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Abstract

This paper investigates two different semi on-line scheduling problems on a two-machine system. In
thefirst case, we assumethat all jobs have their processing timesin between p andrp (p > 0,r > 1).
In the second case, we assume that the largest processing time is known in advance. We show that one
has a best possible algorithm with worst case ratio 4/3 while LS is still the best possible for the other
problemwith ratio (r 4+ 1) /2 whichis still 3/2 in the worst caser = 2.

AMS Subject Classifications: 90B35, 90C27.

Key Words: Analysis of algorithm, on-line scheduling, worst-case ratio.

1. Introduction

In the paralel identical machine scheduling problem, we are given a set 7 =
{p1, p2, ..., pa} Of independent jobs, each with a positive processing time, that
must be scheduled on m parallel and identical machines. We identify thejobswith
their processing times. The jobs and machines are available at time zero, and no
preemption is allowed. The objective is to minimize the overal completion time
Chnax, caled makespan. This problem is one of the basic NP-complete problems
[5] and usually denoted by P||Cpax. A scheduling problem is called on-lineif it
requires to schedule jobs irrevocably on the machines as soon as they are given,
without any knowledge about jobsthat follow later on. If we have full information
on the job data before constructing a schedule, this problem is called off-line. In
practice, problems are often not really on-line or off-line but somehow in between.
Thismeansthat, some partial information about the jobsisavailable and we cannot
rearrange any job which has been assigned to machines. Such a case is defined
asasemi on-line problem. Algorithmsfor a semi on-line problem are called semi
on-line algorithms.

In aworst-case analysis, the performance of an on-line or asemi on-line algorithm
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is measured through the worst-case ratio with respect to the optimal solution of
the off-line problem. For aset 7 of jobs and an approximation algorithm A, let
w4 (J) denote the makespan produced by thea gorithm A and let w* (/) denotethe
optimal makespan in an off-lineversion. Thentheworst-caseratio of theagorithm
A isdefined as

wa(J)

w*(J)

The simplest algorithm for the on-line parallel machine scheduling problem, is
the List Scheduling (LS in short) algorithm, which was introduced by Graham
[6] in 1966. This algorithm always assigns the current job to the machine with
minimum workload on it at the moment. Graham showed R; s = 2— 1/m. Severd
algorithms have been proposed which have a slightly better worst-case ratio than
the LS agorithm in [1, 2, 4, 7]. However, in 1989, Faigle, Kern and Turan [3]
observed that LS is the best possible on-line algorithm for 2 and 3 machines. It
meansthat thereisno deterministicon-lineagorithmfor P||Cq, Withaworst-case
ratio better than 3/2 and 5/3 for m = 2, 3, respectively.

R = sup{ J.
J

Recently, some new results on semi on-lineagorithmsfor P||Cmax Were presented.
In the semi on-line problem discussed in [10], the jobs have to be assigned to a
machine one by one, the processing time of each job is unknown before it is
assigned, but thejobsareknownto arrivein non-increasing order of their processing
times. For thecasesof twoandthreeparallel machines, thebest possiblealgorithms
are given. The corresponding worst-case ratios are 4/3 and 7/5, respectively. The
genera case in which the number of machine is arbitrary is also considered in
the same paper. Kellerer et a. [9] investigate three semi on-line versions of the
partition problemsrelated to P2||Cnmax. In thefirst problem, the jobs arrive one by
one and abuffer of length k isavailable to maintain k jobs. Therefore, if the buffer
isnot full, an incoming job can either be immediately assigned to a machine or be
temporarily assigned to the buffer. If there are already k jobsin the buffer, we can
either assign theincoming job to amachine or assign one of the k jobsin the buffer
to amachine and stock theincoming jobin the buffer. Inthe second problem, again
the jobs have to be assigned one by one, but two sets of two paralel machines are
available for the computation of the solution. One copy is made for each incoming
job and each of the two identical jobs has to be assigned to a machine by each
of the two sets before arrival of the subsequent job. Finally the better of the two
solutionsindependently obtained by the two setsischosen. Inthelast problem, the
jobs have to be assigned to a machine upon their arrival, but the total processing
time of dl jobsis known in advance. For each of three problems above, the best
possible semi on-line agorithm with worst-case ratio 4/3 has been presented in
[9]. Independently the first result has also been presented in [11]. Hence, LS is
not the best semi on-line algorithm for each of the problems above.

