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Abstract

The vector potential of a solenoidal vector ®eld, if it exists, is not unique in general. Any procedure that
aims to determine such a vector potential typically involves a decision on how to ®x it. This is referred
to by the term gauging. Gauging is an important issue in computational electromagnetism, whenever
discrete vector potentials have to be computed. In this paper a new gauging algorithm for discrete
vector potentials is introduced that relies on a hierarchical multilevel decomposition. With minimum
computational e�ort it yields vector potentials whose L2-norm does not severely blow up. Thus the new
approach compares favorably to the widely used co-tree gauging.

AMS Subject Classi®cations: 65N30, 65N55, 78A30.

Key Words: Computational electromagnetism, edge elements, hierarchical bases, multilevel decom-
position, vector potentials, gauging.

1. Introduction

A common problem in magnetostatics is the computation of a magnetic ®eld H
satisfying

curlH � j and div lH � 0 in X
H� n � 0 on CD � @X and H; nh i � 0 on CN � @X: �1�

The exciting current j is supposed to be divergence-free with vanishing ¯ux
through CD. Originally, the problem is posed on the entire space R3, but through
exploiting symmetry, idealized materials (``magnetic walls'') and arti®cial cut-o�
boundaries the above boundary value problem emerges. If X is simply connected ±
often rendered so by introducing cutting surfaces [37] ± (1) can be converted into a
second order elliptic problem for a scalar magnetic potential, as soon as a ®eld H0

is known satisfying curlH0 � j. This is where the problem of computing a vector
potential for the solenoidal vector ®eld j pops up. It also occurs outside magne-
tostatics in the realm of eddy current computation, if the so-called A-V
(B-oriented)-formulation [2] is used. A comprehensive exposure of the use of
potentials in computational electromagnetism is given in [14, 17].
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Of course, cohomology theory teaches that, in general, it is only possible to ®nd
such H0, if X has a special topology marked by the absence of cavities. If, in
addition, we require H0 � n � 0 on CD, its existence depends on the arrangement
of the connected components of CD. In any case, there is a cohomology space H2

of small dimension, such that for some h 2H2 the di�erence jÿ h is a curl [3, 37].

One way to get H0 is by Biot-Savart's law [36]. It is ideally suited for simple
current loops, but the treatment of complicated spatial currents is hardly feasible
computationally. Numerical techniques starting from an approximation of j are
the only available option then. The non-uniqueness of the vector potential con-
fronts us with an abundance of choices. Strictly speaking, we seek an equivalence
class of vector potentials [38], but for numerical purposes we have to employ some
``gauging'' by selecting a representative. A guideline for the choice of H0 is o�ered
by the fact that the ®nal solution H of (1) has to be computed by adding a
correction to H0. In case H0 is ``huge'' (in terms of norm or discrete coe�cients)
compared to H severe cancellation will occur [14, Section II.B.2], potentially
rendering the result meaningless. Hence it must be one objective to determine a
vector potential of small norm. We can achieve this by the Coulomb gauge
divH0 � 0 (a ``metric gauge'' in the parlance of [38]), but at the expense of solving
a full boundary value problem, which usually carries a high price tag. Thus, we
are looking for a cheaper way to come up with satisfactory gauging.

The issues of gauging and discretization are inextricably intertwined. A physically
sound and increasingly popular way of discretizing electromagnetic quantities is
by discrete di�erential forms (see [15, 16, 47] and, in particular, [17] for a lucid
presentation) that perfectly match the continuity properties of the ®elds. Thus a
discrete 2-form should be used to describe the current j, whereas the vector po-
tential will be a discrete 1-form. Discrete di�erential forms give rise to ®nite
element spaces, known as spaces of Whitney-forms. The crucial property of these
spaces, apart from making the di�erential operators well de®ned, lies in the
existence of discrete potentials, topology permitting.

A popular way to construct a unique vector potential for a lowest order discrete
2-form relies on so-called spanning tree techniques, ®rst explored in circuit analysis
and made popular by Albanese and Rubinacci [1]. Its foundation is a graph
theoretic treatment of the ®nite element mesh. For a general exposition we refer to
[17, Section 5.3] and latest developments for more complex topologies can be
found in [37, Section 4]. However, this technique is purely algebraic and it is hard
to control the norm of the computed vector potential. A more thorough discus-
sion of this point will be postponed to section three.

What are practical alternatives? After we have computed a vector potentialH0 the
second step in the solution of the discretized problem (1) amounts to solving a
second order elliptic boundary value problem discretized by means of ®nite ele-
ments. For this job no method can compete with the multigrid method in terms of
e�ciency [18, 30]. Multigrid is also a fast way to solve the discrete eddy current
equations [33]. To apply a generic multigrid method we need several stacked ®nite
element meshes and corresponding data structures.
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A hierarchy of nested meshes also emerges naturally, when using modern adaptive
techniques, which rely on local re®nement [10, 12, 20, 48]: After the error of the
discrete solution is estimated on a certain mesh, a new mesh is created by splitting
elements into smaller ones where the accuracy is found wanting.

Multilevel data structures (cf. [9, 11, 39]) are challenging and take a big e�ort to
implement. Nevertheless, the pay-o� is substantial and multilevel approaches are
gradually ®nding their way into engineering codes. We contend that one is well-
advised to exploit available multiple levels of ®nite element meshes for the com-
putation of the vector potential H0, too. In this paper I am going to present a
computational procedure that is both cheap and nearly optimal in terms of the norm
of the vector potential. A solid theoretical and algorithmic foundation will be laid.

The current work has its roots in the development of multilevel preconditioners
for variational problems in the space H�div; X�. In this context, the multilevel
computation of vector ®elds with a prescribed divergence has ®rst been explored
by Ewing and Wang [26] in 2D and was later generalized to 3D [34].

The plan of the paper is as follows: In the next section a few fundamental
properties of the ®nite element spaces involved are summarized. The third section
highlights the dangers of spanning tree techniques through some examples. The
fourth section will give the details of the multilevel gauging algorithm. In the ®fth
section it will be established that the norm of the vector potential grows only
linearly with number of mesh levels involved. In the following section the case of a
perturbed discrete input current is examined. Finally, the norm of the multilevel
gauging operator is studied numerically.

2. Finite Element Spaces

The computations are done on a polyhedral domain X � R3. More generally,
using so-called isoparametric ®nite elements [21, 23], domains with piecewise
smooth boundary could be admitted, but we are not going to dwell on this point.
The domain will be equipped with a triangulation Th in the sense of [21] con-
sisting of elements T . Those elements may be tetrahedra, hexahedra, prisms, or
pyramids. The set of their faces will be denoted by Fh�Th�, that of their edges by
Eh�Th�. Both, edges and faces are to be endowed with an inner orientation.
Following [21], the shape regularity measure of a mesh Th is de®ned as the
maximum of the ratios of the diameter of the smallest circumscribed and the
largest inscribed ball for every element.

A discrete 2-form on X w.r.t. Th is represented by a H�div; X�-conforming ®nite
element function built upon the mesh Th. The most prominent representatives of
such ®nite elements are the Raviart±Thomas elements [41, 44], which have been
constructed for all shapes of elements [19, 24, 28]. In the sequel, we con®ne
ourselves to either hexahedral or tetrahedral meshes, but the extension of the
algorithm to prisms and pyramids is pure routine.

