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Abstract

A classof matrices (H-matrices) isintroduced which have the following properties. (i) They are sparse
inthe sensethat only few dataare needed for their representation. (ii) The matrix-vector multiplication
is of aimost linear complexity. (iii) In general, sums and products of these matrices are no longer
in the same set, but their truncations to the H-matrix format are again of almost linear complexity.
(iv) The same statement holds for the inverse of an 7{-matrix.

This paper isthefirst of aseriesand is devoted to the first introduction of the 7H-matrix concept. Two
concret formats are described. The first oneisthe simplest possible. Nevertheless, it allows the exact
inversion of tridiagonal matrices. The second oneis able to approximate discrete integral operators.

AMS Subject Classifications: 65F05, 65F30, 65F50.

Key Words: Hierarchical matrices, hierarchical block partitioning, sparse matrices, matrix inversion.

1. Introduction

When dealing with linear systems of n equations, one has optimal efficiency if
the computational amount of work is O(n). For many situations characterised
by a sparse system matrix A, one knows optimal solution algorithms. A basic
problem arises for systems with non-sparse matrices. Since n? entries are to be
used, the O (n?)-complexity seems to be unavoidable (the example of the fast
Fourier transform shows that thisis not true in general). Two different techniques
have been developed for full matrices. In the case of matrices obtained from
integral operators, the panel clustering technique uses a representation with only
O (nlogn) data, which enables a matrix-vector multiplication with almost linear!
complexity. Another approach isthe matrix compression after using aspecia basis
(e.g., wavelet bases) such that only few entries are of a non-negligible size.

In al the modern approaches to fast linear algebra applications, one tries to
avoid matrix-matrix operations and uses only matrix-vector multiplications (or
the vector-vector scalar product). In particular, the construction of an inverse ma-

1 Almost linear complexity means O (1 log n), i.e., linear up to logarithmical factors.
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trix isforbidden. Thisisby two reasons; first, the computation israther expensive
(0(n®) in the general case) and, second, the inverse A~1 is usualy a full ma
trix, even if A is sparse, and therefore the multiplication of A—1 by a vector is of
0 (n?)-complexity.

A severe problem arises whenever the computation involves a Schur complement,
since it contains the product P := A = B~1 % C with given (sparse) matrices
A, B, C. Inthiscase, al actions must be manageable by performing the matrix-
vector multiplication P x x (involving the solution of Bz = y := Cx). Thereis
no access to matrix entries of P, since the computation of B~ Lisunattainable.

In this paper, we follow a completely different strategy. We do approximate full
matrices, form (approximate) products of these matrices and compute the (approx-
imate) inverse matrix. Inthe case of the Schur complement involving A« B=1xC,
we propose to compute this product directly. Surprisingly, the amount of work is
almost linear in the dimension n. Obviously, this approach allows quite new appli-
cations. Anideawhich is rather close to our approach is described in the papers
[1], [12], however, there the hierarchical treatment is missing, which is central in
the present presentation.

The key point is the description of a class of matrices (called H-matrices?, where
'H abbreviates“ hierarchical”). These matricesare not sparsein the sense that there
are only few non-zero entries, but they are data-sparse in the sense that these
matrices are described by only few data. The class of H-matrices contains certain
sparse matrices and approximates very well full matricesasthey arisefromintegral
operatorsor fromtheinversion of matricescorresponding to elliptic boundary value
problems. The underlying ideais closely related to the panel clustering technique
mentioned above (cf. [2], [3], [5], [7]-{11]).

In order not to overburden this paper, we shall not discussthe applicationto eliptic
boundary value problems here. Thiswill be postponed to alater paper [6]. Instead,
we present the basics of the new approach. The first H-matrix format described
in Section 2 is the simplest example. Because of its simple structure, one can
explicitly count the work of operations like matrix-matrix multiplication or matrix
inversion (cf. Section 3). In spite of the simple structure, we show in Section 4
that these H-matrices allow an exact inversion of tridiagonal matrices.

In order to definethe H-matrices, weintroducein Subsection 2.1 the H-partitioning
of theindex set . This corresponds to a variable vector block-partitioning. After
defining a non-standard matrix-partitioning (partitioning of I x I), we present the
definition of an H-matrix in Subsection 2.3.

A more redistic example with respect to interesting applications is the second
example of H-matricesintroduced in Section 5. With the techniques exercised in

2 Do not confound 7H{-matriceswith H-matrices (cf. Definition 6.6.7 in Hackbusch [4]).
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Section 3, one finds that the matrix operations have the same order of complexity
as for the first example. However, now it is possible to approximate matrices
corresponding to integral operators as they typicaly arise in boundary €lement
methods.

In a sequentia paper [6] we shall describe the generalisations to two- and three-
dimensiona boundary value problems and integral operators. Then the block
partitioning which is fixed in the present first and second examples of Sections
2 and 5 must be replaced by an H-partitioning of I x I and a criterion for the
selection must be given.

