
Computing 62, 89–108 (1999)

c© Springer-Verlag 1999
Printed in Austria

A Sparse Matrix Arithmetic Based on H-Matrices.
Part I: Introduction to H-Matrices

W. Hackbusch, Leipzig

Received July 30, 1998; revised December 28, 1998

Abstract

A class of matrices (H-matrices) is introduced which have the following properties. (i) They are sparse
in the sense that only few data are needed for their representation. (ii) The matrix-vector multiplication
is of almost linear complexity. (iii) In general, sums and products of these matrices are no longer
in the same set, but their truncations to the H-matrix format are again of almost linear complexity.
(iv) The same statement holds for the inverse of anH-matrix.

This paper is the first of a series and is devoted to the first introduction of theH-matrix concept. Two
concret formats are described. The first one is the simplest possible. Nevertheless, it allows the exact
inversion of tridiagonal matrices. The second one is able to approximate discrete integral operators.

AMS Subject Classifications: 65F05, 65F30, 65F50.

Key Words: Hierarchical matrices, hierarchical block partitioning, sparse matrices, matrix inversion.

1. Introduction

When dealing with linear systems of n equations, one has optimal efficiency if
the computational amount of work is O(n). For many situations characterised
by a sparse system matrix A, one knows optimal solution algorithms. A basic
problem arises for systems with non-sparse matrices. Since n2 entries are to be
used, the O(n2)-complexity seems to be unavoidable (the example of the fast
Fourier transform shows that this is not true in general). Two different techniques
have been developed for full matrices. In the case of matrices obtained from
integral operators, the panel clustering technique uses a representation with only
O(n log n) data, which enables a matrix-vector multiplication with almost linear1

complexity. Another approach is the matrix compression after using a special basis
(e.g., wavelet bases) such that only few entries are of a non-negligible size.

In all the modern approaches to fast linear algebra applications, one tries to
avoid matrix-matrix operations and uses only matrix-vector multiplications (or
the vector-vector scalar product). In particular, the construction of an inverse ma-

1 Almost linear complexity means O(n logk n), i.e., linear up to logarithmical factors.

90 W. Hackbusch

trix is forbidden. This is by two reasons; first, the computation is rather expensive
(O(n3) in the general case) and, second, the inverse A−1 is usually a full ma-
trix, even if A is sparse, and therefore the multiplication of A−1 by a vector is of
O(n2)-complexity.

A severe problem arises whenever the computation involves a Schur complement,
since it contains the product P := A ∗ B−1 ∗ C with given (sparse) matrices
A,B,C. In this case, all actions must be manageable by performing the matrix-
vector multiplication P ∗ x (involving the solution of Bz = y := Cx). There is
no access to matrix entries of P, since the computation of B−1 is unattainable.

In this paper, we follow a completely different strategy. We do approximate full
matrices, form (approximate) products of these matrices and compute the (approx-
imate) inverse matrix. In the case of the Schur complement involving A∗B−1 ∗C,
we propose to compute this product directly. Surprisingly, the amount of work is
almost linear in the dimension n. Obviously, this approach allows quite new appli-
cations. An idea which is rather close to our approach is described in the papers
[1], [12], however, there the hierarchical treatment is missing, which is central in
the present presentation.

The key point is the description of a class of matrices (called H-matrices2, where
H abbreviates “hierarchical”). These matrices are not sparse in the sense that there
are only few non-zero entries, but they are data-sparse in the sense that these
matrices are described by only few data. The class of H-matrices contains certain
sparse matrices and approximates very well full matrices as they arise from integral
operators or from the inversion of matrices corresponding to elliptic boundary value
problems. The underlying idea is closely related to the panel clustering technique
mentioned above (cf. [2], [3], [5], [7]–[11]).

In order not to overburden this paper, we shall not discuss the application to elliptic
boundary value problems here. This will be postponed to a later paper [6]. Instead,
we present the basics of the new approach. The first H-matrix format described
in Section 2 is the simplest example. Because of its simple structure, one can
explicitly count the work of operations like matrix-matrix multiplication or matrix
inversion (cf. Section 3). In spite of the simple structure, we show in Section 4
that these H-matrices allow an exact inversion of tridiagonal matrices.

In order to define theH-matrices, we introduce in Subsection 2.1 theH-partitioning
of the index set I. This corresponds to a variable vector block-partitioning. After
defining a non-standard matrix-partitioning (partitioning of I × I), we present the
definition of an H-matrix in Subsection 2.3.

A more realistic example with respect to interesting applications is the second
example of H-matrices introduced in Section 5. With the techniques exercised in

2 Do not confoundH-matrices with H-matrices (cf. Definition 6.6.7 in Hackbusch [4]).

A Sparse Matrix Arithmetic Based onH-Matrices 91

Section 3, one finds that the matrix operations have the same order of complexity
as for the first example. However, now it is possible to approximate matrices
corresponding to integral operators as they typically arise in boundary element
methods.

In a sequential paper [6] we shall describe the generalisations to two- and three-
dimensional boundary value problems and integral operators. Then the block
partitioning which is fixed in the present first and second examples of Sections
2 and 5 must be replaced by an H-partitioning of I × I and a criterion for the
selection must be given.

2. Introductory Example

We start with the simplest example of H-matrices. The hierarchy (“H”) is firstly
a hierarchy of block partitionings. Therefore, we have first to discuss the block
partitionings.