In general, inasemi on-line version of aproblem the conditionsfor aproblem to be
considered on-line are somehow relaxed. Different ways of relaxing the conditions
giverise to different semi on-line versions. In many applications it is not easy to
get thefull information of all jobs before they come, but we may know some partial



Semi On-Line Scheduling on Two Identical Machines 181

information on the job data asa priori. For example, we know that the processing
times of all jobs are normally distributed in a certain time-period (tightly-grouped
processing times), or the processing time of some important jobs (for example,
the largest job) is known in advance. In this paper, we consider these two semi
on-line scheduling problems on two machines. For each of these problems, the
best possible semi on-line agorithm is presented.

Thispaper isorganized asfollows. Section 2 dealswith thefirst semi on-line prob-
lem, where all jobs have tightly-grouped processing times. Section 3 investigates
asemi on-line problem in which the largest processing time is known in advance.
Finally, Section 4 contains some final remarks.

2. Tightly-Grouped Processing Times

Asabove, wewill consider the problem P2||C;,... We assumethat thejobs arrive
one by one and the processing times of al jobs arein theinterval [p, rp], where
p > 0,r > 1. Wecal thisproblem P;. Wefirst analyze the worst-case behaviour
of LS algorithm, then we show that it is the best one for our problem P;.

Theorem 2.1. Applying LS algorithmto 1, the worst-case ratios are

(i) Rps =3/2 for r > 2,

(iYRrs=@A+r)/2 for 1<r <2

Proof: Since (i) immediately follows from Graham'swork in [6], we only need to
prove (ii). By normalizing all jobswe can assumethat p = 1. First wewill prove
that for any list of jobs Rrs < (14 r)/2, and then we give an instance which

shows the bound is tight. Without loss of generality, we can suppose the last job
pn determines the LS makespan and s isthe starting time of p,. Then

n . n—1
2 2
Therefore,
wrs(J) _ S+ pPn _ 14 _Pn 7

wX(J)  wrT) T 2w(T)’
From the above inequality (2), we redlize that, if p, < (r — Dw™*(7), then we
have Ry s < (1+ r)/2. So, inthe following, we suppose p, > (r — Dw*(J).
Let ¥ = [n/2]. Thenin the optimal solution, one of the two machines processes
a least k' jobs. Sow*(J) > k. Sincer > p, > (r — Dw*(J) > (r — DK/, i.e,
k' — Dr < k', we have

(i—Dr<i, fori=1,...,k. (3
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These inequalities (3) tell us the following two important facts.

Fact 1. Inthe LS schedule, py;_1 and po; are processed by different machines,
i=1...,|n/2]. Thatisto say, for n = 2k, each machine processes exactly k
jobs; for n = 2k + 1, the machine determining makespan processes k + 1 jobs.

Fact 2. Inthe optima schedule, for n = 2k, each machine must process k jobs
(Otherwise w*(J) > k+ 1 > kr > wrs(J)); for n = 2k 4+ 1, the machine
determining the optimal makespan processes k + 1 jobs.

We consider two cases below with respect to the value of n. Firstly we define
some notations. In the following of this section, let S;; and S;kj denote the job sets

processed on machinei (i = 1, 2) after processing p; inthe LS schedule and the
optimal schedule, respectively. Let I(S) denote the sum of thejobsin the set S.

Casel n = 2k.Inthiscase by Fact 1, |S1,—2| = |Sow—2| = k-1, J =
S1n—2U Sou—2U {pn_1, pu}. By Fact 2,183, | = IS}, =k, J = S}, U S5,.