2. Introductory Example

We start with the simplest example of H-matrices. The hierarchy (“H”) isfirstly
a hierarchy of block partitionings. Therefore, we have first to discuss the block
partitionings.

2.1. The ector Case
2.1.1. Partitioning of a Vector
We consider a vector space of vectors a = (a;);e7, Where I is afinite index set

(eg., I ={1, ..., n}). Theusual block partitioning consists of a(fixed) partitioning
of I into disjoint subsets, i.e, P = {I; : 1 < j < k} with

= 1. (1)

The jth block of avector a is (a;)icy;-

In the following we want to control the granularity of the block partitioning, i.e.,
instead of afixed partitioning we need afamily containing coarse partitionings as
well asfine ones. For this purpose, weintroduce aset of hierarchical partitionings
which we call “H-partitionings’.

2.1.2. H-Treeover [
Inthe sequel, we use atree structure. If ¢ isavertex of thetree T, S(¢) denotesthe
set of sons of ¢. A vertex t € T isaleaf of thetree, if S(z) = @. £(T) isthe set of

leaves of T. Theroot isthe unique vertex without parent e ement. We summarise:

S@) ={seT:sissonof t} forr eT,
LTy =teT:St =0}.
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In the next definition, property (i) is mentioned for the sake of readability although
it can be omitted since it follows from (iv).

Definition 2.1. Let I beanindex set. Atree T iscalled an H-tree (based on 1) if
the following conditions hold:

(i) All verticest € T are subsetsof 1.

(ii)I eT.

(i) #S(t) # 1forallt e T.

(iv) If t € T isno leaf, S(¢) contains digjoint subsets of 7 and 7 is the union of its

sons, i.e,
t= J s. 2
seS@)

We conclude that I istheroot of 7.

Example2.2. Let I = {1, ...,n} and n = 2. The partitioning of level p (finest
partitioning) consists of n one-element subsets,

=), 15 =2,.... If =n}.
Onlevd p — 1, two subsets from level p are combined. These subsets are
P =2 7 =34 1y = —1n)

Similarly, we obtain 4-element subsets of level p — 2, etc. Finally, at level 0, the
wholeindex set 12 = I = {1,2,... ,n} isthe only block. This defines a binary

tree T with thevertices{lf :0<t<p,1<i<2Y. Iistheroot. The vertices
at level p aretheleaves. Thesonsof If (¢ < p) are 154 and 15,

We use the notation ¢+ — s to express that s € S(¢). Then the pair (¢, s) isan
(directed) edgeinthetree(graph) 7. If thereisapatht =190 - t1 — ... > fr =5
fromz tos (including thecaser = s, i.e, k = 0), we write

s € S*().
The characteristic properties of the H-tree T are described in
Remark 2.3. (a) Lets,r € T withs # ¢. Then exactly one of the following three
cases holds:

(i)s ct. Thens € S*(r)\{¢}.
(i)t Ccs. Thent € S*(s)\{s}.
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(iii) s Nt = @. Then thereis aunique smallest® r € T withs, t € S*(r).

(b) Forany r € T, S*(t) isasubtree® of T satisfying (i), (iii), (iv) from Definition
2.1

(cForanyr e T,

=

s. 3

SEL(S*(1))

Proof: (c) Introduce S (z) := {s € S*(¢) : thereisapatht — ... — s of length
< ¢}.Useinductionto prover = UseS((t) sfore =0,1,... and Sp(¢) = L(S*(1))
for sufficiently large ¢. O

2.1.3. T-Partitioning

Inthefollowing, werestrict all block partitioningsto thosewhich arebuilt by blocks
contained in the tree T'. For these ones we use the name T'-block partitioning.

Definition 2.4. Ablockpartitioning P = {I; : 1 < j < k} of I iscalleda T-block
partitioning (or briefly, a T-partitioning) if P C T holds besides (1).

The set of all such T-partitionings is denoted by P(T'). The next remark shows
that T-partitionings can uniquely be described by means of H-subtrees (these are
subtrees of T with the H-tree property defined in Definition 2.1).

Remark 2.5. (i) P(T) = {L(T’) : T’ subtreeof T and H-tree}.
(ii) There is a one-to-one mapping between T -partitionings and H-subtrees T’
givenby 7' — P = L(T') € P(T).

Proof: Part (i) followsfrom (ii). For the proof of (ii) let an 7-subtree T’ be given.
Then (2) ensures I = (J ¢y 53 hence, P = L(T') isaT-partitioning. If aT-
partitioning P = {1; : 1 < j < k}isgiven, consider thesubtree 7’ of T consisting
ofalteTwithtnlj=ljortNl;=¢fordl Ij e P. O

2.1.4. Ordered Index Set

Assumethat theindex setisordered. Without lossof generality wemay assume I =
{1, ..., n}. Often, onerequires that the subsets ¢t € T of I consist of consecutive

SHere, “smallest r” meansthat thereis no proper subset ' C r, ¥’ € T, withs, t € S*().
477 is called a subtree of T, if the vertices of T’ form a subset of those of T and all edges of 7"
belongto 7.
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indices, i.e., there arefirst and last dements ng(¢), n1(¢) € I such that
t={iel:nog@®) <i <ni(t)} foralreT. (@]

The blocks described in Example 2.2 are of thistype.