2.1. The Vector Case

2.1.1. Partitioning of a Vector

We consider a vector space of vectors a = (ai)i∈I , where I is a finite index set
(e.g., I = {1, ..., n}). The usual block partitioning consists of a (fixed) partitioning
of I into disjoint subsets, i.e., P = {Ij : 1 ≤ j ≤ k} with

I =
k⋃·

j=1
Ij . (1)

The j th block of a vector a is (ai)i∈Ij .

In the following we want to control the granularity of the block partitioning, i.e.,
instead of a fixed partitioning we need a family containing coarse partitionings as
well as fine ones. For this purpose, we introduce a set of hierarchical partitionings
which we call “H-partitionings”.

2.1.2. H-Tree over I

In the sequel, we use a tree structure. If t is a vertex of the tree T , S(t) denotes the
set of sons of t. A vertex t ∈ T is a leaf of the tree, if S(t) = ∅. L(T) is the set of
leaves of T . The root is the unique vertex without parent element. We summarise:

S(t) := {s ∈ T : s is son of t} for t ∈ T ,
L(T) := {t ∈ T : S(t) = ∅} .

92 W. Hackbusch

In the next definition, property (i) is mentioned for the sake of readability although
it can be omitted since it follows from (iv).

Definition 2.1. Let I be an index set. A tree T is called an H-tree (based on I) if
the following conditions hold:

(i) All vertices t ∈ T are subsets of I .

(ii) I ∈ T .

(iii) #S(t) 6= 1 for all t ∈ T .

(iv) If t ∈ T is no leaf, S(t) contains disjoint subsets of I and t is the union of its
sons, i.e.,

t = ⋃·
s∈S(t)

s. (2)

We conclude that I is the root of T .

Example 2.2. Let I = {1, ..., n} and n = 2p. The partitioning of level p (finest
partitioning) consists of n one-element subsets,

I
p

1 = {1}, Ip2 = {2}, . . . , I pn = {n}.

On level p − 1, two subsets from level p are combined. These subsets are

I
p−1
1 = {1, 2}, Ip−1

2 = {3, 4}, . . . , I p−1
n/2 = {n− 1, n}.

Similarly, we obtain 4-element subsets of level p − 2, etc. Finally, at level 0, the
whole index set I 0

1 = I = {1, 2, . . . , n} is the only block. This defines a binary
tree T with the vertices {I `i : 0 ≤ ` ≤ p, 1 ≤ i ≤ 2`}. I is the root. The vertices
at level p are the leaves. The sons of I `i (` < p) are I `+1

2i−1and I `+1
2i .

We use the notation t → s to express that s ∈ S(t). Then the pair (t, s) is an
(directed) edge in the tree (graph) T . If there is a path t = t0→ t1 → . . .→ tk = s
from t to s (including the case t = s, i.e., k = 0), we write

s ∈ S∗(t).

The characteristic properties of the H-tree T are described in

Remark 2.3. (a) Let s, t ∈ T with s 6= t . Then exactly one of the following three
cases holds:
(i) s ⊂ t. Then s ∈ S∗(t)\{t}.
(ii) t ⊂ s. Then t ∈ S∗(s)\{s}.

A Sparse Matrix Arithmetic Based onH-Matrices 93

(iii) s ∩ t = ∅. Then there is a unique smallest3 r ∈ T with s, t ∈ S∗(r).
(b) For any t ∈ T , S∗(t) is a subtree4 of T satisfying (i), (iii), (iv) from Definition
2.1.
(c) For any t ∈ T ,

t = ⋃·
s∈L(S∗(t))

s. (3)

Proof: (c) Introduce S`(t) := {s ∈ S∗(t) : there is a path t → . . .→ s of length
≤ `}.Use induction to prove t =⋃· s∈S`(t) s for ` = 0, 1, . . . and S`(t) = L(S∗(t))
for sufficiently large `. �

2.1.3. T -Partitioning

In the following, we restrict all block partitionings to those which are built by blocks
contained in the tree T . For these ones we use the name T -block partitioning.

Definition 2.4. A block partitioningP = {Ij : 1 ≤ j ≤ k} of I is called a T -block
partitioning (or briefly, a T -partitioning) if P ⊂ T holds besides (1).

The set of all such T -partitionings is denoted by P(T). The next remark shows
that T -partitionings can uniquely be described by means of H-subtrees (these are
subtrees of T with the H-tree property defined in Definition 2.1).

Remark 2.5. (i) P(T) = {L(T ′) : T ′ subtree of T and H-tree}.
(ii) There is a one-to-one mapping between T -partitionings and H-subtrees T ′
given by T ′ 7−→ P := L(T ′) ∈ P(T).

Proof: Part (i) follows from (ii). For the proof of (ii) let an H-subtree T ′ be given.
Then (2) ensures I = ⋃· s∈L(T ′) s; hence, P := L(T ′) is a T -partitioning. If a T -
partitioningP = {Ij : 1 ≤ j ≤ k} is given, consider the subtree T ′ of T consisting
of all t ∈ T with t ∩ Ij = Ij or t ∩ Ij = ∅ for all Ij ∈ P. �

2.1.4. Ordered Index Set

Assume that the index set is ordered. Without loss of generality we may assume I =
{1, . . . , n}. Often, one requires that the subsets t ∈ T of I consist of consecutive

3Here, “smallest r” means that there is no proper subset r ′ ⊂ r, r ′ ∈ T , with s, t ∈ S∗(r ′).
4T ′ is called a subtree of T , if the vertices of T ′ form a subset of those of T and all edges of T ′
belong to T .

