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Abstract
Several problems involving uncertainties can be modeled with fuzzy numbers 
according to the type of these uncertainties. It is natural to express the solution to 
such a problem with fuzzy numbers. In this study, we consider the fully fuzzy trans-
portation problem. All input parameters of the problem are expressed with fuzzy 
numbers given in the parametric form. We propose a new heuristic algorithm to 
approximate the fuzzy optimal solution. The fuzzy problem is solved by transform-
ing it into two independent parametric problems with the proposed method. We first 
divide the interval [0, 1] into a sufficiently large number of equal intervals, then 
write a linear programming problem for each partition point and solve these prob-
lems by transforming them into transportation problems. The proposed algorithm is 
supported by examples.

Keywords Transportation problem · Fuzzy numbers · Heuristic algorithm · Optimal 
solution

Mathematics Subject Classifications 90B06 · 90C70 · 90C08 · 68W25

1 Introduction

The classical transportation problem is a one-stage supply chain planning problem. 
This problem was first formulated by Hitchcock [1]. For this reason, it is also called 
the Hitchcock problem in the literature. The supply chain can be multi-stage or con-
tain some uncertainties. Also, unlike the Hitchcock model, carriers can require a 
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fixed charge in addition to the per-unit fee. Due to these variations, we encounter 
research on many types of transportation problems in the literature [2–6].

Naturally, real-life problems can contain uncertain parameters [7]. As it is known, 
problems involving uncertainty can be modeled with the help of interval analysis, 
fuzzy sets, or stochastic analysis, depending on the type of uncertainty. If the values 
of the variables containing uncertainty are in a certain range with a certain member-
ship degree, it is useful to apply the theory of fuzzy sets to this problem. Modeling 
the transportation problem, which is an optimization problem, with the help of fuzzy 
sets has some difficulties. These difficulties are mainly because the concepts of order 
that have been defined so far between fuzzy numbers are not mathematically suf-
ficient. For example, they do not satisfy the axioms of ordering or partial ordering. 
We can categorize the published studies examining the fuzzy transportation problem 
into two groups. In the first group, special fuzzy numbers (triangular fuzzy numbers, 
trapezoidal fuzzy numbers, and generalized trapezoidal fuzzy numbers) were used in 
the definition of the problem, and the classical transport problem was solved for the 
real numbers determining these fuzzy numbers. On the other hand, in studies in the 
second group, an order is defined between fuzzy numbers and the fuzzy problem is 
converted to the classical one using a ranking function.

One of the first studies in the first group is [8]. In this study, an algorithm is pro-
posed to solve fuzzy-restricted transportation problems and the relationship between 
the algebraic structure of the optimal solution of the classical problem and its fuzzy 
equivalent is investigated. However, Chanas et al. [9] show that the propositions in 
that study are not correct and they suggest solving a fuzzy problem by parametric 
programming methods. Chanas and Kuchta [10] define the optimal solution by con-
sidering the fuzzy transport problem over �-cuts of fuzzy numbers and propose a 
method to find this solution. Tada and Ishii [11] formulate the integer fuzzy trans-
portation problem and propose a method by converting the problem to a program-
ming problem over the membership function. Liu and Kao [12] apply the extension 
principle to a fuzzy transportation problem.

One of the most comprehensive and remarkable studies in the first group was 
done by Ebrahimnejad [13]. In this study, an efficient algorithm for the solution of 
the fuzzy transportation problem is proposed and explained in examples. However, 
since the proposed algorithm is applied to the endpoints and core of fuzzy numbers, 
it can only be valid when all the limitations and prices are given by fuzzy numbers 
with linear membership functions (triangular, trapezoidal, etc.)

Studies in the second group [14–19] define a rank function on fuzzy numbers 
and the problem is transformed into a classical transport problem by using rank-
ing. However, it is debatable how accurately the rank functions reflect reality. For 
example, Kaur and Kumar [18] examined the fuzzy transport problem with trapezoi-
dal numbers, and to compare trapezoidal numbers, they averaged the real numbers 
that determine this number. In another study [15] the rank function is defined as 
(a + 4b + c)∕6 for the triangular fuzzy number given by (a, b, c). Although the algo-
rithms proposed in these studies have theoretical importance, they have difficulty 
reflecting reality. There are two reasons for that; firstly, a fuzzy number or uncer-
tainty cannot be expressed with just a real number, this approach contradicts the 
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logic of fuzziness. Secondly, rank functions defined in that way do not satisfy order-
ing or partial ordering axioms.