We chose the symbol RTk to designate the Raviart±Thomas space of polynomial
order k 2 N. In the case of a tetrahedron T the local space is given by
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RTk�T � :� fx 7! p1�x� � x � p2�x�; p1 2 �Pk�T ��3; p2 2 Pk�T �; x 2 Tg:

Here, Pk�T � stands for the space of trivariate polynomials on T with total degree
�k. A similar de®nition holds for a brick Q:

RTk�Q� :� Pk�1;k;k�Q� �Pk;k�1;k�Q� �Pk;k;k�1�Q�;

where Pk1;k2;k3�Q� is the space of polynomials of degree �ki in the variable xi,
1 � i � 3. Suitable degrees of freedoms (d.o.f.) for spaces of any polynomial order
are available [19, 29, 32]. In the lowest order case they are given by the functionals
of face ¯uxes expressed by

jF �v� :�
Z

F
v; nh idr; F 2Fh�T �:

This has earned the lowest order Raviart±Thomas elements the name face ele-
ments. For a tetrahedron with vertices a1; a2; a3, and a4 the corresponding four
nodal basis functions read [17, Section 5.2.2]

b
�0�
F :� 2�ki grad kj � grad kk � kj grad kk � grad ki � kk grad ki � grad kj�;

with the ki, i � 1; 2; 3; 4, as the barycentric coordinate functions for vertex ai and
F 2Fh�T � spanned by the vertices ai, aj, and ak, i < j < k. Here, the orientation
of F is implicitly provided by the order of its vertices.

For the second order space RT1�T � additional degrees of freedom involve linear
moments of normal components on faces and the integrals of each of the three
components of the discrete vector ®eld over the elements (cf. Fig. 1). As above, it
is possible to specify the extra canonical basis functions for a tetrahedron T
(F 2F�T �):

b
�1�
F ;1 :� 2ki grad kj � grad kk ÿ kj grad kk � grad ki ÿ kk grad ki � grad kj

b
�1�
F ;2 :� 2kj grad ki � grad kk ÿ ki grad kk � grad kj ÿ kk grad kj � grad ki

b
�1�
T ;i :� kib

�0�
Fi
; i � 1; 2; 3:

As before, the face F is supposed to be spanned by the vertices ai, aj, and ak,
i < j < k, and Fi denotes the face opposite to vertex ai. Note that the basis
functions b

�1�
F ;1 and b

�1�
F ;2 are associated with (located at) the face F (When we state

that a d.o.f./basis function is located at some geometric entity O, we have in
mind that the d.o.f. can be expressed by an integral over O). The normal
components of b

�1�
T ;i , i � 1; 2; 3, vanish on @T . As easily the basis functions for

hexahedra can be speci®ed. We remark that for a brick Q we have
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dimRT1�Q� � 36, with four degrees of freedom associated with each face, and
eight interior d.o.f.

The discrete vector potential to a discrete closed 1-form on Th has to belong to a
H�curl; X�-conforming ®nite element space on Th. Those are usually called
NeÂ deÂ lec ®nite elements [41] and will be given the token ND. Again, families of
these elements are known for all shapes of elements [24, 28]. For a tetrahedron T
the local spaces of polynomial order k 2 N are given by

NDk�T � :� x 7! p1�x� � p2�x�; p1 2 Pkÿ1�T �; p2 2 Pk�T �;
hp2�x�; xi � 0 8 x 2 T

� �
;

whereas for a brick Q we have

NDk�Q� :� Pkÿ1;k;k�Q� �Pk;kÿ1;k�Q� �Pk;k;kÿ1�Q�:

For the lowest order case, k � 1, the degrees of freedom are plain path integrals
along the edges of the mesh (``edge voltages''), what accounts for the term edge
elements. For a tetrahedral element T we ®nd dimND1�T � � 6. The canonical
basis function attached to the edge E 2 Eh�T � linking vertices ai and aj,
1 � i < j � 4, turns out to be [17, Section 5.2.2,]

b�1�E :� ki grad kj ÿ kj grad ki:

Second order NeÂ deÂ lec elements on a tetrahedron feature two degrees of free-
dom per edge and another two d.o.f. for each face [41]. More precisely, those
are the linear moments of the path integrals along edges and averages of

Figure 1. Location of degrees of freedom for lowest order (left) and ®rst order (right) tetrahedral
Raviart±Thomas elements: The ®lled disks stand for averages, the circles for linear moments of face

¯uxes. To avoid clutter the d.o.f. on the front face have been dropped
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tangential components over faces. The additional canonical basis functions
read [45]

b�2�E :� ki grad kj � kj grad ki; E 2 Eh�T �

b�2�F ;1 :� kikj grad kk ÿ kikk grad kj; F 2Fh�T �

b�2�F ;2 :� kjki grad kk ÿ kjkk grad ki; F 2Fh�T �;

where the face F has vertices ai, aj, and ak, 1 � i < j < k � 4.

For a brick, the path integrals along its 12 edges also supply the degrees of
freedom for lowest order hexahedral NeÂ deÂ lec elements. In the second order case
four more linear moments of the tangential components on each face and six
linear moments in the interior of the element are required to determine the ®nite
element function (see [41]).

Given the local representations and requiring that the degrees of freedom are
meaningful on a global scale, we end up with the global ®nite element spaces
RTk�X;Th� and NDk�X;Th�. They have the desired normal and tangential
continuity, what makes them subspaces of the Hilbert spaces H�div; X� and
H�curl; X�, respectively [41]. For a discussion of these function spaces see [27]. If
the ®nite element functions are to belong to the corresponding spaces with ho-
mogeneous boundary conditions, we simply set d.o.f. on @X to zero. Such spaces
will be labeled with subscript 0.

The local basis functions introduced above give rise to bases fbjgj and fbjgj of
RTk�X;Th� and NDk�X;Th�, respectively. Here, the index j runs through all
global degrees of freedom. The basis functions are locally supported and form an
L2-frame. In other words, we can ®nd generic constants C;C > 0, independent of
the meshwidth h and only depending on k and the shape regularity measure of
Th, such that

Figure 2. Location of degrees of freedom for lowest order (left) and ®rst order (right) tetrahedral
NeÂ deÂ lec elements: The ®lled disks stand for averages, the circles for linear moments of edge path

integrals
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C nhk k2L2�X� �
P
j

j�nh�2 wjk k2L2�X� � C nhk k2L2�X� 8 nh 2NDk�X;Th�
C vhk k2L2�X� �

P
j

j�vh�2 jjk k2L2�X� � C vhk k2L2�X� 8 vh 2 RTk�X;Th�:
�2�

This result can be obtained by a straightforward application of a�ne equivalence
techniques [22, 23]. Following a popular convention, a capital C will indicate a
generic constant. Its value can vary between di�erent occurrences, but we will
always specify what it must not depend on.

Throughout we are going to use the basis functions presented above. Then it
makes sense to refer to the coe�cient vector describing a ®nite element function.
Those will be tagged by a small arrow on top of the symbol for a ®nite element
function.