94 W. Hackbusch

indices, i.e., there are first and last elements n0(t), n1(t) ∈ I such that

t = {i ∈ I : n0(t) ≤ i ≤ n1(t)} for all t ∈ T . (4)

The blocks described in Example 2.2 are of this type.

2.2. The Matrix Case

2.2.1. Tensor Block Partitionings versus General Partitionings

Given a block partitioning P of I , the traditional block partitioning of a matrix is
given by the product

P2 := P × P = {I ′ × I ′′ : I ′, I ′′ ∈ P }.

This means that the subblocks of a matrix A are Aij = (aαβ)α∈Ii ,β∈Ij , where
Ii, Ij ∈ P . Hence, row- and column-wise the same blocks Ii and Ij are used. This
implies that the size of the blocks cannot be a function of i − j (distance from
the diagonal). In later applications we need finer blocks close to the diagonal and
coarser ones far away (compare the panel clustering technique in [7]).

We obtain a richer structure, when we look for general block partitionings P2 of
I × I (not only for tensor product blocks). A general block partitioning of I × I
is an partitioning of I × I, where we allow general subsets of I × I . Here, we
restrict ourselves to a smaller set of general partitionings (H-partitionings) which
are hierarchically structured as in the vector case, but now the H-partitionings
are based on the index set I × I instead of I. Details will be postponed to the
subsequent paper [6], since for the cases considered here, we are able to define
the partitionings explicitly. In particular, we will describe two partitionings. A
very simple one is constructed below, while the partitioning from Section 5 is a
prototype for more realistic partitionings needed for boundary value problems.

2.2.2. A Special Non-Tensor Partitioning

Let T be theH-partitioning of I defined in Example 2.2. More generally, we admit
binary trees with the property (4). The block partitioning P2 = P2(I, T) of I × I
induced by T is defined recursively over the depth of the tree T (largest path length
in T).

In the trivial case of depth=0 (i.e., T = {I }), define P2(I, T) := {I × I }.

If depth=1, I ∈ T has exactly two sons {I1, I2}. Then, P2(I, T) := {I1 × I1, I1 ×
I2, I2 × I1, I2 × I2} is the standard 2×2-block partitioning of I × I induced by
the vector partitioning {I1, I2} = L(T).

A Sparse Matrix Arithmetic Based onH-Matrices 95

If depth>1, define first the block partitioningP ′2 = {I1×I1, I1×I2, I2×I1, I2×I2}
discussed above involving the two sons I1, I2 of I. Next consider the subtrees
Tk := S∗(Ik) for k = 1, 2 and replace the blocks Ik × Ik in P ′2 by the finer
partitionings P2(Ik, Tk), i.e.,

P2(I, T) := P2(I1, T1) ∪ {I1 × I2} ∪ {I2 × I1} ∪ P2(I2, T2). (5)

In the case of T from Example 2.2, the tree has the depth p. The corresponding
block partitionings P2(I, T) are depicted below. For p > 1, the partitioning is no
more of tensor-product form.

p = 0 : , p = 1 : , p = 2 : ,

p = 3 : (6)

2.3. Hierarchical H-Matrices

In the following, P2 is a block partitioning of I × I not restricted to tensor-product
partitionings, e.g., P2 is the partitioning constructed above.

Definition 2.6. Let P2 be a block partitioning of I × I and k ∈ N. The underlying
field of the matrices is K. The set of H-matrices induced by P2 is

MH,k(I × I, P2)

:= {M ∈ KI×I : each block Mb, b ∈ P2, satisfies rank(Mb) ≤ k}. (7)

We call a matrix A an Rk-matrix if rank(A) ≤ k.

96 W. Hackbusch

In this section, we restrict our considerations to the simplest case k = 1. The
resulting R1-matrices are discussed in the next subsection.

Another (recursive) description of an n × n H-matrix A with n = 2p (p > 0)
corresponding to the block partitioning P2 from Subsection 2.2.2 can be given by
the requirement that A has the block structure

A =
[
A11 A12
A21 A22

]
with

n

2
× n

2
H-matrices Aii and R1-matrices A12, A21, (8)

where the recursion terminates for 1×1H-matrices, which are usual 1×1 matrices.

We mentioned in the introduction that the panel clustering method is based on
similar ideas. However, the matrix representation of the panel clustering technique
corresponds to a different block partitioning of I × I. There the blocks are of the
form {i} × {tj,i}, where i ∈ I and {tj,i : j ∈ I } is a T -block partitioning of I. This
partitioning may be different for each row index i.

2.4. R1-Matrices

2.4.1. Properties, Multiplication of R1-Matrices

Any n×m-matrix A of rank ≤ 1 (abbreviation: R1-matrix or matrix of R1-type)
can be written in the form

A = a ∗ bH (notation: A = [a, b]) (9)

with a ∈ Kn, b ∈ Km and bH being the Hermitian transposed of b. Properties of
R1-matrices5 are listed in

Remark 2.7. (a) The amount of storage is n+m (a and b to be stored).
(b) The amount of work for the matrix-vector multiplication A ∗ c (c ∈ Km) are
2m−1 operations to obtain6 α ∗a, and 2m+n−1 operations, if the multiplication
in α ∗ a is performed explicitly.
(c) Let A = [a, b] . Then also AH = [b, a] is of the form (9).
(d) R1-matrices have a right- and left-ideal property: Multiplication from the right
or left by an R1-matrix yields again an R1-matrix. Even if B is a more general
matrix,B∗AwithA = [a, b] requires only the amount of work for computingB∗a
and yields B ∗A = [B ∗ a, b] . Similarly for A ∗ B. If A and B are R1-matrices,
A ∗ B or B ∗A need only one scalar product.