2.2. The Matrix Case
2.2.1. Tensor Block Partitionings versus General Partitionings

Given ablock partitioning P of 7, the traditional block partitioning of a matrix is
given by the product

Poi=PxP={I'xI1":1,1"€cP}.

This means that the subblocks of a matrix A are AY = (dap)acr;.per;» Where
I;, I; € P. Hence, row- and column-wisethe same blocks /; and ; areused. This
implies that the size of the blocks cannot be a function of i — j (distance from
the diagonal). In later applications we need finer blocks close to the diagonal and
coarser ones far away (compare the panel clustering technique in [7]).

We obtain a richer structure, when we look for general block partitionings P, of
I x I (not only for tensor product blocks). A general block partitioning of 7 x I
is an partitioning of I x I, where we alow general subsets of 7 x I. Here, we
restrict ourselves to asmaller set of general partitionings (H-partitionings) which
are hierarchically structured as in the vector case, but now the H-partitionings
are based on the index set I x I instead of 1. Details will be postponed to the
subsequent paper [6], since for the cases considered here, we are able to define
the partitionings explicitly. In particular, we will describe two partitionings. A
very simple one is constructed below, while the partitioning from Section 5 is a
prototype for more redlistic partitionings needed for boundary value problems.

2.2.2. A Specia Non-Tensor Partitioning

Let T bethe H-partitioning of I defined in Example 2.2. Moregenerally, we admit
binary trees with the property (4). The block partitioning P> = Po(I, T) of I x I
induced by T isdefined recursively over the depth of thetree T (largest path length
inT).

Inthetrivia case of depth=0 (i.e.,, T = {I}), define Po(I, T) :={I x I}.
If depth=1, I € T hasexactly two sons {11, I2}. Then, Po(I, T) := {I1 x I1, I1 x

I2, I> x I, I> x I} isthe standard 2x2-block partitioning of 7 x I induced by
the vector partitioning {1, Io} = £L(T).
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If depth> 1, definefirst theblock partitioning P, = {I1x I1, I1 x I, Io x I1, T2 x I2}
discussed above involving the two sons I1, I2 of I. Next consider the subtrees
Ty = S*(Iy) for k = 1,2 and replace the blocks I x I in P, by the finer
partitionings P>(Ix, Ty), i.e.,

Po(I, T) = Po(I1, Tr) U {11 x I2} U {2 x I1} U P2(I2, T2). ®)
In the case of T from Example 2.2, the tree has the depth p. The corresponding

block partitionings P2(1, T') are depicted below. For p > 1, the partitioning is no
more of tensor-product form.

p:O:D, p=1: , p=2: ,

p=3: (6)

2.3. Hierarchical H-Matrices

Inthefollowing, P2 isablock partitioning of 7 x I not restricted to tensor-product
partitionings, e.g., P> isthe partitioning constructed above.

Definition 2.6. Let P> beablock partitioning of 7 x I and k € N. The underlying
field of the matricesis K. The set of H-matricesinduced by P» is

My (I X 1, P2)

- IxI . b - b (7)
={M e K . eachblock M”, b € P, satisfies rank(M”) < k}.

We call amatrix A an Rk-matrix if rank(A) < k.
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In this section, we restrict our considerations to the simplest case k = 1. The
resulting R1-matrices are discussed in the next subsection.

Another (recursive) description of an n x n H-matrix A withn = 27 (p > 0)
corresponding to the block partitioning P> from Subsection 2.2.2 can be given by
the requirement that A has the block structure

A1n A .. n n . .
A= [ ] with — x = H-matrices A;; and R1-matrices A12, A21, (8
Ar Ax 2X ZH ii 12, A21 ()

wheretherecursionterminatesfor 1 x 1 H-matrices, which areusual 1 x 1 matrices.

We mentioned in the introduction that the panel clustering method is based on
similar ideas. However, the matrix representation of the pand clustering technique
corresponds to a different block partitioning of 7 x I. There the blocks are of the
form {i} x {t;;}, wherei e I and {t;; : j € I}isaT-block partitioning of /. This
partitioning may be different for each row index i.

2.4. R1-Matrices
2.4.1. Properties, Multiplication of R1-Matrices

Any n x m-matrix A of rank < 1 (abbreviation: R1-matrix or matrix of R1-type)
can be written in the form

A=axbfl (notation: A =[a,b]) 9)

witha € K", b € K" and b being the Hermitian transposed of ». Properties of
R1-matrices® arelisted in

Remark 2.7. (a) The amount of storageisn + m (a and b to be stored).