Our theory will make heavy use of the notion of quasiuniformity: The quasiuni-
formity measure of a mesh is the ratio of the greatest and smallest diameter of its
elements. In the case of a small quasiuniformity measure the notion of a mesh-
width h of Th is sensible. As a special case of (2), quasiuniformity links Euclidean
norms of coe�cient vectors and the L2-norms of ®nite element functions:

j~vhj2 � h vhk k2L2�X�; vh 2 RT0�X;Th�
j~nhj2 � hÿ1 nk k2L2�X�; nh 2ND1�X;Th�;

�3�

where � stands for equivalence with constants only depending on the shape
regularity and quasiuniformity measure of Th.

Given the degrees of freedom for the ®nite element spaces nodal interpolation
operators Ih : C�X� 7!RT0�X;Th� and Ph : C�X� 7!ND1�X;Th� can be de®ned
(cf. [19]). Be aware that beyond continuous functions the interpolations operators
remain well de®ned, for instance, for all conforming ®nite element functions on
any mesh. The exceptional feature of the nodal interpolation operators is the
commuting diagram property [26, 31]. It asserts that the diagram

C1�X� ���!curl
C1�X� ���!div C1�X�??yPh

??yIh

??yQh

ND1�X;Th� ���!curl
RT0�X;Th� ���!div Q0�X;Th�

�4�

commutes, where Qh is the L2-orthogonal projection onto the space Q0�X;Th� of
piecewise constant, discontinuous functions on Th.

The commuting diagram property is the key to the proof of the following rep-
resentation theorem [23, 32], which shows that essential algebraic properties of the
function spaces are preserved in the discrete setting:

Theorem 1 (Discrete potentials). Provided that X has no cavities we can conclude the
existence of discrete vector potentials:
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RT0
k�X;Th� :� fvh 2 RTk�X;Th�; div vh � 0g � curlNDk�1�X;Th�

We add that the remarks made on the existence of a vector potentials in the
introduction also carry over to the discrete setting, giving rise to discrete coho-
mology spaces [38].

3. Co-Tree Gauging

The gist of co-tree gauging is the selection of a subspace ND�1 �X;Th� of
ND1�X;Th� such that curl : ND�1 �X;Th� 7!RT0�X;Th� is injective,
i.e. ND�1 �X;Th� has to be an algebraic complement of the kernel of the curl-
operator. This subspace is obtained as the span of a set of cunningly selected basis
functions (see [17, Section 5.3], [23], and [37]) . These basis functions can be found
by means of the previously mentioned spanning tree techniques:

For the sake of simplicity we assume a contractible domain X. We start by
building a spanning tree s of edges in Eh�Th�, which is a maximal cycle-free
subset of Eh�Th�. Here a cycle is a closed curve formed by edges in Eh�Th�.
Algorithms are available that take O�]Eh�Th�� operations to determine the tree.

According to the de®nition of s, for each edge E in the co-tree s0 :� Eh�Th�ns we
can ®nd a cycle cE � E�Th� such that cE \ s � cEnfEg. Given vh 2 RT0

0�X;Th�
the construction of a vector potential nh 2ND1�X;Th� can be carried out as
follows: For each E 2 s0 let rE be some set of faces bounded by cE. Then

nh :�
X
E2s0

X
F2rE

�jF �vh�
 !

� bE �5�

provides a vector potential for vh. The signs depend on the relative orientations of
the individual faces w.r.t. the induced orientation of rE. Figure 3 depicts an
example of a spanning tree of edges for a meshed cube.

The example from Fig. 3 discloses a fundamental drawback of cotree-gauging. By
merely following the rules of the construction we may end up with a vector
potential nh whose L2-norm is vastly greater than that of vh: Assume that an edge
element function fh is given by prescribing value 1 for the d.o.f. at the locations of
the bold arrows in Fig. 3. Now imagine that the same construction of fh and of
the comb-like spanning tree is carried out for a regular hexahedral mesh with N
elements in each coordinate direction, N 2 N. We examine the discrete vector
potential nh that co-tree gauging yields for the solenoidal face element vector ®eld
vh :� curl fh. The degrees of freedom of nh belonging to the z-edges (marked with
delicate arrows) of the bottom layer of cubes can easily be calculated by counting
the number of bold arrows contained in the related cycle. Hence, we get

j~nhj2 � �N � 1�
XN

i�0
�2i� 1�2 � O�N 4� as N !1;
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whereas

j~vhj2 � 7N � 6:

Though the spanning tree employed in this example looks reasonable, by (3) we
end up with an asymptotic estimate like (h :� Nÿ1)

nhk k2L2�X� � hj~nhj2 � hÿ2j~vhj2 � hÿ1 vhk k2L2�X�; �6�

where � means equivalence up to small constants. On top of that, (6) is by no
means the worst situation: More awkward spanning trees with
knhk2L2�X� � hÿ2kvhk2L2�X� can easily be conceived.

4. Multilevel Gauging Procedure

Now, we consider a sequence of nested meshes T0 �T1 � � � � �TL, L 2 N, that
is, every element ofTk is the union of a small number of elements of the next ®ner
mesh Tk�1, k � 0; . . . ;Lÿ 1. We adopt the notations Fk :�Ff �Tk�,
Ek :� Eh�Tk� for the sets of faces and edges of Tk, respectively.

Most commonly, such a sequence of meshes is generated by successive re®nement
of an initial triangulation T0. Several such re®nement strategies are known, the

Figure 3. Example for cotree-gauging in three dimensions: Boldface edges indicate those belonging
to the spanning tree
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most commonplace being the so-called red-green re®nement [13, 25] and bisection
re®nement [5, 8]. In the case of red-green re®nement an element may be regularly
re®ned by chopping it up into eight smaller elements of the same shape. Alter-
natively, to maintain conformity of the mesh, green re®nement is employed. For a
description we refer to [24]. The fundamental operation in bisection re®nement of
a tetrahedral mesh is a splitting of a tetrahedron into two by introducing a new
vertex on a so-called re®nement edge. What matters in the current context is that
all schemes employ only a small number of re®nement templates, sets of rules on
how to split an element. On top of that, the re®nement templates are a�ne
invariant. In other words, application of a re®nement template commutes with
a�ne mappings.

All the re®nement methods have been particularly designed to prevent severe
deterioration of the shape regularity measure. Consequently, we can assume that
all Tk sport the same shape regularity measure. We point out that the same
element might be shared by several meshes in the case of local re®nement.

For each element T except those contained in T0 we can ®nd a unique ``father''
TT 2 [Tk as the smallest element in which T is strictly contained. Thus, we can
®x the level l�T � of an element T through

l�T � � 0 if T 2T0

l�TT � � 1 if T 62T0.

�

For the set of elements on a speci®c level we introduce the notation
~Tk :� fT 2Tk; l�T � � kg. Evidently, in the case of local re®nement we might
encounter ~Tk 6�Tk. For convenience, we set T̂k :� fT 2 ~Tk;
9T 2 ~Tk�1 : T � Tg. Analogously, the sets Êk and K̂k contain those edges and
faces on level k that have ``children'' on level k � 1. We demand that the higher
the level of an element T the smaller its diameter hT : In quantitative terms, we
require hT � cl�T � for some 0 < c < 1, where � indicates a two-sided estimate with
constants only depending on the shape regularity of T0. The re®nement schemes
mentioned above will meet these requirements.