Lemma 2.2. For eachi = 1, 2, there existssome j € {1, 2}, such that

k+1
(Sin-2 U (pah) N 51 = =51,

Proof: We only provethecasei = 1. The casei = 2 can be shown analogously.
If the above assertion is not true, then we have

k+1
(Sw2Ulpa) NS < 1= -1 @
k+1
|(S1a_2 U {pu]) N 85| < L%J 1 5
Summing (4) and (5),
k+1
(S22 U () N T < ZL%J _2<k-1 )

Wethus get |S1,—2| < k — 2, whichisacontradiction. O
With Lemma 2.2, we areready to get the required worst-caseratio. Since py,, pp—1
are processed by different machines in the LS schedule, and p,, determines the
makespan, we have

wrs(J) = max{l(S1-2), (S2n-2)} + pn and w*(J) = 1(S},), j=1,2. (7)

Suppose machine i determinesthe LS makespan. It meanswys(7) = I1(Sin—2) +
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pn. Hence there exists some j such that

k(r—1
wis(T) — W) =S 2U pah) — S = (@)

because Lemma 2.2 tellsusthat thereareat most k — | (k + 1)/2| < k/2 different
jobs between S;,,_> U {p,} and S}"n. Since w*(J) > k, we have

wLS(J)<1+V
w (J) T 2

9
which completes Case 1.
Case2. n = 2k + 1. Hence |S1—1] = |Son—1] =k, T = S1,-1U S2,—1 U {py}

83, U S5, 187, = kork+ 1S5 = kork+ 1 Inthis case, wys(J)
min{l(S1,—1), {(S2,—1)} + p,. Similarly, we have

Lemma 2.3. For everyi = 1, 2, thereexists some j € {1, 2}, such that

k
|(Sin—1YU{pnH) NS}, 1l = LEJ +1

From Lemma 2.3, we claim that thereareat most k + 1 — (|k/2] + 1) < k —
(k—1)/2 = (k + 1)/2 different jobs between S;,,_1 U {p,} and S]T*n. So with the
same arguments as Case 1 we can mest the desired worst-case ratio. The instance
J = {1, 1, r} impliesthat the bound (1 + r)/2 istight. Therefore, we finish the
proof of Theorem 2.1. O

Theorem 2.4. Any on-line algorithm A for 71 has a worst-case ratio as follows:

1 3
RAE% for r <2 and RAZE for r > 2.

Proof: For r < 2, consider the following instance. The first two jobs both have
aprocessing time of 1. If an algorithm A assigns them to different machines, the
next and last job with a processing time r comes, the makespan w4 = 1+ r while
the optimum makespan w* = 2. It followsthat ws/w* = (1 + r)/2. If thefirst
two jobs are assigned to the same machine by the algorithm A, then no further job
comes any more. It follows ws/w* = 2. Therefore, we conclude that for any
on-linealgorithm A, R4 > (1+r)/2.

For r > 2, the instance is amost the same except that the processing time of the
third jobisaways 2 if such ajob is needed. O

The following theorem can be proved in the same way as that in Theorem 2.1.
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Theorem 2.5. Applying LS to the problem Pm||Cy,ax, if @l jobs have their pro-
cessing timewithininterval [p, rp], where p > 0, r < 2, then

wrs(J) <14 (m—-1@r -1
w*(J) ~ m '

3. TheLargest Processing TimeisKnown

In this section, we still consider the problem P2||Cy,q.. We assume that the jobs
come one by one, and the largest processing time is known in advance. We call
this problem P».

Theorem 3.1. Any algorithm A for P, has a worst-caseratio R4 > 4/3.

Proof: Consider the following instances. Suppose the largest processing timeis 2.
Thefirst two jobs have the same processing time 1. If an algorithm A assignsthem
to different machines, the next (also the last) job with processing time 2 comes,
the makespan ws = 3 while the optimum makespan w* = 2. It follows that
wa /w* = 3/2. If thefirst two jobs are assigned to the same machine by algorithm
A, thentheincoming two jobs have thesameprocessingtime2. Therefore, ws > 4
and w* = 3. It concludesthat w4 /w* = 4/3. Thusfor any semi on-line algorithm
A, Ry >4/3.0

Denote by pmax the largest processing time. A job is caled as alarge job if its
processing timeis pmax. We will give abest possible algorithm bel ow.