(b) The amount of work for the matrix-vector multiplication A * ¢ (¢ € K™) are
2m — 1 operationsto obtain® « sa, and 2m +n — 1 operations, if the multiplication
ina = a isperformed explicitly.

() Let A =[a,b]. Thendso A = [b, a] isof theform (9).

(d) R1-matrices have aright- and left-ideal property: Multiplication from the right
or left by an R1-matrix yields again an R1-matrix. Even if B is a more genera
matrix, Bx A with A = [a, b] requiresonly theamount of work for computing B xa
andyields B « A = [B % a, b] . Similarly for A x B. If A and B are R1-matrices,
A x B or B % A need only one scalar product.

SR1-matrices are used, since they need very few storage. However, for small blocksthis does not pay.
Therefore, in practice, one should change Definition (7) and use the standard format for 2x 2 or even
larger blocks.

6This suggestsusing atriple (, a, b) for a[a, b].
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(e)Let A = [a, b] . Theevaluation of any of theentries A;; = a;b; requiresexactly
one operation.

(f) Let A = [a, b]. A complete row a;b [or column bja] of A requires m [n]
operations.

2.4.2. Ssums of R1-Matrices, Singular-Value Decomposition

Let A and A" be two R1-matrices. Then, in general, the sumis not an R1-matrix
but of rank 2. A suitable approximating R1-matrix is the subject of the next
considerations.

The singular-value decomposition of an arbitrary n x m-matrix A is
A=UxDxV,

where U isaunitary n x n-matrix, V aunitary m x m-matrix and D a diagonal
n x m matrix. D containsthe“singular values’ d; > 0. Without loss of generality
wemay assumed; > do > .... Thenk = rank(A) isthe maximal index k with
dr > 0.

Let A an arbitrary n x m-matrix of the rank k. When we look for an approximate
matrix of therank k' € [1, k] , the matrix

A'=UxD' xV withD' :=diag{d,...,dv,0, ..., 0}
isof rank k¥’ and has the smallest Frobeniusnorm ||A — A'|| F.

This construction is easily applicable for ¥’ = 1 in order to replace the sum
A + B of rank 2 by a new approximating R1-matrix C (here only eigenvalues
and eigenvectors of 2 x 2-matrices are needed; see proof of Remark 2.8 be-
low). Thisapproximation even alowsan error estimation by ||[(A + B) — C||F or
I(A+ B) — C||r/lICl|l r. The approximate sum C of A and B is aprojection of
A + B onto the set of R1-matrices. We use the notation C = A 41 B or, inthe
genera case of rank-k-matrices,

C=A+r B (10)
for the truncated sum.

For the convenience of the reader, we give the details of the (4 1)-summation
procedure. Given A = [a1, b1] and B = [a2, b2], let T := A + B bethetrue sum
and ¥ = U x D * V itssingular value decomposition. The columns of the unitary
matrix V are the (normalised) eigenvectors of £ X. Since only eigenvectors v
corresponding to non-zero eigenvalues are of interest, we may restrict v to the
span of {b1, bo}. The ansatz v = a1b1 + a2b2 leads to the eigenvalue problem
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A = G,GpaWitha = (a1, )" andthe2x2GrammatricesG, = (af’a)); j=1.2
and G, = (biHbj),-,j:Lg. Choosing the normalised eigenvector v = a1b1 + a2b2
corresponding to the larger of the two eigenvalues A1, A2, we can represent the
truncatedsum C = A+ gy B aS[az, b3] Withbz := vandaz := v = (Av)+(Bv).

Remark 2.8. The R1-addition + g1 of twon x m-matrices costs 9(n +m) + O (1)
operations’.

Proof: Let A = [a1, b1], B = [az, bo] and C := A +r1 B = [as, b3]. The two
Gram matrices® G, = (aa;); j=12 and G, = (b1b;); j=12 involve six scalar
products resulting in 12(n + m) — 6 operations. Let v bethe eigenvector of G,G),
corresponding tothelarger eigenvalue. The solving of the 2x 2 eigenvalue problem
costs O(1) operations. bz := v1b1 + v2bz including the normalisation requires
3m + O(1) operations. Finaly, as := Abz + Bbz needs 3n + O(1) operations
exploiting the structure b3 := v1b1 + v2b2 and the already computed values biH b;.
O

Remark 2.9. If A = [a, b] isan R1-matrix and A’ asubmatrix, then also A’ isan
R1-matrix of theform A’ = [a’, b"] with respective subblocks a’, b’ of a, b.
2.5. Rk-Matrices

If we replace R1-matrices by Rk-matrices, the following properties hold for fixed
k:

e Thestoragefor n x m Rk-matricesis O (n + m).
e Theproduct A B requires k2 scalar products.

e Thetruncation of A + B to an Rk-matrix requiresthe solution of ak x k eigen-
value problem. However, the additional amount of work is O (1) independent
of thedimensions n, m.

e The operation count for the various matrix-vector and matrix-matrix operations
described below are of the same order (only the constants are different).

