
Computing 62, 179–187 (1999)

c© Springer-Verlag 1999
Printed in Austria

Semi On-Line Scheduling on Two Identical Machines
Y. He∗ and G. Zhang∗∗, Hangzhou

Received February 23, 1998; revised August 5, 1998

Abstract

This paper investigates two different semi on-line scheduling problems on a two-machine system. In
the first case, we assume that all jobs have their processing times in between p and rp (p > 0, r ≥ 1).
In the second case, we assume that the largest processing time is known in advance. We show that one
has a best possible algorithm with worst case ratio 4/3 while LS is still the best possible for the other
problem with ratio (r + 1)/2 which is still 3/2 in the worst case r = 2.

AMS Subject Classifications: 90B35, 90C27.
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1. Introduction

In the parallel identical machine scheduling problem, we are given a set J =
{p1, p2, . . . , pn} of independent jobs, each with a positive processing time, that
must be scheduled onm parallel and identical machines. We identify the jobs with
their processing times. The jobs and machines are available at time zero, and no
preemption is allowed. The objective is to minimize the overall completion time
Cmax , called makespan. This problem is one of the basic NP-complete problems
[5] and usually denoted by P ||Cmax . A scheduling problem is called on-line if it
requires to schedule jobs irrevocably on the machines as soon as they are given,
without any knowledge about jobs that follow later on. If we have full information
on the job data before constructing a schedule, this problem is called off-line. In
practice, problems are often not really on-line or off-line but somehow in between.
This means that, some partial information about the jobs is available and we cannot
rearrange any job which has been assigned to machines. Such a case is defined
as a semi on-line problem. Algorithms for a semi on-line problem are called semi
on-line algorithms.

In a worst-case analysis, the performance of an on-line or a semi on-line algorithm
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is measured through the worst-case ratio with respect to the optimal solution of
the off-line problem. For a set J of jobs and an approximation algorithm A, let
wA(J ) denote the makespan produced by the algorithmA and letw∗(J ) denote the
optimal makespan in an off-line version. Then the worst-case ratio of the algorithm
A is defined as

RA = sup
J
{wA(J )
w∗(J ) }.

The simplest algorithm for the on-line parallel machine scheduling problem, is
the List Scheduling (LS in short) algorithm, which was introduced by Graham
[6] in 1966. This algorithm always assigns the current job to the machine with
minimum workload on it at the moment. Graham showed RLS = 2−1/m. Several
algorithms have been proposed which have a slightly better worst-case ratio than
the LS algorithm in [1, 2, 4, 7]. However, in 1989, Faigle, Kern and Turán [3]
observed that LS is the best possible on-line algorithm for 2 and 3 machines. It
means that there is no deterministic on-line algorithm for P ||Cmax with a worst-case
ratio better than 3/2 and 5/3 for m = 2, 3, respectively.

Recently, some new results on semi on-line algorithms for P ||Cmax were presented.
In the semi on-line problem discussed in [10], the jobs have to be assigned to a
machine one by one, the processing time of each job is unknown before it is
assigned, but the jobs are known to arrive in non-increasing order of their processing
times. For the cases of two and three parallel machines, the best possible algorithms
are given. The corresponding worst-case ratios are 4/3 and 7/5, respectively. The
general case in which the number of machine is arbitrary is also considered in
the same paper. Kellerer et al. [9] investigate three semi on-line versions of the
partition problems related to P2||Cmax. In the first problem, the jobs arrive one by
one and a buffer of length k is available to maintain k jobs. Therefore, if the buffer
is not full, an incoming job can either be immediately assigned to a machine or be
temporarily assigned to the buffer. If there are already k jobs in the buffer, we can
either assign the incoming job to a machine or assign one of the k jobs in the buffer
to a machine and stock the incoming job in the buffer. In the second problem, again
the jobs have to be assigned one by one, but two sets of two parallel machines are
available for the computation of the solution. One copy is made for each incoming
job and each of the two identical jobs has to be assigned to a machine by each
of the two sets before arrival of the subsequent job. Finally the better of the two
solutions independently obtained by the two sets is chosen. In the last problem, the
jobs have to be assigned to a machine upon their arrival, but the total processing
time of all jobs is known in advance. For each of three problems above, the best
possible semi on-line algorithm with worst-case ratio 4/3 has been presented in
[9]. Independently the first result has also been presented in [11]. Hence, LS is
not the best semi on-line algorithm for each of the problems above.