5R1-matrices are used, since they need very few storage. However, for small blocks this does not pay.
Therefore, in practice, one should change Definition (7) and use the standard format for 2×2 or even
larger blocks.
6This suggests using a triple (α, a, b) for α[a, b].

A Sparse Matrix Arithmetic Based onH-Matrices 97

(e) LetA = [a, b] .The evaluation of any of the entriesAij = aibj requires exactly
one operation.
(f) Let A = [a, b] . A complete row aib

H [or column bja] of A requires m [n]
operations.

2.4.2. Sums of R1-Matrices, Singular-Value Decomposition

Let A and A′ be two R1-matrices. Then, in general, the sum is not an R1-matrix
but of rank 2. A suitable approximating R1-matrix is the subject of the next
considerations.

The singular-value decomposition of an arbitrary n×m-matrix A is

A = U ∗D ∗ V,

where U is a unitary n × n-matrix, V a unitary m × m-matrix and D a diagonal
n×mmatrix. D contains the “singular values” di ≥ 0. Without loss of generality
we may assume d1 ≥ d2 ≥ Then k = rank(A) is the maximal index k with
dk > 0.

Let A an arbitrary n×m-matrix of the rank k. When we look for an approximate
matrix of the rank k′ ∈ [1, k] , the matrix

A′ = U ∗D′ ∗ V with D′ := diag{d1, ..., dk′ , 0, ..., 0}

is of rank k′ and has the smallest Frobenius norm ‖A−A′‖F .

This construction is easily applicable for k′ = 1 in order to replace the sum
A + B of rank 2 by a new approximating R1-matrix C (here only eigenvalues
and eigenvectors of 2 × 2-matrices are needed; see proof of Remark 2.8 be-
low). This approximation even allows an error estimation by ‖(A+B)−C‖F or
‖(A + B) − C‖F /‖C‖F . The approximate sum C of A and B is a projection of
A + B onto the set of R1-matrices. We use the notation C = A +R1 B or, in the
general case of rank-k-matrices,

C = A+Rk B (10)

for the truncated sum.

For the convenience of the reader, we give the details of the (+R1)-summation
procedure. Given A = [a1, b1] and B = [a2, b2], let 6 := A+B be the true sum
and 6 = U ∗D ∗ V its singular value decomposition. The columns of the unitary
matrix V are the (normalised) eigenvectors of 6H6. Since only eigenvectors v
corresponding to non-zero eigenvalues are of interest, we may restrict v to the
span of {b1, b2}. The ansatz v = α1b1 + α2b2 leads to the eigenvalue problem

98 W. Hackbusch

λα = GaGbαwithα = (α1, α2)
T and the 2×2 Gram matricesGa = (aHi aj)i,j=1,2

and Gb = (bHi bj)i,j=1,2. Choosing the normalised eigenvector v = α1b1 + α2b2
corresponding to the larger of the two eigenvalues λ1, λ2, we can represent the
truncated sumC = A+RkB as [a3, b3] with b3 := v and a3 := 6v = (Av)+(Bv).

Remark 2.8. The R1-addition+R1 of two n×m-matrices costs 9(n+m)+O(1)
operations7.

Proof: Let A = [a1, b1], B = [a2, b2] and C := A +R1 B = [a3, b3]. The two
Gram matrices8 Ga = (aHi aj)i,j=1,2 and Gb = (bHi bj)i,j=1,2 involve six scalar
products resulting in 12(n+m)− 6 operations. Let v be the eigenvector ofGaGb
corresponding to the larger eigenvalue. The solving of the 2×2 eigenvalue problem
costs O(1) operations. b3 := v1b1 + v2b2 including the normalisation requires
3m + O(1) operations. Finally, a3 := Ab3 + Bb3 needs 3n + O(1) operations
exploiting the structure b3 := v1b1+ v2b2 and the already computed values bHi bj .
�

Remark 2.9. If A = [a, b] is an R1-matrix and A′ a submatrix, then also A′ is an
R1-matrix of the form A′ = [a′, b′] with respective subblocks a′, b′ of a, b.

2.5. Rk-Matrices

If we replace R1-matrices by Rk-matrices, the following properties hold for fixed
k:

• The storage for n×m Rk-matrices is O(n+m).

• The product A ∗ B requires k2 scalar products.

• The truncation of A+B to an Rk-matrix requires the solution of a k× k eigen-
value problem. However, the additional amount of work is O(1) independent
of the dimensions n,m.

• The operation count for the various matrix-vector and matrix-matrix operations
described below are of the same order (only the constants are different).

We conclude that there is no problem in using Rk-matrices. In the following, we
use R1-matrices only to simplify the presentation.

7In the case of Footnote 6, the factor 21 reduces to 20. A further reduction can be achieved by the hint
given in Footnote 8.
8In order not to recompute the scalar products aH

i
ai and bH

i
bi , i = 1, 2, every time, it is advantageous

to compute aHa and bHb once for all for any R1-matrix [a, b].

A Sparse Matrix Arithmetic Based onH-Matrices 99

2.6. Uniform H-Matrices

In general, the addition of Rk-matrices cannot be performed exactly. In the fol-
lowing, we describe a special situation, where the addition is exact.

So far, an Rk-matrix
∑k
i=1[ai, bi] could be formed with arbitrary vectors ai, bi .