In recent years, apart from the studies in these two groups, researchers have pro-
posed to solve the fuzzy transport problem approximately with metaheuristic opti-
mization algorithms. Singh and Singh [20] applied the particle swarm optimization 
algorithm to solve the problem. In the present study, we propose a new algorithm 
to find an approximate optimal solution to the fuzzy transportation problem. Our 
approach to the fuzzy problem is similar to the approach followed in [13].

The contributions of this study can be listed as:

• In our fuzzy model, fuzzy numbers are given in parametric form; these numbers 
are almost the most general form of fuzzy numbers and cover all special cases.

• The transportation problem is solved by dividing the fuzzy number’s param-
eter into a finite but sufficient large number of pieces and then an approximate 
solution is constructed by consolidating the solutions found.

• All of the linear programming problems are transformed into the classical 
transportation problem, therefore, the result is obtained without using the sim-
plex algorithm.

• The fuzzy solutions, obtained in all algorithms that do not use a ranking function, 
are in the form of the same type of fuzzy numbers as the input data of the prob-
lem. For example, if the input data are trapezoidal numbers, the solutions obtained 
are also trapezoidal numbers. The reason behind this is, that such algorithms solve 
the classical transportation problem for real components defining input fuzzy 
numbers and combining the results linearly. Since the Fully Fuzzy Transporta-
tion problem includes the multiplication of fuzzy numbers, it loses its linearity 
feature. This prevents the solution from being the same type as the input data in 
the general case. On the other hand, with our proposed method, the fuzzy solu-
tion obtained may not be the same kind of fuzzy number as the input data even 
though it does not use a ranking function. For example, although the input data is 
triangular fuzzy numbers, the result of the algorithm has not to be triangular fuzzy 
numbers or even any special fuzzy numbers when our method is applied.

The rest of the study is organized as follows. Necessary preliminary information 
about fuzzy numbers and classical transport problems is explained in Sect. 2. In 
Sect. 3, we define the fully fuzzy transportation problem and transform it into two 
independent parametric transportation problems. In Sect. 4, we present the pro-
posed numerical algorithm, and in Sect. 5, we solve examples. Finally, we make 
concluding remarks in Sect. 6.

2  Preliminary information

2.1  Preliminary information on fuzzy sets theory

Let us define the concept of parametric fuzzy numbers following the study [21].
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Definition 1 A fuzzy number f̃ =
(
f , f

)
 is an ordered pair of functions f (⋅) and f (⋅) 

holding three conditions below: 

1. f ∶ [0, 1] → R is a bounded, non-decreasing, left continuous function,
2. f ∶ [0, 1] → R is a bounded, non-increasing, left continuous function,
3. For all r ∈ [0, 1] the inequality f (r) ≤ f (r) holds.

If the ranges of functions f (⋅) and f (⋅) mentioned in Definition 1 are R+ , then num-

ber f̃ =
(
f , f

)
 is called as positive fuzzy number.

Definition 2 Let real numbers a, b, c satisfying the condition a < c < b be given. If 
f (r) = a + (c − a)r and f (r) = b + (c − b)r the fuzzy number f̃ =

(
f , f

)
 is called 

triangular number and denoted shortly as f̃ = (a, c, b).

Membership functions of triangular numbers are defined by the formula below:

Definition 3 Let real numbers a,  b,  c,  d holding the condition a < c < d < b be 
given. If f (r) = a + (c − a)r and f (r) = b + (d − b)r the fuzzy number f̃ =

(
f , f

)
 is 

called trapezoidal number and denoted shortly as f̃ = (a, c, d, b).

The membership function of trapezoidal numbers is defined by the formula 
below:

We should note that for a real number of a if we choose f (r) ≡ a and f (r) ≡ a , then 

this number can be denoted as a fuzzy number f̃ =
(
f , f

)
 in parametric form.