We start with a solenoidal face element vector ®eld vh 2 RT0
0�X;TL�, for which

we seek a discrete vector potential nh 2ND1�X;TL�, curl nh � vh. We exploit the
multilevel structure of the triangulations by performing a hierarchic multilevel
decomposition of vh (see [6, 7, 51] for more applications of hierarchical multilevel
splittings in the ®nite element method):

vh �
XL

k�0
vk; v0 :� I0vh and vk :� �Ik ÿ Ikÿ1�vh; k � 1; . . . ; L: �7�

Here, we write Ik : RT0�X;TL� 7!RT0�X;Tk� for the nodal interpolation.
Please keep in mind that the support of vk is con®ned to the union of elements in
~Tk, k � 0; . . . ; L. Furthermore, it is plain to see that the nodal values for the vk

can be computed cheaply and locally (see algorithm in Fig. 7).
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As a consequence of the commuting diagram property (4), we note that the
hierarchical surpluses vk are solenoidal, i.e. div vk � 0, k � 0; . . . ;L. Besides, from
the very de®nition of the degrees of freedom in lowest order Raviart±Thomas
spaces we learn that for k 2 f1; . . . ; LgZ

F
vk; nh idr � 0 8 F 2Fkÿ1: �8�

Plainly speaking, the average of normal ¯uxes of hierarchical surpluses vk,
k � 1; . . . ; L, through all faces of elements on coarser levels vanishes. Let us single
out a face F 2 F̂kÿ1, k � 1; . . . ; L, that has been decomposed into four smaller
face f0; f1; f2; f3 2Fk. If F is a triangle the resulting pattern of sub-triangles along
with the internal orientations of faces and edges is sketched in Fig. 4.

Using the labels of Fig. 4, we denote by bi, i � 0; 1; 2, the ND1-basis function
attached to edge ei. By Stokes' theorem it satis®esZ

fj

curlbi; nh idr � di;j; i; j 2 f0; 1; 2g and

Z
fi[f3

curl bi; nh idr � 0:

Figure 4. Regularly re®ned triangular face

Multilevel Gauging for Edge Elements 107



Now, we set

gF :�
X2
i�0

Z
fi

vk; nh idr

� �
� bi: �9�

Taking into account that the normal components of vk are constant on faces of
Tk, a straightforward computation yields hcurl gF ; nijfi

� hvk; nijfi
, i � 0; 1; 2. In

combination with (8) this means:

curl gF ; nh ijF � vk; nh ijF : �10�

Besides complete subdivision, F could also have been cut into two halves by one
new edge. To determine a suitable gF is all but trivial then. We omit the details.

In the case of a quadrilateral F 2 F̂kÿ1, the procedure is similar (see Fig. 5).
Setting /i :� Rfi

hvk; nidr and �i :� Rei
hvk; tidC, i � 0; 1; 2; 3, Stokes' theorem

implies

1 0 0 ÿ1
ÿ1 ÿ1 0 0
0 1 ÿ1 0
0 0 1 ÿ1

0BB@
1CCA

�0
�1
�2
�3

0BB@
1CCA �

/0

/1

/2

/3

0BB@
1CCA �11�

Figure 5. Regularly re®ned quadrilateral face
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By (8) we know /0 � /1 � /2 � /3 � 0 so that (11) becomes solvable. Recalling
the objective to ®nd a vector potential with small norm, we should use the Moore±
Penrose pseudo inverse to determine a solution of (11) of minimal Euclidean
norm:

�0
�1
�2
�3

0BB@
1CCA � 1

2

1 ÿ1 ÿ1 ÿ1
ÿ1 ÿ1 1 1
ÿ1 ÿ1 ÿ1 1
ÿ1 ÿ1 ÿ1 ÿ1

0BB@
1CCA

/0

/1

/2

/3

0BB@
1CCA �12�

By plain computation we can verify that gF :�P3
i�0 �ibi, bi :� bei

, satis®es (10).

Owing to its construction curl gF has vanishing normal components on any other
face of Fkÿ1 except F. Therefore summing up all gF , F 2 F̂kÿ1, results in a vector
®eld called gk 2ND1�X;Tk� that features property (10) for every face F 2Fkÿ1.
The remainder ~vk :� vk ÿ curl gk is a vector ®eld in RT0

0�X;Tk� which consists of
isolated components con®ned to the interior of elements of T̂kÿ1, i.e.

~vk 2 b
T2T̂kÿ1

RT0
0;0�T;Tk jT�:

Then we can apply Theorem 1 locally to each T 2Tkÿ1. It guarantees the exis-
tence of anND1-vector ®eld g0k;T, supported on T, whose curl agrees with ~vkjT. Let
us take a closer look at the construction for a regularly (``red'') re®ned tetrahe-
dron that possesses one new interior edge as in Fig. 6.

Using the labels of Fig. 6, we see that there are four fi :� �p; q;mi�, i � 1; . . . ; 4,
adjacent to the interior edge �p; q�. Setting /i :� Rfi

h~vk; nidr we may choose (with
signs depending on orientation)

g0k;T :� 1
4��/1 � /2 � /3 � /4� � b�p;q�; �13�

and one quickly veri®es curl g0k;T � ~vk on T. The ¯uxes /i are readily available, for
instance (see Fig. 6)

/3 � jf3�vk� ÿ je�gk� ÿ je0 �gk�:

For most other meaningful re®nement templates for a tetrahedron, e.g. those
underlying the green re®nements, no new internal edges are created and this step
of the procedure can be skipped.

For a hexahedral mesh the procedure is almost the same. Yet, when ®xing the
edge voltages for the six interior edges of a regularly re®ned brick, we again
encounter non-uniqueness. As in the case of a quadrilateral face (12), a pseudo-
inverse will deal with it.

The bottom line is that by adding up the local stream functions g0k;T over all
macro-elements T 2cTkÿ1 we obtain a vector ®eld
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nk :� gk �
X

T2T̂kÿ1

g0k;T 2ND1�X;Tk� �14�

such that curl nk � vk. On top of that, the d.o.f. of nk that are located in T 2 T̂kÿ1
can be computed from the d.o.f. of vk in T by a simple linear mapping. Most
important, thanks to a�ne invariance of the re®nement algorithm, this mapping
only depends on the re®nement template applied to T and not on its actual shape.
Thus, there is only a ®xed small number of di�erent mappings, which can be
determined in advance.

On the coarsest mesh T0 we have to resort to a global computation of a discrete
vector potential n0 2ND1�X;T0� for v0 2 RT0

0�X;T0�. We may rely on co-tree
gauging now, since its inherent instability is o�set by the small number of ele-
ments in T0. In order to play safe, we can also tackle the following saddle point
problem [43] directly:

Figure 6. Regularly re®ned tetrahedron T with one internal edge for which a d.o.f. of the vector
potential has to be determined
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Seek �n0; j0; p0� 2ND1�X;T0� �RT0�X;T0� � Q0�X;T0� such that

n0; g0� �L2�X�� curl g0; j0� �L2�X� � 0

curl n0; q0� �L2�X�� div q0; p0� �L2�X� � v0; q0� �L2�X�

div j0;w� �L2�X� � 0 �15�

for all g0 2ND1�X;T0�, q0 2 RT0�X;T0�, and w 2 Q0�X;T0�. Then,
kn0kL2�X� � Ckv0kL2�X�, with C > 0 depending on X only, is guaranteed and for
coarse meshes of moderate size the computational e�ort is acceptable. We point
out that the L2-inner product in (15) can be replaced by plain Euclidean inner
products of the vectors of d.o.f. This forfeits unconditional stability of n0, but
greatly facilitates the solution of (15).