Another situation occurs if we fix two bases

{ai : 1 ≤ i ≤ k}, {bj : 1 ≤ j ≤ k} ⊂ KI (11)

and form the R1-matrices

{[ai, bj] : 1 ≤ i, j ≤ k}, (12)

which span a subspace Vk ⊂ Kn×m. We write Vk = Vk(I × I) for this space of
matrices over the index set I × I.

Remark 2.10. (a) The subspace Vk = Vk(I × I) spanned by (12) consists of
Rk-matrices. Furthermore, dim Vk = k2 holds.
(b) If the Rk-matrices A,B belong to Vk, the sum is also an Rk-matrix from Vk.

Let b = I1 × I2 ⊂ I × I be some matrix block. The restriction of [ai, bj] to b is
the block matrix

[ai, bj]|b = (ai,α b̄j,β)(α,β)∈b (1 ≤ i, j ≤ k).

Although these block matrices do not necessarily form a basis, they span a subspace
denoted by Vk(b) = Vk(I1 × I2).

Definition 2.11. Let Vk = Vk(I × I) as before and deduce from Vk the subspaces
Vk(b) for all blocks b ∈ P2. An H-matrix from MH,k(I × I, P2) is a uniform
H-matrix, if all block matricesMb, b ∈ P2, appearing in (7) belong to Vk(b). The
set of uniform H-matrices is denoted by UH,k(I × I, P2, Vk).

Example 2.12. Assume I = {1, . . . , n} and a mapping x : I → R with x(α) =:
xα (α ∈ I). Define the vectors ai = bi by means of xi−1, i.e., (ai)α = αi−1 for
α ∈ I = {1, . . . , n}. In this case, Vk represents polynomials

∑
i,j=0,... ,k−1 x

iyj .

Due to the later Remark 4.2, we may replace the vectors ai, bj from above by the
scaled ones a′i := Daai and b′j := Dbbj , where Da and Db are diagonal matrices.

3. Complexity of the H-Matrix Arithmetic

All statements below correspond to theH-matrix class withP2 from (5) and k = 1.
We note that a large part of the operations can be saved if the involved matrices

100 W. Hackbusch

are symmetric and, in particular, if the blocks A11, A22 in (8) and their subblocks
etc. are identical. In the following, we consider the general case only.

3.1. Storage

As an exercise, we consider the number of blocks in the partitioning P2(I, T) from
(5). SetNblock(p) := #P2(I, T) for n = 2p.By definition, we haveNblock(0) = 1
and Nblock(1) = 4. Recursion (5) yields Nblock(p) = 2 + 2Nblock(p − 1) for
p > 1. This leads to

Nblock(p) = 3n− 2. (13)

According to Remark 2.7a, the storage for the R1-matrix [a, b] isNR1(p) := 2n =
2p+1. For p = 0, it is sufficient to store only one real number, i.e., NR1(0) := 1.
Let Nstorage(p) be the storage needed for anH-matrix of dimension 2p × 2p. The
recursion (5) yields

Nstorage(p) = 2NR1(p − 1)+ 2Nstorage(p − 1) = 2p+1 + 2Nstorage(p − 1).

Together with Nstorage(0) = NR1(0) = 1, we obtain

Lemma 3.1. The storage requirement for an n× n H-matrix with n = 2p is

Nstorage(p) = (2p + 1)n = (1+ 2 log2 n)n. (14)

3.2. Addition

The sum of two R1-matrices is already discussed in Remark 2.8. The costs are
denoted by NR1+R1(p).

The exact addition A+B of twoH-matrices requires to add all blocks. Ab +Bb,
b ∈ P2. The approximate addition of two H-matrices is defined by replacing the
exact operation+ by+R1 from (10). The result C is denoted by the same symbol:
C = A+R1 B.

Let n = 2p and p > 0.Denote the cost of the R1-addition of two n×nH-matrices
by NH+H(p). Then the recursion NH+H(p) = 2NH+H (p − 1)+ 2NR1+R1(p −
1) = 2NH+H (p − 1)+ 2(21n2 +O(1)) follows from Remark 2.8. Together with
NH+H(0) = 1 we obtain

NH+H(p) = 21pn+O(n). (15)

Finally, we discuss the sum A + B of an n × n H-matrix A and an R1-matrix

A Sparse Matrix Arithmetic Based onH-Matrices 101

B (notation of the costs: NH+R1(p)). Due to Remark 2.9, the R1-blocks in

B =
[
B11 B12
B21 B22

]
can be obtained without arithmetic operations. The recursion

NH+R1(p) = 2NH+R1(p − 1) + 2NR1+R1(p − 1) and the start NH+R1(0) = 1
are identical to NH+H and yield NH+R1(p) = 21pn+O(n).

Lemma 3.2. The R1-addition of two n× n H-matrices or of an H-matrix and an
R1-matrix requires 18n log2 n+O(n) operations.

Remark 3.3. The Rk-addition of two uniformH-matrices fromUH,k(I×I, P2, Vk)

is exact.

3.3. Matrix-Vector Multiplication

Let A be an n× n H-matrix and x an n-vector. Decompose A as in (8) and x into
the n/2-block vectors x1 and x2. The multiplicationAx reduces to the computation
of A11x1, A12x2, A21x1, A22x2 and their addition. Due to Remark 2.7b, A12x2
and A21x1 cost each 3n − 1 operations. Denote the costs of Ax (with n = 2p)
by NMV (p). The recursion NMV (p) = 2NMV (p − 1) + 4n − 2 starting with
NMV (0) = 1 yields

NMV (p) = 4pn− n+ 2. (16)

Lemma 3.4. The matrix-vector multiplication of an n×nH-matrix by a (general)
vector requires 4n log2 n− n+ 2 operations.