We conclude that there is no problem in using Rk-matrices. In the following, we
use R1-matrices only to simplify the presentation.

7In the case of Footnote 6, the factor 21 reducesto 20. A further reduction can be achieved by the hint
given in Footnote 8.

81n order not to recomputethe scalar productsa!? a; and b¥ b;, i = 1, 2, every time, it isadvantageous
to compute a’ a and 5 b oncefor all for any R1-matrix [a, b].
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2.6. Uniform H-Matrices

In general, the addition of Rk-matrices cannot be performed exactly. In the fol-
lowing, we describe a special situation, where the addition is exact.

So far, an Rk-matrix 3°+_,[a;, b;] could be formed with arbitrary vectors a;, b;.
Another situation occurs if we fix two bases

fa;:1<i <k}, {bj:1<j<kjcK! (11)
and form the R1-matrices
{lai,bj]1:1<i,j <k}, (12)

which span a subspace V;, ¢ K", We write V;, = Vi (I x I) for this space of
matrices over theindex set I x I.

Remark 2.10. (a) The subspace V;y = Vi (I x I) spanned by (12) consists of
Rk-matrices. Furthermore, dim V; = k2 holds.
(b) If the Rk-matrices A, B belong to Vi, the sum is aso an Rk-matrix from V.

Letb =11 x Io C I x I besome matrix block. The restriction of [a;, b;] to b is
the block matrix

lai, bl = (@iabj p)(@.p)eb A=<ij=<kh.

Although theseblock matricesdo not necessarily formabasis, they span asubspace
denoted by Vi (b) = Vi (11 x I2).

Definition 2.11. Let Vi, = Vi (I x I) as before and deduce from V;, the subspaces
Vi (b) for all blocks b € Po. An ‘H-matrix from My« (I x I, P2) is a uniform
H-matrix, if all block matrices M?, b € P, appearingin (7) belong to Vi (b). The
set of uniform H-matrices is denoted by Uy, (I x 1, P2, Vi).

Example2.12. Assume/ = {1, ... ,n}and amapping x : I — R with x(«) =:
xo (a € I). Define the vectors a; = b; by means of x' ™1, i.e., (a;)q = o'~ for
@ el ={1,...,n). Inthiscase, Vi represents polynomias 3~; ;o ;1 x'y/.
Dueto the later Remark 4.2, we may replace the vectors a;, b; from above by the
scaled ones a; := Dya; and bj/. := Dyb;, where D, and D, are diagonal matrices.

3. Complexity of the H-Matrix Arithmetic

All statementsbel ow correspond to the H-matrix classwith P, from (5) and k = 1.
We note that alarge part of the operations can be saved if the involved matrices
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are symmetric and, in particular, if the blocks A11, A2 in (8) and their subblocks
etc. areidentical. In the following, we consider the general case only.

3.1. Sorage

Asan exercise, we consider the number of blocksin the partitioning P2 (1, T) from
(5). Set Npjock (p) :=#P>(I, T) forn = 2P. By definition, wehave Npjocr (0) = 1
and Npiock (1) = 4. Recursion (5) yields Npjock (p) = 2 + 2Npjock(p — 1) for
p > 1. Thisleadsto

Npiock(p) = 3n — 2. (13)

According to Remark 2.7a, the storagefor the R1-matrix [a, b] iSNg1(p) := 2n =
2r+1 For p = 0, itissufficient to store only one real number, i.e.,, Ng1(0) := 1.
Let Nyorage (p) bethe storage needed for an H-matrix of dimension 27 x 27. The
recursion (5) yields

Nstorage(P) = 2Ngi(p—1) + 2Nst0rage(p -1 = ortt + 2Nstorage(p - 1.
Together with Nyoraee(0) = Ng1(0) = 1, we obtain
Lemma 3.1. The storage requirement for ann x n H-matrix withn = 27 is

Nstorage(p) =@2p+Dn=_>1+ 2|ng nn. (14)

3.2. Addition

The sum of two R1-matrices is already discussed in Remark 2.8. The costs are
denoted by Ng14r1(p).

The exact addition A + B of two H-matrices requiresto add all blocks. A? + B?,
b € P>. The approximate addition of two H-matrices is defined by replacing the
exact operation + by + g1 from (10). Theresult C isdenoted by the same symbol:
C =A+pr1B.