Ultimately, summing up the nk, k � 0; . . . ; L, we get the desired discrete vector
potential nh :�PL

k�0 nk. The corresponding computational procedure amounts to
successively prolongating nodal values from coarse grid edges to those of the ®ne
grid. These are local transfer operators, whose weights can be determined from
the imbedding ND1�X;Tkÿ1� �ND1�X;Tk� [33].
The complete algorithm is outlined in Fig. 7. There RT0

0 and ND1 have to be
read as data-types handling the degrees of freedom of the ®nite element functions
on all levels of re®nement. The notation j�x;O� symbolizes the access to that
nodal value of the ®nite element function x located at the geometric object O.
Again, we point out that all weights in the sums are a�ne invariant. Eventually, �
indicates the ``father±son'' relationship for geometric objects in the context of
re®nement.

A closer scrutiny reveals that due to the geometric decrease of the number of
elements in ``ancestral generations''

XL

k�0
] ~Tk � 2]TL:

As a consequence, the total number of operations to compute nh by the multilevel
gauging algorithm of Fig. 7 is a small multiple of the number of elements of the
®nest mesh TL (c.f. ``local multigrid'' [40]). In short, the algorithm has optimal
complexity.

Remark. In case of a non-existent vector potential (as discussed in the introduc-
tion) the stage where the algorithm might run into di�culties is the calculation of
the vector potential on the coarsest mesh T0. Then we have to resign to ®nding a
n0 such that

v0 � curl n0 � h0;
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Figure 7. Algorithm for multilevel gauging for lowest order elements
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where h0 belongs to a discrete cohomology space H2 for T0. Such a h0 can be
found using the ``belted tree approach'' described in [37]. As T0 consists of
merely a few elements, neither the e�ort to determine h0 is prohibitive nor its
norm is distressingly large. In sum, multilevel gauging does a good job also in this
case.

So far, we have treated only the lowest order elements. We will not deal with the
most general case, but argue that discussing the second order case su�ciently
reveals the policy. Let us ®rst take a look at tetrahedral meshes and consider
RT0

1�X;TL�. For any T 2TL the divergences of the three nodal basis functions
b
�1�
T ;i , i � 1; 2; 3, have vanishing mean value and are linearly independent. We

conclude that if div vh � 0, then these basis functions cannot make a contribution
to vh. To get rid of the remaining higher order parts, we point out that
curl b�2�F ;i � b

�1�
F ;i, i � 1; 2 holds for each F 2FL [42]. This permits us to calculate the

vector potential nh for

vh � v
�0�
h � v

�1�
h ; v

�1�
h :�

X
F2FL

aF ;1b
�1�
F ;1 � aF ;2b

�1�
F ;2 2 RT0

1�X;TL�; aF ;i 2 R; �16�

as

nh � n
�0�
h � n

�1�
h ; n

�1�
h :�

X
F2FL

aF ;1b
�2�
F ;1 � aF ;2b

�2�
F ;2; �17�

where n
�0�
h is the vector potential for v

�0�
h 2 RT0

0�X;TL� obtained through mul-
tilevel gauging. A similar reasoning applies to hexahedral meshes. In this case the
higher order ND2-basis functions located at faces or within the element provide
potentials for the higher order components of vh 2ND2�X;TL� at the same
locations.

Remark. Note that the hierarchic decomposition automatically respects homo-
geneous boundary values. Hence, the multilevel gauging will yield a vector po-
tential nh with nh � n � 0 on CD, if hvh; ni � 0 there and such a vector potential
can be computed on T0.

5. Stability

By the open mapping theorem we see that with a constant depending on X only

inff nk kL2�X�; n 2 H�curl; X�; curl n � vg � C vk kL2�X� 8 v 2 H0�div; X�:

On the other hand, from [3, Proposition 4.6] we learn that for all
vh 2 RT0

0�X;Th�
inff nhk kL2�X�; nh 2ND1�X;Th�; curl nh � vhg � C vhk kL2�X�;
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where only X and the shape regularity measure of Th enter the constant. Thus,
the best we can hope for is to ®nd a vector potential whose L2-norm is uniformly
bounded by that of vh. As we saw in Section 3, co-tree gauging falls way short of
meeting this goal. The situation with multilevel gauging will be examined now:

Lemma 1. Assume Tk, 0 � k � L, to be uniformly shape regular and quasi-uniform
with meshwidth hk. For 0 � l < k � L, let E be an edge on level l and denote by xE;k

the union of those elements of Tk for which one edge is contained in E. Accordingly,
for a face F 2Fl the domain xF ;k will be de®ned. Then there are constants C > 0,
depending only on shape regularity and quasiuniformity measure of the meshes, such
that

�i� jjE�lk�j2 � Chlhÿ2k lkk k2L2�XE� ; 8 lk 2ND1�X;Tk�:
�ii� jjF �qk�j2 � Ch2

l hÿ1k qkk k2L2�XF � ; 8 qk 2 RT0�X;Tk�:

Proof: Ad (i): By the L2-stability of the nodal basis from (3) we can estimate

jE�lk�2 �
X

e�E;e2Ek

je�lk�
 !2

� ]fe 2 Ek; e � Eg �
X

e�E;e2Ek

je�lk�2

� Chÿ1k ]fe 2 Ek; e � Eg � lkk k2L2�xE;k�:

Thanks to shape regularity ]fe 2 Ek; e � Eg � Chl=hk and we are done with (i).
We skip the similar proof of (ii). (

Uniform shape regularity of the sequence of meshes guarantees that there is a
small bound on the number of overlapping xE;k. This makesX

E2El

lkk k2L2�xE;k�� C lkk k2L2�X� �18�

hold, C > 0 depending on shape regularity.

The following theorem is a fundamental result about the multilevel decomposition
of H�div; X�-conforming ®nite element spaces:

Theorem 2 (Multilevel decomposition of face element spaces). Assume that X is a
convex polyhedron and that the nested meshes Tk, 0 � k � L, are uniformly shape
regular and quasi-uniform with geometrically decreasing meshwidths hk. Then for
each vh in RT0�X;TL� we can ®nd decompositions

vh � curl lh � qh; lh 2ND1�X;TL�; qh 2 RT0�X;TL�;

lh �
XL

k�0
lk; lk 2ND1�X;Tk�; and qh �

XL

k�0
qk; qk 2 RT0�X;Tk�;
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such that

qk kL2�X� � C div vhk kL2�X�;

curl l0k k2L2�X��
XL

k�1
hÿ2k lkk k2L2�X� � C curl lhk k2L2�X�;

q0k k2H�div;X��
XL

k�1
hÿ2k qkk k2L2�X� � C qhk k2H�div;X�;

where the constants depend on X and the shape regularity and quasiuniformity
measure of the meshes only.

Proof: For the proof we refer to [31, 35]. It can also be inferred from the results in
[4] (Proposition 4.3). (

Theorem 3. For all vh 2 RT0
0�X;TL� holds

I0vhk k2L2�X��
XL

k�1
�Ik ÿ Ikÿ1�vhk k2L2�X� � CL2 vhk k2L2�X�;

with a constant C > 0 only depending of the shape regularity of the meshes.