The matrix-vector multiplication becomes cheaper if the vector x is sparse. The
extreme case is a vector x with only one non-zero component. The proof of the
following remark is left to the reader.

Remark 3.5. Let A be an n × n H-matrix and x a vector with only m non-zero
entries.
(a) If m = 1, the multiplication Ax requires n+ log2 n operations.
(b) For general m ≤ n, the leading term 4n log2 n from Lemma 3.4 becomes
2(n+m) log2 n.

3.4. Matrix-Matrix Multiplication

Let n = 2p. The multiplication of two R1-matrices requires NR1∗R1(p) := 3n−1
operations (cf. Remark 2.7d).

Next, we consider the multiplication A ∗ [a, b] {or [a, b] ∗ A} of an n × n H-
matrix A and the R1-matrix [a, b]. Since A ∗ [a, b] = [Aa, b], the costs coincide
with the operation count of the matrix-vector multiplication from Lemma 3.4:

102 W. Hackbusch

NH∗R1(p) := 4n log2 n − n + 2. The same number NR1∗H = NH∗R1 holds for
[a, b] ∗A.

LetNH∗H (p) be the costs for the approximate product A∗R1B of theH-matrices.
Due to (8), we form the products A11 ∗R1 B11, A22 ∗R1 B22 (costs:NH∗H (p− 1))
andA12 ∗B21, A21 ∗B12 (costs:NR1∗R1(p−1)). By Lemma 3.2, the R1-additions
in (A11 ∗R1B11)+R1 (A12 ∗R1B21) and (A21 ∗R1B12)+R1 (A22 ∗R1 B22) require
2NH+R1(p − 1) operations. Altogether, we get the recursion

NH∗H (p) = 2[NH∗H (p − 1)+NR1∗R1(p − 1)+NH+R1(p − 1)]
= 2NH∗H (p − 1)+ 18pn+O(n)

with the starting value NH∗H (0) = 1. This leads to NH∗H(p) = 9p2n+O(pn).

We summarise:

Lemma 3.6. The multiplication of twoH-matrices requires 9n log2
2 n+O(n log2 n)

operations. The multiplication of an H-matrix by an R1-matrix costs 4n log2 n−
n+ 2, while the multiplication of two R1-matrices needs 3n− 1 operations.

3.5. Matrix Inversion

In the following, we assume that an H-matrix A of size n × n with n = 2p is
given and we try to approximate the inverse A−1 by an H-matrix B = InvR1(A).
Again, we use induction with respect to the depth p of block structure. For p = 0,
InvR1(A) := A−1 is defined as the exact inverse of the 1 × 1-matrix A. Having
defined InvR1 on level p − 1, the (exact) inverse of A with block structure (8) is

A−1 =
[
A−1

11 +A−1
11 A12S

−1A21A
−1
11 −A−1

11 A12S
−1

−S−1A21A
−1
11 S−1

]
(17)

with the Schur complement S = A22 −A21A
−1
11 A12. Since A11 is an H-matrix of

level p − 1, InvR1(A11) is already defined. Because A21, A12 are R1-matrices,
the exact product A21A

−1
11 A12 is replaced by the R1-matrix A21InvR1(A11)A12

(cf. Remark 2.7d). Then S̃ := A22 −R1 A21InvR1(A11)A12 defines the H-matrix
approximating S. Next, InvR1(S̃) can be performed. So far, the computational
work amounts to 2Ninv(p−1)+NH∗R1(p−1)+NR1∗R1(p−1)+NH+R1(p−1).

The approximation of −A−1
11 A12S

−1 by −InvR1(A11)A12InvR1(S̃) and of the
similar block −S−1A21A

−1
11 by−InvR1(S̃)A21InvR1(A11) costs 3NR1∗H(p− 1)

(note that one product, e.g., A−1
11 A12 is already known from the computation of S).

It remains to approximate the left upper block in A−1. Since S−1A21A
−1
11 and

A Sparse Matrix Arithmetic Based onH-Matrices 103

A−1
11 A12 are already approximated, NH+R1(p − 1) + NR1∗R1(p − 1) operations

complete the computation of InvR1(A).

The sum of all costs amounts to

Ninv(p) = 2Ninv(p−1)+4NH∗R1(p−1)+2NH+R1(p−1)+2NR1∗R1(p−1).

The previous results yieldNinv(p) = 2Ninv(p− 1)+ 4 ∗ 4(p− 1)n2 + 2 ∗ 21(p−
1)n2 + O(n) = 2Ninv(p − 1) + 29pn + O(n). Together with Ninv(0) = 1, we
obtain Ninv(p) = 29

2 p
2n+O(pn).

Lemma 3.7. The approximate inversion of an H-matrix requires 29
2 n log2

2 n +
O(n log2 n) operations.

3.6. LU-Decomposition

It is of course possible to compute the (approximate) LU-decomposition LU of
A with normalised lower triangular H-matrix L and upper triangular H-matrix U.
Then the computation of L−1x or U−1x requires 2n log2 n + O(n) operations.
The LU-decomposition needs 6n log2

2 n+O(n log2 n) operations.

4. Properties of the H-Matrices

We have seen that, in general, neither the sum nor the product of two H-matrices
from MH,k are again of the same type so that a “rounding” is necessary. In the
following, we list some properties which hold exactly. The first statement is already
known.

Remark 4.1. (a) The matrix-vector multiplication Ax for A ∈MH,k is exact.
(b) Let A ∈MH,` and B an Rk-matrix. Then AB and BA are again Rk-matrices.