Algorithm PLS (Premeditated List Scheduling).

Step 1. Always assign current jobs to Machine 1 unless one of the following cases
happens.

1. Thecurrent jobisalargejob.

2. If the current job is assigned to Machine 1, then the workload of Machine 1
would be larger than 2 pmax.

Step 2. Once 1 or 2in Step 1 happens, then assign the current job into Machine 2.
Thereafter apply LS agorithm to al subsequent jobs.

The difference between the workl oads of the machinesis no larger than the largest
processing time. The main idea of the algorithm P LS isto leave some room for
one largest job till both machines have workloads large enough. The worst-case
performance result is provided in the following theorem.
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Theorem 3.2. Theworst-caseratio of thealgorithm P LS isnot greater than 4/3.

Proof: We will prove that wprs(J)/w*(J) < 4/3 holds for any instance 7.
Suppose that 7 is an instance and p, is the last job. Immediately before p, is
assigned by PLS, the workloads of two machines are denoted by M1 and Mo,
respectively. We consider three cases bel ow.

Casel. M2 = 0. Inthiscase, p, = pmax. |f M1 < pmax, thenwprs(J) = pmax-
The PLS schedule isthus optimal. If M1 > pmax, then wprs(J) = M1. From
the algorithm, M1 < 2pmax. Moreover, w*(7) > (M1 + pmax)/2. Therefore,

wprs(J) - 2M1 4

< —. 10
w*(J) T Mi+ pmax ~ 3 (10

Case2. 0 < Mz < My. If M2 < pmax, denote by p;, the first job assigned to
Machine 2. By the agorithm PLS, ps; + M1 > 2pmax. Then M1 > pmax and
M1 + My > 2pmax. Beforethelast job p,, comes, the workload of Machine 2 is
always less than Machine 1, and no large job comes. Therefore, p, isalarge job
and it isassigned to Machine 2. Machine 1 does not accept jobs any more after p;
comes. So,

M1 < 2pmax  ad M2+ pmax < 2Pmax- (11)

From (11), we have

M1+ Mo + pmax - 3pmax

%
1
w*(J) > 5 > (13)
Inequalities (12) and (13) imply wprs(7)/w*(J) < 4/3.
If M2 > pmax, then
Mz + p, < 2My, i.e, 3(M2+pn) =< 2(M1+M2+pn)v (14)

which followsthat 2(M2 + p,) /(M1 + M2 + p,,) < 4/3. Onthe other hand, since
M1 — My < pmax, We have

3M1 < 2M1+ M2 + pmax < 2M1 + 2M> + 2p,,

e, L (15)
(M1+ M2+ py) — 3
Combining (14) and (15), we get
wpLs(J) < 2max{M1y, M2 + p,} - ﬂ. (16)
w*(J) M1+ M2+ p, 3
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Case 3. M> > M. Inthiscase, p, isassigned to Machine 1. M2 > pmax must
hold, otherwise M1 > pmax, by the sameidea asin Case 2, which contradicts the
assumption that Mo > M;. If M1 + p, < pmax, by the algorithm PLS, Machine
2 accepts nothing but one large job. Then wp;s(J) = M2 = pmax Which means
the schedule is optimal. Hence we can assume that

M1+ pn = pmax (17)
holds. Because of M> > My and M2 > pmax, We have

. 2(M1+ py) 4
2Mo > My + Mo > M1 + >My+p,, ie, ———7 ~_ (18
2 1 2 1 Pmax 1 DPn M1+M2+pn 3 ( )

On the other hand, M2 — M1 < pmax. Combining thiswith (17), we have M> <
M1+ pmax < 2(M1 + py). Itimpliesthat

2M>
(M1+ M3+ pn)

< g . (29

From (18) and (19), we have

wprs(J) - 2max{Mz, M1+ p,}
w*(J) T M1+ M2+ p,

4
< 3 (20)

We thus get the result. O

By Theorem 3.1 and Theorem 3.2, the algorithm P LS is the best possible semi
on-line a gorithm which attains the tight bound 4/3.