Proof: To begin with, assume that re®nement has been uniform resulting in a
quasi-uniform family of meshes fTkgL

k�0. As the assertion is invariant w.r.t.
simple scaling, we can set h0 :� 1 without loss of generality. Then pick a single
(convex!) element D of T0. Applying Theorem 2 to vh 2 RT0

0�D;TL� shows the
existence of lk 2ND1�D;Tk� such that (lh :�PL

k�0 lk)

curl �lh� � vh and curl l0k k2L2�D� �
XL

k�1
hÿ2k lkk k2L2�D� � vhk k2L2�D�:

Observing that lk 2ND1�D;Tk� we arrive at

�Pl ÿPlÿ1�lh � ll �Pl

XL

k�l�1
lk

 !
|����������{z����������}

�:~ll

ÿPl

XL

k�l

lk

 !
|���������{z���������}

�:~llÿ1

: �19�

The following estimate ®rst relies on the L2-stability of the bases according to (3)

XLÿ1
l�0

hÿ2l ~llk k2L2�D� �
XLÿ1
l�0

hÿ1l

X
E2ED

l

jE�~ll�2 � C
XLÿ1
l�0

hÿ1l

X
E2El

XL

k�l�1
jE�lk�

 !2
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then uses the Cauchy±Schwarz inequality and Lemma 1, part (i)

� C
XLÿ1
l�0

hÿ1l

X
E2ED

l

�Lÿ lÿ 1�
XL

k�l�1
hlhÿ2k lkk k2L2�xE;k�

and the equivalence (18).

� C
XLÿ1
l�0

XL

k�l�1
hÿ2k �Lÿ lÿ 1� lkk k2L2�D�

Finally, the geometric decrease of the meshwidths and Theorem 2 are put to use:

XLÿ1
l�0

hÿ2l ~llk k2L2�D� � CL2
XL

k�1
hÿ2k lkk k2L2�D� � CL2 vhk k2L2�D�

By the commuting diagram property (4) and (19), in connection with an inverse
inequality for edge elements

curl gkk kL2�D� � Chÿ1k gkk kL2�D�; 8 gk 2ND1�X;Tk�;

we see XL

l�1
�Il ÿ Ilÿ1�vhk k2L2�D� �

XL

l�1
curl�Pl ÿPlÿ1�lhk k2L2�D�

� C
XL

l�1
hÿ2l �Pl ÿPlÿ1�lhk k2L2�D�

� C
XL

k�1
hÿ2k lkk k2L2�D� � 2

XLÿ1
l�1

hÿ2l ~llk k2L2�D�

 !
� CL2 vhk k2L2�D�;

and

I0vhk k2L2�D�� l0 � ~l0k k2L2�D� � CL2 vhk k2L2�D�:

Please note that mere scaling of D does not a�ect the constant in the previous
estimate. This leads to a dependence of C only on the angles of D, but not its size.
Next, the considerations can be applied to all elements of T0.

Finally, if the meshes have been locally re®ned, the above estimates remain valid;
We can formally pad the sequence of meshes with additional elements to obtain a
hierarchy of quasi-uniform meshes. However, vh is not a�ected and, thus, the
hierarchical surplus on the extra elements vanishes. h

We are now in a position to prove the main result of this section:
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Theorem 4 (Stability of multilevel gauging). Write nh 2ND1�X;TL� for the vector
potential of vh 2 RT0

0�X;TL� obtained through multilevel gauging. Then

nhk kL2�X� � CL vhk kL2�X�:

Proof: Recall the de®nition of nk 2ND1�X;Tk�, k � 1 from (14). We zero in on
a single macro-element T 2 T̂kÿ1. From the discussion of the algorithm it is clear
that the d.o.f. of nk located in T are calculated from those of vk 2 RT0

0�X;Tk�
from (7) by a linear mapping. This very linear mapping does only depend on the
re®nement template applied to T. Thus, for the vectors of d.o.f. on T and then for
all degrees of freedom we get

j~nkjTj � Cj~vkjTj �) nkk kL2�T� � ChT vkk kL2�T�; �20�

with C > 0 only depending on the re®nement template and shape regularity of T.
Now, let hk denote the average size of elements in ~Tk and recall that supp
vk � [fT 2 ~Tkg. We conclude

nkk kL2�X� � Chk vkk kL2�X�:

We know that hk shrinks geometrically as k increases. Thus, using (20) and the
result of Theorem 3, we get, with vk :� �Ik ÿ Ikÿ1�vh,

nhk k2L2�X��
XL

k�0
nkk kL2�X�

 !2

� C
XL

k�0
h2

k

 ! XL

k�0
vkk k2L2�X�

 !
� CL2 vhk k2L2�X�:

This ®nishes the proof. h

The last theorem bears out the superior stability of multilevel gauging compared
to co-tree gauging, though the stability achieved is only suboptimal.

The discussion of stability for the higher order case is not a big deal. For second
order Raviart±Thomas elements the L2-stability of the bases tells us that the
higher order components from (16) and (17) satisfy

kn�1�h kL2�X� � Ckv�1�h kL2�X�;

with C > 0 only depending on the (uniform) shape regularity measure of the
meshes. In sum, the estimate of Theorem 3 carries over.

6. Impact of Perturbations

Often only an approximation ~vh of vh 2 RT0
0�X;TL� is known, either due to the

truncation error of some iterative scheme or due to numerical quadrature. As
div~vh � 0 does no longer hold exactly, we have to ®gure out how a lack of
solenoidality a�ects the computed ``vector potential'' ~nh. Note that, barring a
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breakdown on level 0, the algorithm will provide us with a ~nh, regardless whether
~vh is solenoidal or not. This ``robustness'' of the computation of n0 is, e.g., present
with the saddle point problem (15).

A generalization of Theorem 3 is the key to gauging the e�ect of a non-solenoidal
perturbation on ~nh:

Theorem 5 (Stability of hierarchical splitting of face element space). For all
wh 2 RT0�X;TL� holds

I0whk k2L2�X� �
XL

k�1
�Ik ÿ Ikÿ1�whk k2L2�X� � CL2 whk k2

H�div;X�;

with a constant C > 0 only depending on the shape regularity of the meshes.

Proof: As in the proof of Theorem 3 we ®rst assume uniform re®nement and
consider a single coarse grid element D 2T0. Taking the cue from Theorem 2, we
start with the decompositions

wh � vh � qh; div vh � 0; vh; qh 2 RT0�D;TL�;

qh �
XL

k�0
qk; qk 2 RT0�X;Tk�:

The stability for the hierarchical decomposition of vh has already been dealt with
in the proof of Theorem 3. In addition, we make use of kvhkL2�D� � CkwhkH�div;D�.
Similarly as in the proof of Theorem 3, we tackle qh:

�Il ÿ Ilÿ1�qh � ql � Il

XL

k�l�1
qk

 !
|���������{z���������}

�:~ql

ÿ Il

XL

k�l

qk

 !
|�������{z�������}
�:~qlÿ1

:

Using part (ii) of Lemma 1, we can proceed as above

XLÿ1
l�0

~qlk k2L2�D� � C
XLÿ1
l�0

hÿ1l

X
F2FD

l

jF �~ql�2 � C
XLÿ1
l�0

hÿ1l

X
F2FD

l

XL

k�l�1
jF �qk�

 !2

� C
XLÿ1
l�0

hÿ1l

X
F2El

�Lÿ lÿ 1�
XL

k�l�1
h2

l hÿ1k qkk k2L2�xF ;k�

� C
XLÿ1
l�0

XL

k�l�1
hÿ1k hl�Lÿ lÿ 1� qkk k2L2�D�

� C
XL

k�1
hÿ1k qkk k2L2�D� � C qhk k2H�div;D� � C whk k2

H�div;D�:
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The remainder of the proof follows the lines of the proof of Theorem 3 and will be
omitted. h

Remark. A di�erent approach to proving the Theorems 3 and 5, already suc-
cessful in 2D [49], could set out from [50, Lemma 4.1].