For fuzzy numbers f̃1 = (f
1
, f 1) and f̃2 = (f

2
, f 2) defined in parametric form, sort-

ing, and arithmetic operations are defined below: 

1. f̃1 = f̃2 ⇔ f
1
(r) = f

2
(r) and f 1(r) = f 2(r); for all r ∈ [0, 1]

2. f̃1 < f̃2 ⇔ f
1
(r) < f

2
(r) and f 1(r) < f 2(r); for all r ∈ [0, 1]

3. f̃1 > f̃2 ⇔ f
1
(r) > f

2
(r) and f 1(r) > f 2(r); for all r ∈ [0, 1]

�(x) =

{
x−a

c−a
, if a ≤ x ≤ c

b−x

b−c
, if c ≤ x ≤ b

�(x) =

⎧⎪⎨⎪⎩

x−a

c−a
, if a ≤ x ≤ c

1, if c ≤ x ≤ d
b−x

b−d
, if d ≤ x ≤ b
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4. f̃1 + f̃2 = (f
1
(r) + f

2
(r), f 1(r) + f 2(r)) 

  Since we examine only positive fuzzy numbers in this study, let us define mul-
tiplication operation for only positive fuzzy numbers as:

5. f̃1 f̃2 = (f
1
(r)f

2
(r), f 1(r)f 2(r)) , if f̃1 > 0, f̃2 > 0

2.2  Preliminary information on classical transportation problem

Let us assume that there are m suppliers and n distributors. The unit cost of trans-
porting a product from the ith supplier to the jth distributor is cij . Moreover, capacity 
of ith supplier is si and capacity of jth distributor is dj . Let’s assume that the total 
capacity of the suppliers is equal to the total capacity of the distributors. In other 
words, the following equality called the balance condition, is satisfied:

Then, the classical transportation problem is defined as follows [1]:

for all i = 1, 2,… ,m and for all j = 1, 2,… , n

A matrix X = (xij) holding conditions (2–4) is called a feasible solution. Feasible 
solution minimizing the objective function (1) is called an optimal solution. The fol-
lowing Hitchcock theorem is well-known:

Theorem  1 ([1]) For an optimal solution X = (xij) , number of positive cells is at 
most m + n − 1.

There are efficient algorithms such as the North–West corner method, the least 
cost cell method, Vogel method for finding an initial feasible solution [22]. Today, 
researchers still propose algorithms for finding better initial feasible solutions.

m∑
i=1

si =

n∑
j=1

dj

(1)
m∑
i=1

n∑
j=1

cijxij → min

(2)
n∑
j=1

xij = si

(3)
m∑
i=1

xij = dj

(4)xij ≥ 0
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We use the North–West corner method in the proposed algorithm to find 
the initial solutions. This algorithm can produce an initial feasible solution in 
processing time O(n) when m = n . The main idea behind this method can be 
described below: we first compare numbers s1 and d1 . If s1 < d1 , then by assigning 
x11 = s1, x12 = 0, x13 = 0,… , x1n = 0 , we make d1 = d1 − s1 and s1 = 0 . If s1 > d1 , 
then by assigning x11 = d1, x21 = 0, x31 = 0,… , xm1 = 0 , we make s1 = s1 − d1 
and d1 = 0 . If s1 = d1 , then by assigning x11 = s1 = d1 and assigning 0 to all other 
elements of the first row and first column of feasible solution matrix, we have 
s1 = d1 = 0 . After this step, at least one row or column of a feasible solution matrix 
will be determined and the number of rows or columns will decrease by 1. Then 
we can repeat the same steps for the remaining matrix. For example, if the condi-
tion holds in the first step, then it means that the first row of the solution matrix is 
determined. In this case, since the cell (2, 1) will be the North–West cell, we have 
to compare s2 and d1 in the next step. If the condition s1 > d1 holds in the first step, 
then it means that the first column of the solution matrix is determined and now the 
North–West cell is (1, 2); that is, we have to compare s1 and d2 . If the equality holds 
in the first step, then the North–West cell will be (2,2) and numbers s2 and d2 will 
be compared. We will continue these steps until the solution matrix is completely 
determined.