Letn = 27 and p > 0. Denotethe cost of the R1-addition of two n x n H-matrices
by Nuyu(p). Thentherecursion Ny 1y (p) = 2Np+u(p — 1) + 2Ng11ra(p —
1) =2Ng+u(p — 1 +2(21%5 + 0(1)) follows from Remark 2.8. Together with
Ny (0) = 1weobtain

Nu+u(p) = 21pn + O(n). (15)

Finaly, we discuss the sum A + B of ann x n H-matrix A and an R1-matrix
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B (notation of the costs: Ngy+r1(p)). Due to Remark 2.9, the R1-blocks in

B = [ g; gz] can be obtained without arithmetic operations. The recursion

Nuyr1(p) = 2Ng4r1(p — 1) + 2Ng11r1(p — 1) and the start Ny £1(0) = 1
areidentical to Ny andyiedd Ny r1(p) = 21pn + O(n).

Lemma 3.2. The R1-addition of two n x n H-matrices or of an H-matrix and an
R1-matrix requires 18n log, n + O (n) operations.

Remark 3.3. TheRk-addition of two uniform H-matricesfromify, x (I x I, P2, Vi)
is exact.

3.3. Matrix-Vector Multiplication

Let A beann x n H-matrix and x an n-vector. Decompose A asin (8) and x into
then /2-block vectors x1 and x2. The multiplication Ax reducesto the computation
of A11x1, A12x2, A21x1, Azoxo and their addition. Due to Remark 2.7b, A12x2
and Az1x1 cost each 3n — 1 operations. Denote the costs of Ax (with n = 2P)
by Nuyv(p). The recursion Nyy(p) = 2Nyv(p — 1) + 4n — 2 starting with
Ny (0) = lyields

Nyv(p) =4pn —n+ 2. (16)

Lemma 3.4. Thematrix-vector multiplication of an n x n H-matrix by a (general)
vector requires4n log, n — n + 2 operations.

The matrix-vector multiplication becomes cheaper if the vector x is sparse. The
extreme case is a vector x with only one non-zero component. The proof of the
following remark is | eft to the reader.

Remark 3.5. Let A beann x n H-matrix and x a vector with only m non-zero
entries.

(@ If m = 1, the multiplication Ax requiresn + log, n operations.

(b) For general m < n, the leading term 4nlog, n from Lemma 3.4 becomes
2(n + m)log, n.

3.4. Matrix-Matrix Multiplication

Letn = 2P, The multiplication of two R1-matricesrequires Ngp14g1(p) :=3n—1
operations (cf. Remark 2.7d).

Next, we consider the multiplication A * [a, b] {or [a, b] x A} of ann x n H-
matrix A and the R1-matrix [a, b]. Since A * [a, b] = [Aa, b], the costs coincide
with the operation count of the matrix-vector multiplication from Lemma 3.4
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Nus«r1(p) ‘= 4nlogyn — n + 2. The same number N1z = Npus«r1 holds for
[a,b] = A.

Let Ny, (p) bethe costsfor the approximate product A g1 B of the H-matrices.
Dueto (8), we form the products A11 *g1 B11, A22 *g1 B22 (COStS. Ny (p — 1))
and A12% B21, A21 % B12 (COSts: Nr1sr1(p —1)). By Lemma3.2, the R1-additions

in (A11*r1 B11) +r1 (A12 %1 B21) and (A21 %1 B12) +r1 (A22 %g1 B22) require
2N+ r1(p — 1) operations. Altogether, we get the recursion

Nuwu(p) = 2[Nuxu(p — 1) + Nr1xr1(p — 1) + Nutr1(p — 1)]
=2Ng.«g(p — 1)+ 18pn + O(n)

with the starting value N, (0) = 1. Thisleadsto Ny.x (p) = 9p%n + O(pn).
We summarise:

Lemma3.6. Themultiplicationof two H-matricesrequiresOn Iog% n+0(nlog,n)
operations. The multiplication of an H-matrix by an R1-matrix costs 4n log, n —
n + 2, while the multiplication of two R1-matrices needs 3n — 1 operations.

3.5. Matrix Inversion

In the following, we assume that an H-matrix A of sizen x n withn = 2P is
given and we try to approximate the inverse A~1 by an H-matrix B = Invg1(A).
Again, we useinduction with respect to the depth p of block structure. For p = 0,
Invg1(A) ;= A~1isdefined as the exact inverse of the 1 x 1-matrix A. Having
defined Invgy onlevel p — 1, the (exact) inverse of A with block structure (8) is

-1 -1 -1 -1 -1 -1
A—l — |:A]_]_ + A]_]_ AlZS A21All _All A]_ZS :| (17)

—s~tanadt st

with the Schur complement S = A — A21A111A12. Since A1 isan H-matrix of
level p — 1, Invg1(A11) isdready defined. Because Az;, A1 are R1-matrices,
the exact product Az1A7" A1 is replaced by the R1-matrix Az1lnvgi(A11)A1

(cf. Remark 2.7d). Then S = App —Rr1 Ap1Invgi(A11) A1 defines the H-matrix
approximating S. Next, Invg1(S) can be performed. So far, the computational
work amountsto 2N,y (p — 1)+ Nuxr1(p — D+ Nr1«r1(p — D+ Ny r1(p—1).