Corollary 1 (Impact of non-solenoidal perturbation). For a general wh 2
RT0�X;TL� the ``vector potential'' nh 2ND1�X;TL� computed by multilevel
gauging with a robust coarse grid procedure satis®es

nhk kL2�X� � CL vhk kH�div;X�;

with a constant C > 0 only depending on the shape regularity of the meshes

Example. Imagine that the degrees of freedom for wh 2 RT0�X;TL� have been
computed by one-point Gauûian quadrature from the face ¯uxes of a C2-smooth
solenoidal vector ®eld j. Then, in general, wh � ILj� dh with some quadrature
error dh 2 RT0�X;TL�. Provided that the meshes are quasi-uniform we can
expect jF �dh� :� RF hj; nidrÿ jF jhj�mF �; ni (F 2FL with center of gravity mF ) to
be of the asymptotic order O�h4

L�. For T 2TL Gauû' theorem yields (the sign
determined by the orientation of the faces)

div djT � jT jÿ1 �
X

F2FL;F�@T

�jF �d�:

This shows that kdiv dkL2�X� � O�hL�, too. Thus, the spurious part dh of the vector
potential obtained through multilevel gauging, satis®es kdhkL2�X� � O�LhL�, which
means that there is no signi®cant impact of the quadrature error.

7. Numerical Experiments

The asymptotic theoretical estimates are littered with elusive constants. Numerical
experiments are the only way to get an idea about their sizes in particular settings.

All numerical experiments reported in this paper rely on lowest order ®nite ele-
ments on uniformly re®ned hexahedral grids. The elements of Tl are cubes of
meshwidth hl � 2ÿ�l�1�. The vector potential on the coarses grid T0 is determined
by solving a saddle point problem similar to (15).

In the experiments we estimate the operator norm

kGhk :� supf G�vh�k kL2�X�; vh 2 RT0
0�X;TL�; vhk kH�div;X� � 1g

for the linear operator Gh : RT0
0�X;TL�7!ND1�X;TL� of multilevel gauging.

Beside the true value of kGhk, we are mainly interested in its dependence on the
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depth L of the multilevel hierarchy (cf. Theorem 3). In order to compute kGhk we
resort to the generalized eigenvalue problem: Seek ~nh 6� 0 and k > 0 such that

curlTh GT
h MND

h Ghcurlh~nh � k curlTh MRT
h curlh~nh: �21�

Here, curlh is the matrix of the discrete curl operator, MND
h and MRT

h stand for
the ®nite element mass matrices, and T labels the adjoint w.r.t. the Euclidean
inner product. The maximal eigenvalue kmax of (21) can be found by means of a
non-linear CG method applied to the generalized Rayleigh quotient [46]. The
iterations terminate, when the value for the Rayleigh quotient becomes almost (up
to a relative change <10ÿ5) stationary.

In the ®rst experiment (#1) we use X :��0; 1�3 and impose homogeneous Dirichlet
boundary conditions on @X. The second experiment (#2) is carried out on the
same domain, but with free boundary values. The domain used in the third ex-
periment (#3) is a three-dimensional ``L-shaped'' domain XL :��0; 1�3n�0; 12�3. Zero
boundary values for the functions are speci®ed. Finally, the fourth experiment
(#4) retains the domain XL, but allows free boundary values.

The norms kGhk obtained from the experiments are recorded in Table 1. The
®gures indicate that the constants are of moderate size for the problem in-
vestigated numerically. They also give evidence that the shape of the domain
does not make a big di�erence. In addition, an a�ne-linear dependence of kGhk
on the depth L of re®nement is evident. Thus, the theoretical estimates seem to
be sharp.

8. Conclusion

In this paper a new method for calculating a discrete vector potential for a so-
lenoidal vector ®eld in Raviart±Thomas ®nite element space has been developed.
It can be pro®tably employed if multilevel data structures are available. In con-
trast to co-tree gauging, the new method comes up with a vector potential whose
norm is neatly bounded by the norm of its curl times the number of grid levels
employed times a constant depending on shape regularity. It does so with minimal
computational e�ort.

References

[1] Albanese, R., Rubinacci, G.: Integral formulation for 3D eddy-current computation using edge
elements. IEE Proc. A 135, 457±462 (1988).

Table 1. Computed norms kGhk of multilevel gauging operator in experiments #1 through #4

Exp. \L 2 3 4 5 6

#1 0.37 0.42 0.47 0.51 0.55
#2 0.47 0.54 0.61 0.67 0.73
#3 0.36 0.39 0.43 0.46 0.50
#4 0.47 0.55 0.61 0.67 0.73

120 R. Hiptmair



[2] Albanese, R., Rubinacci, G.: Fomulation of the eddy-current problem. IEE Proc. A 137, 16±22
(1990).

[3] Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional
nonsmooth domains. Math. Methods Appl. Sci. 21, 823±864 (1998).

[4] Arnold, D., Falk, R., Winther, R.: Multigrid in H(div) and H(curl). Numer. Math. (2000) (to
appear).

[5] Arnold, D., Mukherjee, A., Pouly, L.: Locally adapted tetrahedral meshes using bisection. SIAM
J. Sci. Comput. (2000) (to appear).

[6] Bank, R.: Hierarchical bases and the ®nite element method. Acta Numer. 5, 1±43 (1996).
[7] Bank, R., Dupont, T., Yserentant, H.: The hierarchical basis multigrid method. Numer. Math.

52, 427±458 (1988).
[8] BaÈ nsch, E.: Local mesh re®nement in 2 and 3 dimensions. IMPACT Comput. Sci. Eng. 3, 181±

191 (1991).
[9] Bastian, P., Birken, K., Johannsen, K., Lang, S., Neuss, N., Rentz-Reichert, H., Wieners, C.:

UG-A ¯exible software toolbox for solving partial di�erential equations. Comput. Visual. Sci.
1, 27±40 (1997).

[10] Beck, R., Deu¯hard, P., Hiptmair, R., Hoppe, R., Wohlmuth, B.: Adaptive multilevel methods
for edge element discretizations of Maxwell's equations. Surv. Math. Ind. 8, 271±312 (1999).

[11] Beck, R., Erdmann, B., Roitzsch, R.: KASKADE 3.0. An object-oriented adaptive ®nite element
code. Tech. Rep. TR 95-4, ZIB, Berlin, Germany, June 1995.

[12] Beck, R., Hiptmair, R., Hoppe, R., Wohlmuth, B.: A hierarchical error estimator for H(curl)-
elliptic problems. Tech. Rep. 112, Sonderforschungsbereich 382, UniversitaÈ t TuÈ bingen, TuÈ bingen,
Germany, 1998. To appear in M2AN.