LetD be a diagonal matrix. Then the block structure of A ∈MH,k is not changed
by a multiplication by D. Furthermore, DA,AD ∈MH,k shows that the product
can be performed exactly. This can also be expressed as follows.

Remark 4.2. MH,k is invariant with respect to diagonal scaling.

Although this fact seems trivial, it implies that any kind of equilibration of the
matrix entries is unnecessary.

TheH-matrix setMH,1(I × I, P2) with P2 from (5) is very simple. Nevertheless,
it is the appropriate format for the treatment of tridiagonal matrices.

Proposition 4.3. Let A ∈ KI×I be a tridiagonal matrix. Then, A and A−1 belong

104 W. Hackbusch

toMH,1(I × I, P2). The matrix InvR1(A) from §3.5 is the exact inverse A−1.

Proof: The statement A,A−1 ∈ MH,1 holds for p = 0. In the following, we
assume the assertion for p − 1, i.e., n/2.

a) By induction, A11, A22 from (8) are H-matrices. A12 has at most one non-
zero entry. Hence A12 is an R1-matrix [a, b] with ai = 0 except the last index
and bj = 0 except the first index. A21 has the transposed structure. This proves
A ∈MH,1 for level p.

b) The proof of A−1 ∈ MH,1 starts with the Schur complement S = A22 −
A21A

−1
11 A12. The characterisation ofA12 andA21 in part a) shows thatA21A

−1
11 A12

has only one non-zero entry in the (1,1)-position. Therefore, S remains a tridi-
agonal matrix and by induction S−1 ∈ MH,1 follows. The off-diagonal blocks
−A−1

11 A12S
−1 and −S−1A21A

−1
11 are of R1-type. The first block can be written as

the inverse of the Schur complement S = A11 −A12A
−1
22 A21. �

Corollary 4.4. Proposition 4.3 holds also for band matrices with 2k off-diagonals
with k > 1, if H-matrices fromMH,k(I × I, P2) are used.

5. A Second Example for H-Matrices

For many purposes, the class MH,k(I × I, P2) given above is not dense enough
around the diagonal. In the following, we present a richer block partitioning P ′2 of
I × I, which still leads to the same orders of complexity as obtained before.

5.1. The Block Partitioning P ′2

We assume that the H-tree T is the same as before. First, we define N - and N ∗-
matrices (N abbreviates “neighbourhood”; block matrices of type N will be used
for neighbouring blocks from T).

Let n = 2p. An n× n-matrix A is an N -matrix (matrix of N -type) if p = 0 or if
it has the block structure

A =
[
A11 A12
A21 A22

]
with

n

2
× n

2
Rk-matrices A11, A12, A22 and N -matrix A21.

(18)
Similarly, we define the transposed type: A is anN ∗-matrix ifAT is ofN -type, i.e.,
in (18)A11, A21, A22 are Rk-matrices andA12 is anN ∗-matrix (if p > 0). The set
of theseN - andN ∗-matrices is denoted byMN ,k(I×I, P ′2) andMN ∗,k(I×I, P ′2),
respectively (or briefly, MN ,k,MN ∗,k). The product of two matrices of type N
[or both of type N ∗] should be truncated into an Rk-matrix.

A Sparse Matrix Arithmetic Based onH-Matrices 105

Then the H-matrices fromMH,k(I × I, P ′2) corresponding to the new block par-
titioning P ′2 are defined in

Definition 5.1. A ∈MH,k(I × I, P ′2) if either n = 1 (p = 0) or if

A =
[
A11 A12
A21 A22

]
with A11, A22 ∈MH,k, A12 ∈MN ,k, A21 ∈MN ∗,k. (19)

Note that the 1× 1-matrices possess all types; in particular, they are Rk-matrices.
For p ≤ 2, the block partitioning P ′2, which is implicitly defined by (19), is the
trivial partitioning into 1×1-blocks. Larger blocks appear the first time for p = 3 :

(20)

5.2. Complexity

Since the arguments are the same as explained in Section 3, we present the results
without further explanations. We abbreviate log2 n by p.

The number of blocks in B′2 is Nblock = 9n− 6p − 8.

The number of data to be stored is Nstorage = 6pn+O(n).

Concerning the addition, the different combinations of types must be considered:

NRk+Rk,NN+Rk,NN+N = O(n), NH+Rk,NH+H = O(pn).

Matrix-vector multiplication:

NRk∗x = 3n+O(1), NN∗x = 11n+O(1), NH∗x = 11pn+O(n).

106 W. Hackbusch

Matrix-matrix multiplication:

NRk∗Rk,NN∗Rk,NN∗N∗ = O(n), NH∗Rk,NH∗N = O(pn), NH∗H = O(p2n).

Inversion:
Ninv = O(p2n).

5.3. Approximation of Integral Operators

We will use the newly definedH-matrices to approximate full matrices arising from
integral operators as they appear in the boundary element method. For the general
structure of the integral operators we refer to [5], [11]. The true background of this
application is the fact that the inverse of the discretisation matrix arising from an
elliptic boundary value problem has properties quite similar to the discrete integral
operator.

Replacing the integration over the surface simply by an integral over [0, 1] and
choosing the simplest weakly singular kernel κ(z) := log(z), we obtain the exam-
ple

(Au) (x) :=
∫ 1

0
log(x − y)u(y)dy for x ∈ [0, 1].