The approximation of —A7*A128~1 by —Invg1(A11)A12lnvg1(S) and of the
similar block —S~*Axn A7 by —Invg1(8)A21Invg1(A11) costs 3Ng1.n (p — 1)
(note that one product, e.g., AIllA 12 isaready known from the computation of ).

It remains to approximate the left upper block in A=, Since S~1A1A; and
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AIllAlz are aready approximated, Ny p1(p — 1) + Nr1:r1(p — 1) operations
complete the computation of Invg1(A).

The sum of all costs amounts to

Ninv(p) = 2Niny(p =) +4Npsr1(p — D) +2Npr1(p — 1) +2NR1cr1(p — 1).

The previousresultsyield N;jy(p) = 2Nino(p —1) +4x4(p —1)5 + 2+ 21(p —
D% + O(n) = 2Niny(p — 1) + 29pn + O(n). Together with Ni,,(0) = 1, we
obtain Niuy (p) = & p?n + O(pn).

Lemma 3.7. The gpproximale inversion of an H-matrix requires 27911 Iog%n +
O (nlog, n) operations.

3.6. LU-Decomposition

It is of course possible to compute the (approximate) LU-decomposition LU of
A with normalised lower triangular H-matrix L and upper triangular H-matrix U.
Then the computation of L~1x or U~Lx requires 2nlog, n + O(n) operations.
The LU-decomposition needs 6n Iog% n + O(nlog, n) operations.

4. Properties of the H-Matrices

We have seen that, in general, neither the sum nor the product of two #-matrices
from M, are again of the same type so that a “rounding” is necessary. In the
following, welist some propertieswhich hold exactly. Thefirst statementisalready
known.

Remark 4.1. (8) The matrix-vector multiplication Ax for A € My isexact.
(b) Let A € My ¢ and B an Rk-matrix. Then AB and B A are again Rk-matrices.

Let D beadiagonal matrix. Then the block structureof A € Mo, isnot changed
by amultiplication by D. Furthermore, DA, AD € M x shows that the product
can be performed exactly. This can also be expressed as follows.

Remark 4.2. M,k isinvariant with respect to diagonal scaling.

Although this fact seems trivial, it implies that any kind of equilibration of the
matrix entriesis unnecessary.

The H-matrix set My 1(I x I, P2) with P> from (5) isvery simple. Nevertheless,
it isthe appropriate format for the treatment of tridiagonal matrices.

Proposition 4.3. Let A € K/*! beatridiagonal matrix. Then, A and A~ belong
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to My 1(I x I, P2). Thematrix Invg1(A) from §3.5isthe exact inverse A~L.

Proof: The statement A, A~ ¢ M1 holds for p = 0. In the following, we
assume the assertionfor p — 1, i.e,, n/2.

a) By induction, A11, A2 from (8) are H-matrices. A12 has at most one non-
zero entry. Hence A1z is an R1-matrix [a, b] with a; = 0 except the last index
and b; = 0 except thefirst index. A1 has the transposed structure. This proves
A € My forleve p.

b) The proof of A1 e Moy 1 starts with the Schur complement S = A —
A21A111A12. The characterisation of A1> and A1 in part @ showsthat A21AIllA12
has only one non-zero entry in the (1,1)-position. Therefore, S remains a tridi-
agonal matrix and by induction S~1 € M, 1 follows. The off-diagonal blocks
—AApStand —S~tAxn ALl areof R1-type. Thefirst block can be written as
the inverse of the Schur complement S = A11 — A12A5 Az, O

Corallary 4.4. Proposition 4.3 holdsalso for band matriceswith 2k off-diagonals
with k& > 1, if H-matricesfrom My, 1 (I x I, P2) are used.

5. A Second Examplefor H-Matrices

For many purposes, the class My (I x I, P2) given above is not dense enough
around the diagonal. Inthe following, we present aricher block partitioning P, of
I x I, which till leads to the same orders of complexity as obtained before.

5.1. The Block Partitioning P,

We assume that the H-tree T is the same as before. First, we define /- and N*-
matrices (N abbreviates “neighbourhood”; block matrices of type N will be used
for neighbouring blocks from T).

Letn = 2P. Ann x n-matrix A isan N-matrix (matrix of A/-type) if p = O or if
it has the block structure

A= [All A12] with = x = Rk-matrices A11, Axz, Azp and A-matrix Agy.
A1 A2 272 o

Similarly, we definethetransposed type: A isan V*-matrixif AT isof A-type, i.e.,
in(18) A11, A21, A are Rk-matricesand A1z isan A*-matrix (if p > 0). The set
of these V- and \/*-matricesisdenoted by M x (1 x I, Py) and M k(I x I, P5),
respectively (or briefly, Marx, M+ ). The product of two matrices of type A/
[or both of type A/*] should be truncated into an Rk-matrix.
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Then the H-matrices from My (I x I, P;) corresponding to the new block par-
titioning P, are defined in

Definition 5.1. A € My (I x I, Py) ifeither n =1 (p =0) or if

A [All A

A21 Azz] 11, A22 € Mk, A12 € Mk, A21 € Mp= k. (19)

Note that the 1 x 1-matrices possess al types; in particular, they are Rk-matrices.
For p < 2, the block partitioning P,, which is implicitly defined by (19), is the
trivial partitioninginto 1 x 1-blocks. Larger blocks appear thefirsttimefor p = 3:

(20)

5.2. Complexity

Since the arguments are the same as explained in Section 3, we present the results
without further explanations. We abbreviate log, n by p.

