}p≥0 whereψp(z) := zp for p = 0, 1, . . . , N−1 andψN+p(z) := zpPN(z)
for p = 0, 1, 2, . . . , cf. the proof of Theorem 10. Define

F?<
t :=

[
〈ψp, zψq〉?

]t−1

p,q=0
and F?

t :=
[
〈ψp,ψq〉?

]t−1

p,q=0
.

Then one can easily show that the generalized eigenvalue problem H?<
t x = λH?

t x

is equivalent to the problem F?<
t y = λF?

t y. Here y := U−1
t x where Ut denotes the



A Derivative-Free Algorithm for Computing Zeros of Analytic Functions 89

unit upper triangular matrix that contains the coefficients (in the standard monomial
basis) of the polynomials ψ0(z), ψ1(z), . . . , ψt−1(z). Equation (16) then implies
that

F?<
t =

[
H?<

N 0
0 0

]
and F?

t =
[
H?

N 0
0 0

]
.

This proves the theorem. �

Each of these indeterminate generalized eigenvalues corresponds to two corre-
sponding zeros on the diagonals of the generalized Schur decomposition of the
Hankel matrices H?<

t and H?
t . When actually calculated, these diagonal entries

are different from zero because of roundoff errors, and Matlab returns their quotient
as an eigenvalue. Thus, by solving the 20 × 20 generalized eigenvalue problem
H?<

20 − λH?
20 we obtain approximations for the seven zeros Z1, . . . , ZN and 13

spurious eigenvalues. The latter can be detected by evaluating f at the computed
eigenvalues and also by taking into account that the computed approximations for
the zeros are likely to lie inside γ or at least quite close to it. The approximations
for the zeros obtained in this way are 1 to 3 digits less accurate than the approxima-
tions obtained via algorithm ZEROS/F. By solving the 7× 7 generalized eigenvalue
problem, one obtains approximations that are about as accurate as those computed
by algorithm ZEROS/F.

Example 4. Let us consider a function that has multiple zeros. Suppose that

f (z) = z2(z− 2)2[ e2z cos z+ z3 − 1− sin z ]

and let γ = {z ∈ C : : : |z| = 3}. Note that f has a triple zero at the origin
and a double zero at z = 2. The total number of zeros of f that lie inside γ is
equal to eight, N = 8. By using the ordinary moments s?

p we obtain the following
approximations for the zeros:

1.183531315599526 10−4 − i : 8.840648137844101 10−7

−5.994094794302300 10−5 − i : 1.020522445441414 10−4

−5.841218335364184 10−5 + i : 1.029363093460768 10−4

2.000000113260292 + i : 9.253727402009306 10−7

1.999999886743732 − i : 9.253736788382785 10−7

−4.607141197285995 10−1 + i : 6.254277693471380 10−1

−4.607141197287246 10−1 − i : 6.254277693472881 10−1

1.664682869740608 + i : 1.093307455221265 10−12

The correct significant digits are underlined. Algorithm ZEROS/F gives comparable
results. Note how the obtained accuracy diminishes as the multiplicity of the zero
increases.
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