In general, in a semi on-line version of a problem the conditions for a problem to be
considered on-line are somehow relaxed. Different ways of relaxing the conditions
give rise to different semi on-line versions. In many applications it is not easy to
get the full information of all jobs before they come, but we may know some partial



Semi On-Line Scheduling on Two Identical Machines 181

information on the job data as a priori. For example, we know that the processing
times of all jobs are normally distributed in a certain time-period (tightly-grouped
processing times), or the processing time of some important jobs (for example,
the largest job) is known in advance. In this paper, we consider these two semi
on-line scheduling problems on two machines. For each of these problems, the
best possible semi on-line algorithm is presented.

This paper is organized as follows. Section 2 deals with the first semi on-line prob-
lem, where all jobs have tightly-grouped processing times. Section 3 investigates
a semi on-line problem in which the largest processing time is known in advance.
Finally, Section 4 contains some final remarks.

2. Tightly-Grouped Processing Times

As above, we will consider the problem P2||Cmax . We assume that the jobs arrive
one by one and the processing times of all jobs are in the interval [p, rp], where
p > 0, r ≥ 1. We call this problem P1. We first analyze the worst-case behaviour
of LS algorithm, then we show that it is the best one for our problem P1.

Theorem 2.1. Applying LS algorithm to P1, the worst-case ratios are

(i) RLS = 3/2 for r ≥ 2,

(ii) RLS = (1+ r)/2 for 1 ≤ r < 2.

Proof: Since (i) immediately follows from Graham’s work in [6], we only need to
prove (ii). By normalizing all jobs we can assume that p = 1. First we will prove
that for any list of jobs RLS ≤ (1 + r)/2, and then we give an instance which
shows the bound is tight. Without loss of generality, we can suppose the last job
pn determines the LS makespan and s is the starting time of pn. Then

w∗(J ) ≥
∑n
i=1 pi

2
, s ≤

∑n−1
i=1 pi

2
. (1)

Therefore,
wLS(J )
w∗(J )

= s + pn
w∗(J )

≤ 1+ pn

2w∗(J )
. (2)

From the above inequality (2), we realize that, if pn ≤ (r − 1)w∗(J ), then we
have RLS ≤ (1 + r)/2. So, in the following, we suppose pn > (r − 1)w∗(J ).
Let k′ = dn/2e. Then in the optimal solution, one of the two machines processes
at least k′ jobs. So w∗(J ) ≥ k′. Since r ≥ pn > (r − 1)w∗(J ) ≥ (r − 1)k′, i.e.,
(k′ − 1)r < k′, we have

(i − 1)r < i, for i = 1, . . . , k′. (3)
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These inequalities (3) tell us the following two important facts.

Fact 1. In the LS schedule, p2i−1 and p2i are processed by different machines,
i = 1, . . . , bn/2c. That is to say, for n = 2k, each machine processes exactly k
jobs; for n = 2k + 1, the machine determining makespan processes k + 1 jobs.

Fact 2. In the optimal schedule, for n = 2k, each machine must process k jobs
(Otherwise w∗(J ) ≥ k + 1 > kr ≥ wLS(J )); for n = 2k + 1, the machine
determining the optimal makespan processes k + 1 jobs.

We consider two cases below with respect to the value of n. Firstly we define
some notations. In the following of this section, let Sij and S∗ij denote the job sets
processed on machine i (i = 1, 2) after processing pj in the LS schedule and the
optimal schedule, respectively. Let l(S) denote the sum of the jobs in the set S.

Case 1. n = 2k. In this case, by Fact 1 , |S1n−2| = |S2n−2| = k − 1, J =
S1n−2 ∪ S2n−2 ∪ {pn−1, pn}. By Fact 2, |S∗1n| = |S∗2n| = k,J = S∗1n ∪ S∗2n.

Lemma 2.2. For each i = 1, 2, there exists some j ∈ {1, 2}, such that

|(Sin−2 ∪ {pn}) ∩ S∗jn| ≥ b
k + 1

2
c.

Proof: We only prove the case i = 1. The case i = 2 can be shown analogously.
If the above assertion is not true, then we have

|(S1n−2 ∪ {pn}) ∩ S∗1n| ≤ b
k + 1

2
c − 1, (4)

|(S1n−2 ∪ {pn}) ∩ S∗2n| ≤ b
k + 1

2
c − 1. (5)

Summing (4) and (5),

|(S1n−2 ∪ {pn}) ∩ J | ≤ 2bk + 1

2
c − 2 ≤ k − 1. (6)

We thus get |S1n−2| ≤ k − 2, which is a contradiction. �

With Lemma 2.2, we are ready to get the required worst-case ratio. Since pn, pn−1
are processed by different machines in the LS schedule, and pn determines the
makespan, we have

wLS(J ) = max{l(S1n−2), l(S2n−2)} + pn and w∗(J ) ≥ l(S∗jn), j = 1, 2. (7)

Suppose machine i determines the LS makespan. It means wLS(J ) = l(Sin−2)+
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pn. Hence there exists some j such that

wLS(J )−w∗(J ) ≤ l(Sin−2 ∪ {pn})− l(S∗jn) ≤
k(r − 1)

2
, (8)

because Lemma 2.2 tells us that there are at most k−b(k+ 1)/2c ≤ k/2 different
jobs between Sin−2 ∪ {pn} and S∗jn. Since w∗(J ) ≥ k, we have

wLS(J )
w∗(J )

≤ 1+ r
2

, (9)

which completes Case 1.