The number of blocks in B iS Npjock = 9n — 6p — 8.
The number of data to be stored is N;orage = 6pn + O (n).

Concerning the addition, the different combinations of types must be considered:

NRik+Rks NN+Rk; NN+N = O(n), Nuiri, Nu+uy = O(pn).

Matrix-vector multiplication:

Nrisx =3n+ O(1), Nysx =1In 4+ O(1), Npsx = 11lpn + O(n).
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Matrix-matrix multiplication:

Ngisrk> NN<rk» Nysns = O(), Ngsri Nisy = O(pn), Nywu = O(p?n).

Inversion:
Nipy = 0(p2n)-

5.3. Approximation of Integral Operators

Wewill usethe newly defined H-matricesto approximate full matricesarising from
integral operators as they appear in the boundary element method. For the general
structure of the integral operatorswerefer to[5], [11]. Thetrue background of this
application is the fact that the inverse of the discretisation matrix arising from an
dliptic boundary value problem has properties quite similar to the discreteintegral
operator.

Replacing the integration over the surface simply by an integral over [0, 1] and

choosing the simplest weakly singular kernel « (z) := log(z), we abtain the exam-
ple

1
(Au) (x) = / log(x — y)u(y)dy for x € [0, 1].
0

A typical discretisation like the collocation method with piecewise constant ele-
ments for the equidistant® interval partitioning

[xi—1, xi], x;, =ih, i=1,... ,n, h=1/n,

withthe midpoints x; 1,2 = (i —1/2)h of theintervals as collocation points |eads
to the matrix (discrete operator)

- Xj
A = (aij)i,j=1,.. n Witha;; = / log(xi—1/2 — y)dy. (21)
Xiji—

j-1

Asin the pand clustering method, one can replace the kernel function « (x, y) =
log(x — y) inacertain range of x, y by an approximation < (x, y) of theform

ROy =), XY, (22

9Non—equi distant partitioningswork aswell since additional factorsaccordingto thesubinterval lengths
are harmless because of Remark 4.2.
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The simplest choice of such an approximation is Taylor's formula applied with
respecttoy (thenJ ={0,1,... ,k — 1}, X,(x) = derivatives of « (x, -) evauated
ay=y*andY,(y) = (y—y*)"). Inthiscase, onechecksthat « (x, y) = log(x—y)
leads to the error estimate

1

for |x —y*| = [y—y*|.

(23)
Error estimates of thiskind are studied more generally inthe panel clustering tech-
nique (cf. [5, (9.7.12a,b)]). Other expansions « (x, y) than the Taylor polynomial
are studied in [10].

Ik (x, y) =& (x, y)] <1 ly —y* Ik
’ NS ke (x ly — y* Dk

If « isreplaced in (21) by &, theintegral becomes

aij = th(xi—l/Z)/ ’ Y. (y)dy. (24)
el Aj-1

Leth € B; beoneblock andrestricttheindicesi, j in(24) tob. Then (24) describes

ablock matrix A?. Obviously, each term of the sum in (24) is an R1-matrix [a, b]

witha; = X,(xi—1/2) and b; = f;j{l Y,(y)dy. Since#J = k, the block A? is of

Rk-type.

The first 2 x 2-block of type Rk in (20) correspondsto 0 < x < 1/4and 1/2 <
y < 3/4. Choosing y* := 5/8, we obtain |x — y*| > 3/8, |y — y*| < 1/8 and
therefore

ly = y*| < nlx — y¥| (25

with n = 1/3. One checks that (25) with n = 1/3 holds for al Rk-blocks in the
‘H-matrix. The combination of (23) and (25) yields

1
Ik (x, y) — R (x, y)| < E(%ﬁ)". (26)

Hence, the difference |a;; — a;;| is bounded by %(1%”)". In the special case of
n = 1/3, we have |a;; — a;j| < %2_’“. The maximum norm error satisfies ||A —
A||Oo < 2%/ k, where k corresponds to the choice of the Rk-matrices.

We summarise;

Proposition 5.2. Approximate the collocation matrix A from (21) by (22)-(24).
Then theresulting approximation A isan H-matrix belonging to My x (I x I, B5)
from Definition 5.1 and satisfies the error estimate [|A — Alloo < 2% /k.
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