[13] Bey, J.: Tetrahedral grid re®nement. Computing 55, 355±378 (1995).
[14] Biro, O., Richter, K.: CAD in electromagnetism. In: Advances in Electronics and Electron

Physics, vol. 82 (Hawkes, P., ed.) pp. 1±96. New York: Academic Press, 1991.
[15] Bossavit, A.: A rationale for edge elements in 3D ®eld computations. IEEE Trans. Mag. 24, 74±79

(1988).
[16] Bossavit, A.: Whitney forms: A class of ®nite elements for three-dimensional computations in

electromagnetism. IEE Proc. A 135, 493±500 (1988).
[17] Bossavit, A.: Computational electromagnetism. Variational formulation, complementarity, edge

elements. Academic Press Electromagnetism Series, vol. 2. Academic Press, San Diego, 1998.
[18] Brandt, A.: Multigrid techniques: 1984 guide with applications, of GMD-Studien, vol. 85. Bonn:

GMD, 1984.
[19] Brezzi, F., Fortin, M.: Mixed and hybrid ®nite element methods. Berlin Heidelberg New York

Tokyo: Springer, 1991.
[20] Cendes, C., Shenton, D.: Adaptive mesh re®nement in the ®nite element computation of magnetic

®elds. IEEE Trans. Mag. 21, 1811±1816 (1985).
[21] Ciarlet, P.: The ®nite element method for elliptic problems. Studies in Mathematics and its

Applications, vol. 4 North-Holland, Amsterdam, 1978.
[22] Ciarlet, P., Jr., Zou, J.: Fully discrete ®nite element approaches for time-dependent Maxwell

equations. Numer. Math. 82, 193±219 (1999).
[23] Dubois, F.: Discrete vector potential representation of a divergence free vector ®eld in three

dimensional domains: Numerical analysis of a model problem. SIAM J. Numer. Anal. 27, 1103±
1141 (1990).

[24] Dular, P., Hody, J.-Y., Nicolet, A., Genon, A., Legros, W.: Mixed ®nite elements associated with
a collection of tetrahedra, hexahedra and prisms. IEEE Trans. Magnetics, MAG-30, 2980±2983
(1994).

[25] Erdmann, B., Lang, J., Roitzsch, R.: Kaskade manual, version 2.0 ± fem for 2 and 3 space
dimensions. Tech. Rep. TR 93-5, ZIB-Berlin, 1993.

[26] Ewing, R., Wang, J.: Analysis of the Schwarz algorithm for mixed ®nite element methods. M2AN
Math. Modell. Numer. Anal. 26, 739±756 (1992).

[27] Girault, V., Raviart, P.: Finite element methods for Navier±Stokes equations. Berlin Heidelberg
New York Tokyo: Springer, 1986.

[28] Gradinaru, V., Hiptmair, R.: Discrete di�erential forms for pyramidal elements. Tech. Rep. 113,
SFB 382, UniversitaÈ t TuÈ bingen, TuÈ bingen, Germany, 1999.

[29] Graglia, R., Wilton, D., Peterson, A.: Higher order interpolatory vector bases for computational
electromagnetics. IEEE Trans. Antennas and Propagation 45, 329±342 (1997).

[30] Hackbusch, W.: Multi-grid methods and applications. Berlin Heidelberg New York Tokyo:
Springer, 1985.

[31] Hiptmair, R.: Multigrid method for H(div) in three dimensions. ETNA 6, 7±77 (1997).

Multilevel Gauging for Edge Elements 121



[32] Hiptmair, R.: Canonical construction of ®nite elements. Math. Comp. 68, 1325±1346 (1999).
[33] Hiptmair,R.:MultigridmethodforMaxwell's equations.SIAMJ.Numer.Anal.36, 204±225(1999).
[34] Hiptmair, R., Hoppe, R.: Multilevel preconditioning for mixed problems in three dimension.

Numer. Math. 82, 253±279 (1999).
[35] Hiptmair, R., Toselli, A.: Overlapping and multilevel Schwarz methods for vector valued elliptic

problems in three dimensions. In: Parallel Solution of PDEs, IMA Volumes in Mathematics and
its Applications, Vol. 120 (Bjorstad, P., Luskin, M., eds.), pp. 181±202. Berlin Heidelberg New
York Tokyo: Springer, 1999.

[36] Jackson, J.: Classical Electrodynamics. Wiley, New York, 2nd ed., 1975.
[37] Kettunen, L., Forsman, K., Bossavit, A.: Formulation of the eddy current problems in multiply

connected regions in terms of h. Int. J. Numer. Meth. Eng. 41, 935±954 (1998).
[38] Kettunen, L., Forsman, K., Bossavit, A.: Gauging in Whitney spaces. IEEE Trans. Magnetics 35,

1466±1469 (1999).
[39] Leinen, P.: Data structures and concepts for adaptive ®nite element methods. Computing 55, 325±

354 (1995).
[40] Mitchell, W.: Optimal multilevel iterative methods for adaptive grids. SIAM J. Sci. Stat. Comput.

13, 146±167 (1992).
[41] NeÂ deÂ lec, J.: Mixed ®nite elements in R3. Numer. Math. 35, 315±341 (1980).
[42] Peng, G., Dyczij-Edlinger, R., Lee, J.-F.: Hierarchical methods for solving matrix equations from

TVFEMs for microwave components. IEEE Trans. Mag. 35, 1474±1477 (1998).
[43] Perugia, I.: A mixed formulation for 3D magnetostatic problems: Theoretical analysis and face-

edge ®nite element approximation. Numer. Math. (1999) (online).
[44] Raviart, P. A., Thomas, J. M.: A mixed ®nite element method for second order elliptic problems.

Springer Lecture Notes in Mathematics, vol. 606, pp. 292±315. New York: Springer, 1977.
[45] Savage, J., Peterson, A.: Higher order vector ®nite elements for tetrahedral cells. IEEE Trans.

Microwave Theory Technol. 44, 874±879 (1996).
[46] Schwarz, H.: Methode der ®niten Elemente. 3. Au¯. LeitfaÈ den der angewandten Mathematik und

Mechanik, vol. 47, Stuttgart: Teubner B. G., 1991.
[47] Subramaniam, S., Ratnajeevan, S., Hoole, S.: Edge elements. In: Finite Elements, Electro-

magnetics and Design, (Hoole, S., Ratnajeevan, S., eds.), pp. 342±393. Amsterdam: Elsevier,
1995.

[48] VerfuÈ rth, R.: A review of a posteriori error estimation and adaptive mesh-re®nement techniques.
Teubner-Verlag, Stuttgart, 1996.

[49] Wohlmuth, B.: Adaptive Multilevel-Finite-Elemente Methoden zur LoÈ sung elliptischer Rand-
wertprobleme. PhD thesis, TU MuÈ nchen, 1995.

[50] Wohlmuth, B., Toselli, A., Widlund, O.: An iterative substructuring method for Raviart±Thomas
vector ®elds in three dimensions. Tech. Rep. 773, Courant Institute, New York, 1998.

[51] Yserentant, H.: On the multi-level splitting of ®nite element spaces. Numer. Math. 58, 379±412
(1986).

Dr. Ralf Hiptmair
Sonderforschungsbereich 382
UniversitaÈ t TuÈ bingen
Auf der Morgenstelle 10
D-72076 TuÈ bingen
Germany
e-mail: hiptmair@na.uni-tuebingen.de

122 R. Hiptmair: Multilevel Gauging for Edge Elements