Case 2. n = 2k+ 1. Hence |S1n−1| = |S2n−1| = k,J = S1n−1 ∪ S2n−1 ∪ {pn} =
S∗1n ∪ S∗2n, |S∗1n| = k or k + 1, |S∗2n| = k or k + 1. In this case, wLS(J ) =
min{l(S1n−1), l(S2n−1)} + pn. Similarly, we have

Lemma 2.3. For every i = 1, 2, there exists some j ∈ {1, 2}, such that

|(Sin−1 ∪ {pn}) ∩ S∗jn−1| ≥ b
k

2
c + 1.

From Lemma 2.3, we claim that there are at most k + 1 − (bk/2c + 1) ≤ k −
(k − 1)/2 = (k + 1)/2 different jobs between Sin−1 ∪ {pn} and S∗jn. So with the
same arguments as Case 1 we can meet the desired worst-case ratio. The instance
J = {1, 1, r} implies that the bound (1 + r)/2 is tight. Therefore, we finish the
proof of Theorem 2.1. �

Theorem 2.4. Any on-line algorithm A for P1 has a worst-case ratio as follows:

RA ≥ 1+ r
2

for r ≤ 2 and RA ≥ 3

2
for r > 2.

Proof: For r ≤ 2, consider the following instance. The first two jobs both have
a processing time of 1. If an algorithm A assigns them to different machines, the
next and last job with a processing time r comes, the makespan wA = 1+ r while
the optimum makespan w∗ = 2. It follows that wA/w∗ = (1 + r)/2. If the first
two jobs are assigned to the same machine by the algorithm A, then no further job
comes any more. It follows wA/w∗ = 2. Therefore, we conclude that for any
on-line algorithm A, RA ≥ (1+ r)/2.

For r > 2, the instance is almost the same except that the processing time of the
third job is always 2 if such a job is needed. �

The following theorem can be proved in the same way as that in Theorem 2.1.
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Theorem 2.5. Applying LS to the problem Pm||Cmax , if all jobs have their pro-
cessing time within interval [p, rp], where p > 0, r ≤ 2, then

wLS(J )
w∗(J )

≤ 1+ (m− 1)(r − 1)

m
.

3. The Largest Processing Time is Known

In this section, we still consider the problem P2||Cmax . We assume that the jobs
come one by one, and the largest processing time is known in advance. We call
this problem P2.

Theorem 3.1. Any algorithm A for P2 has a worst-case ratio RA ≥ 4/3.

Proof: Consider the following instances. Suppose the largest processing time is 2.
The first two jobs have the same processing time 1. If an algorithm A assigns them
to different machines, the next (also the last) job with processing time 2 comes,
the makespan wA = 3 while the optimum makespan w∗ = 2. It follows that
wA/w

∗ = 3/2. If the first two jobs are assigned to the same machine by algorithm
A, then the incoming two jobs have the same processing time 2. Therefore,wA ≥ 4
andw∗ = 3. It concludes thatwA/w∗ = 4/3. Thus for any semi on-line algorithm
A, RA ≥ 4/3. �

Denote by pmax the largest processing time. A job is called as a large job if its
processing time is pmax. We will give a best possible algorithm below.

Algorithm PLS (Premeditated List Scheduling).

Step 1. Always assign current jobs to Machine 1 unless one of the following cases
happens.

1. The current job is a large job.

2. If the current job is assigned to Machine 1, then the workload of Machine 1
would be larger than 2pmax.

Step 2. Once 1 or 2 in Step 1 happens, then assign the current job into Machine 2.
Thereafter apply LS algorithm to all subsequent jobs.

The difference between the workloads of the machines is no larger than the largest
processing time. The main idea of the algorithm PLS is to leave some room for
one largest job till both machines have workloads large enough. The worst-case
performance result is provided in the following theorem.
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Theorem 3.2. The worst-case ratio of the algorithm PLS is not greater than 4/3.