4. Final Remarks

In this paper we considered two related semi on-line scheduling problems. We
analyzed the parametric behavior of the famous LS algorithm, where r is defined
asafactor such that all processing timesof jobsarein theinterval [ p, rp] for some
positive number p. We showed that LS isthe best possible algorithm for m = 2.
As a byproduct, we aso estimated a worst-case ratio for m > 2. However we do
not think the bounds of Theorem 2.5 are dways tight. For example, for m = 3,
the ratio of Theorem 25is (2r + 1)/3, and theinstance 7 = {1, 1, 1,r,r,r, r}
showsthat it istight for » < 3/2. But for r > 6, we know [3] that theratiois5/3.
Furthermore, for 9/5 < r < 2, we can prove the worst-caseratio isno greater than
(r+1)/2. Theinstance 7 = {1, 1, 1, r} showsthe bound (» + 1)/2 istight. For
the remaining value of r, the worst case ratio of LS is still unknown. So we also
do not know what is the best possible algorithm for m = 3, athough we guess
that LS should be. For the second problem, we propose a best possible agorithm
when m = 2. Itisasointeresting to extend this result to the general casem > 3.



Semi On-Line Scheduling on Two Identical Machines 187

Acknowledgement

The authorswish to thank two refereesfor their val uable suggestion which improved the readability of
this paper.

References

[1] Albers, S.: Better boundsfor on-line scheduling. Proc. 29th Annual ACM Symp. on Theory of
Computing, 130-139 (1997).

[2] Bartd, Y., Fiat, A., Karloff, A., Vohra, R.: New algorithmfor an ancient scheduling problem. Proc.
24th Annual ACM Symp. on Theory of Computing, 51-58 (1992).

[3] Faigle, U., Kern, W.and Turan, G.: Ontheperformanceof on-linealgorithmfor particular problems.
Acta Cybern. 9, 107-119 (1989).

[4] Galambos, G., Woeginger, G.: An on-line scheduling heuristic with better worst-case ratio than
Graham'slist scheduling. SIAM J. Comput. 22, 349-355 (1993).

[5] Garey, M. R., Johnson, D. S.: Computers and intractability: A guide to the theory of NP-
completeness. San Francisco: Freeman, 1979.

[6] Graham, R. L.: Bounds for certain multiprocessing anomalies. Bell System Tech. 45, 1563-1581
(1966).

[7] Karger, D. R., Phillips, S. J., Torng, E.: A better algorithm for an ancient scheduling algorithm. J.
Alg. 20, 400-430 (1996).

[8] Kellerer, H.: Bounds for nonpreemptive scheduling jobs with similar processing times on multi-
processor systems using LPT-algorithm. Computing 46, 183-191 (1991).

[9] Kellerer, H., Kotov., V., Speranza, M. R., Tuza, Z.: Semi on-line algorithms for the partition
problem. Oper. Res. Lett. 21, 235-242 (1997).

[10] Liu, W. P, Sidney, J. B., Vliet, A. van: Ordina agorithmsfor parallel machine scheduling. Oper.
Res. Lett. 18, 223-232 (1996).
[11] Zhang, G.: A simple semi on-line algorithm for P2||Cy,4 with abuffer. Inf. Proc. Lett. 61,

145-148 (1997).

Y. He G. Zhang

Department of Applied Mathematics Institute of Mathematics
Zhgjiang University Zhejiang University
Hangzhou 310027 Hangzhou 310027

P.R. China P.R. China

e-mail: heyong@math.zju.edu.cn e-mail: zgc@math.zju.edu.cn