A typical discretisation like the collocation method with piecewise constant ele-
ments for the equidistant9 interval partitioning

[xi−1, xi], xi = ih, i = 1, . . . , n, h = 1/n,

with the midpoints xi−1/2 = (i− 1/2)h of the intervals as collocation points leads
to the matrix (discrete operator)

A = (aij)i,j=1,... ,n with aij =
∫ xj

xj−1

log(xi−1/2 − y)dy. (21)

As in the panel clustering method, one can replace the kernel function κ(x, y) =
log(x − y) in a certain range of x, y by an approximation κ̃(x, y) of the form

κ̃(x, y) =
∑

ι∈J Xι(x)Yι(y). (22)

9Non-equidistantpartitioningswork as well since additional factors according to the subinterval lengths
are harmless because of Remark 4.2.

A Sparse Matrix Arithmetic Based onH-Matrices 107

The simplest choice of such an approximation is Taylor’s formula applied with
respect to y (then J = {0, 1, . . . , k− 1}, Xι(x) = derivatives of κ(x, ·) evaluated
at y = y∗ andYι(y) = (y−y∗)ι). In this case, one checks that κ(x, y) = log(x−y)
leads to the error estimate

|κ(x, y)− κ̃ (x, y)| ≤ 1

k

1

(|x − y∗| − |y − y∗|)k |y−y
∗|k for |x−y∗| ≥ |y−y∗|.

(23)
Error estimates of this kind are studied more generally in the panel clustering tech-
nique (cf. [5, (9.7.12a,b)]). Other expansions κ̃(x, y) than the Taylor polynomial
are studied in [10].

If κ is replaced in (21) by κ̃, the integral becomes

ãij =
∑
ι∈J

Xι(xi−1/2)

∫ xj

xj−1

Yι(y)dy. (24)

Let b ∈ B′2 be one block and restrict the indices i, j in (24) to b.Then (24) describes
a block matrix Ãb. Obviously, each term of the sum in (24) is an R1-matrix [a, b]
with ai = Xι(xi−1/2) and bj =

∫ xj
xj−1

Yι(y)dy. Since #J = k, the block Ãb is of
Rk-type.

The first 2 × 2-block of type Rk in (20) corresponds to 0 ≤ x ≤ 1/4 and 1/2 ≤
y ≤ 3/4. Choosing y∗ := 5/8, we obtain |x − y∗| ≥ 3/8, |y − y∗| ≤ 1/8 and
therefore

|y − y∗| ≤ η|x − y∗| (25)

with η = 1/3. One checks that (25) with η = 1/3 holds for all Rk-blocks in the
H-matrix. The combination of (23) and (25) yields

|κ(x, y) − κ̃(x, y)| ≤ 1

k
(
η

1− η)
k. (26)

Hence, the difference |aij − ãij | is bounded by h
k
(
η

1−η)
k. In the special case of

η = 1/3, we have |aij − ãij | ≤ h
k

2−k. The maximum norm error satisfies ‖A −
Ã‖∞ ≤ 2−k/k, where k corresponds to the choice of the Rk-matrices.

We summarise:

Proposition 5.2. Approximate the collocation matrix A from (21) by (22)-(24).
Then the resulting approximation Ã is anH-matrix belonging toMH,k(I × I, B′2)
from Definition 5.1 and satisfies the error estimate ‖A− Ã‖∞ ≤ 2−k/k.

108 W. Hackbusch: A Sparse Matrix Arithmetic Based onH-Matrices

References

[1] Goreinov, S. A., Tyrtyshnikov, E. E., Yeremin, A. Y.: Matrix-free iterative solution strategies for
large dense linear systems. Num. Lin. Alg. Appl. 4, 273–294 (1997).

[2] Hackbusch, W.: The panel clustering algorithm. In: MAFELAP 1990 (Whiteman, J. R. ed.),
pp. 339–348. London: Academic Press, 1990.

[3] Hackbusch, W.: The solution of large systems of BEM equations by the multi-grid and panel
clustering technique. In: Numerical Methods. Rend. Sem. Mat. Univers. Politecn. Torino,
pp. 163–187. Libreria Editrice Universitaria Levrotto & Bella: Torino, 1991.

[4] Hackbusch, W.: Iterative solution of large sparse systems. New York: Springer, 1994.
[5] Hackbusch, W.: Integral equations. Theory and numerical treatment. ISNM 128. Basel:

Birkhäuser, 1995.
[6] Hackbusch, W., Khoromskij, B. N.: A sparse H -matrix arithmetic. Part II: application to

multi-dimensional problems. (submitted)
[7] Hackbusch, W., Nowak, Z. P.: On the fast matrix multiplication in the boundary element method

by panel clustering. Numer. Math. 54, 463–491 (1989).
[8] Hackbusch W., Sauter, S. A.: On the efficient use of the Galerkin method to solve Fredholm

integral equations. Appl. Math. 38, 301–322 (1993).
[9] Lage, C.: Softwareentwicklungzur Randelementmethode: Analyse und Entwurf effizienter Tech-

niken. Dissertation, Universität Kiel, 1996.
[10] Lage, C.: Fast evaluation of singular kernel functions by cluster methods. In preparation 1998.
[11] Sauter, S. A.: Über die effiziente Verwendung des Galerkin-Verfahrens zur Lösung Fredholmscher

Integralgleichungen. Dissertation, Universität Kiel 1992.
[12] Tyrtyshnikov, E. E.: Mosaic-skeleton approximations. Calcolo 33, 47–57 (1996).

W. Hackbusch
Max Planck Institut
Mathematik in den Naturwissenschaften
Insel str. 22–26
D-04103 Leipzig
Germany
e-mail: wh@mis.mpg.de