Proof: We will prove that wPLS(J )/w∗(J ) ≤ 4/3 holds for any instance J .
Suppose that J is an instance and pn is the last job. Immediately before pn is
assigned by PLS, the workloads of two machines are denoted by M1 and M2,
respectively. We consider three cases below.

Case 1. M2 = 0. In this case, pn = pmax. IfM1 ≤ pmax, then wPLS(J ) = pmax.
The PLS schedule is thus optimal. If M1 > pmax, then wPLS(J ) = M1. From
the algorithm, M1 ≤ 2pmax. Moreover, w∗(J ) ≥ (M1 + pmax)/2. Therefore,

wPLS(J )
w∗(J )

≤ 2M1

M1 + pmax
≤ 4

3
. (10)

Case 2. 0 < M2 ≤ M1. If M2 < pmax, denote by ps the first job assigned to
Machine 2. By the algorithm PLS, ps +M1 > 2pmax. Then M1 > pmax and
M1 +M2 > 2pmax. Before the last job pn comes, the workload of Machine 2 is
always less than Machine 1, and no large job comes. Therefore, pn is a large job
and it is assigned to Machine 2. Machine 1 does not accept jobs any more after ps
comes. So,

M1 ≤ 2pmax and M2 + pmax < 2pmax. (11)

From (11), we have

wPLS(J ) = max{M1,M2 + pmax} ≤ 2pmax, (12)

w∗(J ) ≥ M1 +M2 + pmax

2
>

3pmax

2
. (13)

Inequalities (12) and (13) imply wPLS(J )/w∗(J ) < 4/3.

If M2 ≥ pmax, then

M2 + pn ≤ 2M1, i.e., 3(M2 + pn) ≤ 2(M1 +M2 + pn), (14)

which follows that 2(M2+pn)/(M1+M2+pn) ≤ 4/3. On the other hand, since
M1 −M2 ≤ pmax, we have

3M1 ≤ 2M1 +M2 + pmax ≤ 2M1 + 2M2 + 2pn,

i.e.,
2M1

(M1 +M2 + pn) ≤
4

3
. (15)

Combining (14) and (15), we get

wPLS(J )
w∗(J )

≤ 2 max{M1,M2 + pn}
M1 +M2 + pn ≤ 4

3
. (16)
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Case 3. M2 > M1. In this case, pn is assigned to Machine 1. M2 ≥ pmax must
hold, otherwise M1 > pmax, by the same idea as in Case 2, which contradicts the
assumption that M2 > M1. If M1 + pn < pmax, by the algorithm PLS, Machine
2 accepts nothing but one large job. Then wPLS(J ) = M2 = pmax which means
the schedule is optimal. Hence we can assume that

M1 + pn ≥ pmax (17)

holds. Because of M2 > M1 and M2 > pmax, We have

2M2 > M1 +M2 ≥M1 + pmax ≥M1 + pn, i.e.,
2(M1 + pn)
M1 +M2 + pn <

4

3
. (18)

On the other hand, M2 −M1 ≤ pmax. Combining this with (17), we have M2 ≤
M1 + pmax ≤ 2(M1 + pn). It implies that

2M2

(M1 +M2 + pn) ≤
4

3
. (19)

From (18) and (19), we have

wPLS(J )
w∗(J )

≤ 2 max{M2,M1 + pn}
M1 +M2 + pn ≤ 4

3
. (20)

We thus get the result. �

By Theorem 3.1 and Theorem 3.2, the algorithm PLS is the best possible semi
on-line algorithm which attains the tight bound 4/3.

4. Final Remarks

In this paper we considered two related semi on-line scheduling problems. We
analyzed the parametric behavior of the famous LS algorithm, where r is defined
as a factor such that all processing times of jobs are in the interval [p, rp] for some
positive number p. We showed that LS is the best possible algorithm for m = 2.
As a byproduct, we also estimated a worst-case ratio for m > 2. However we do
not think the bounds of Theorem 2.5 are always tight. For example, for m = 3,
the ratio of Theorem 2.5 is (2r + 1)/3, and the instance J = {1, 1, 1, r, r, r, r}
shows that it is tight for r ≤ 3/2. But for r ≥ 6, we know [3] that the ratio is 5/3.
Furthermore, for 9/5 ≤ r ≤ 2, we can prove the worst-case ratio is no greater than
(r + 1)/2. The instance J = {1, 1, 1, r} shows the bound (r + 1)/2 is tight. For
the remaining value of r , the worst case ratio of LS is still unknown. So we also
do not know what is the best possible algorithm for m = 3, although we guess
that LS should be. For the second problem, we propose a best possible algorithm
when m = 2. It is also interesting to extend this result to the general case m ≥ 3.
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