After the initial suitable solution with m + n − 1 number of cells is found, the 
MODI (or with its other name u − v ) method can be applied to find the optimal 
solution [22]. Main idea behind the MODI algorithm is: Numbers ui corresponding 
each ith row and numbers vj corresponding each jth row is found based on nonempty 
cells of the initial solution considering the formula ui + vj = cij . The first number 
is assigned as 0 (Value of ui or vj corresponding to the first row or column is usu-
ally taken as 0). Then, the penalty points are calculated based on Pij = ui + vj − cij 
considering the empty cells of the initial solution. If for all i and j, condition Pij ≤ 0 
holds, then the optimal solution is found. Otherwise, starting from the cell having 
the largest penalty number, a closed path (loop) is created. There should be only 2 
cells in each row or column and all cells should be full except the first one. Also, 2 
consecutive cells on the path must either be in the same row or the same column. 
Then the empty cell is marked with ‘ + ’ and the next is marked with ‘-’ and all cells 
on the path are marked consecutively ‘ + ’ and ‘-’. The cell marked with ‘ + ’ with 
the smallest number is found, this number is subtracted from cells with the ‘ + ’ sign 
and is added to the cells with ‘-’, and a new feasible solution is obtained. Then, the 
above steps are repeated until the optimal solution is found.

Table 1  Initial table for the 
MODI algorithm

D
1

D
2

D
3

D
4

S
1

70/2 /7 /6 30/6 100
S
2

/4 20/5 230/2 /1 250
S
3

/5 100/4 /3 50/10 150
70 120 230 80
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As an example, a transportation problem and an initial solution to this problem are 
given in Table 1. In the table, the capacities of the suppliers are given in the last column 
and the capacities of the distributors are given in the bottom row. The numbers writ-
ten after the / sign in the table show the transportation prices and the numbers written 
before that sign show the values of the initial solution. For example, the meaning of 
70/2 written in the cell at the intersection of S1 and D1 is: 70 units of product are planned 
to be transported from S1 to D1 and the cost per unit of this transportation is 2. If the 
number is not written before the / sign, it is not planned to transport a product in this 
direction. Let’s explain one step of the MODI algorithm in this example. First, let’s cal-
culate the u and v values with the formula ui + vj = cij according to the filled cells (cells 
showing that a product is planned to be transported). Let’s take u1 = 0 . Accordingly, 
v1 = 2 and v4 = 6 . Since v4 = 6 then u3 = 4 , and from here v2 = 0, u2 = 5, v3 = −3 
are found. Now, let’s calculate the penalty points with Pij = ui + vj − cij formula for 
empty cells. P12 = −2,P13 = −9,P21 = 3,P24 = 9,P31 = 1,P33 = −2 are found. If 
these values were all less than or equal to 0, the optimal solution would be found. Let’s 
take the one with the largest P value among the cells with the positive value. In this 
example, this cell is (2, 4). Let’s find a path starting from this cell and returning to this 
cell, passing through filled cells, provided that there is only one cell in each row and 
each column: (2, 4) → (2, 2) → (3, 2) → (3, 4) → (2, 4) . Then, put a “ + ” sign in the 
starting cell and alternately put “−” and “ + ” signs in the cells on the path. Accordingly, 
cell (2, 4) will be marked with “ + ”, cell (2, 2) with “−”, cell (3, 2) with “ + ” and cell 
(2, 4) with “−”. Then, add the minimum number (20 from cell (2, 2) in this example) 
in the cells marked with “−” to the cells marked with “ + ”, and subtract from the cells 
marked with “-”. After these operations, our transport area will have changed as shown 
in Table 2.

According to the first transportation plan, the cost between the considered 4 cells 
was 5 × 20 + 4 × 100 + 10 × 50 = 1000 . In the plan obtained after applying the 
MODI algorithm, this cost became 4 × 120 + 10 × 30 + 1 × 20 = 800 , that is, it 
decreased.

3  Fully fuzzy transportation problem

Let us assume that there are m suppliers and n distributors. Fuzzy transportation prob-
lem can be defined as:

Table 2  After applying one step 
of the MODI algorithm

D
1

D
2

D
3

D
4

S
1

70/2 /7 /6 30/6 100
S
2

/4 /5 230/2 20/1 250
S
3

/5 120/4 /3 30/10 150
70 120 230 80
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for all i ∈ { 1, 2,… , n} and j ∈ { 1, 2,… ,m}.
Here c̃ij = (c

ij
(r), cij(r)), s̃i = (s

i
(r), si(r)), d̃j = (d

j
(r), dj(r)) are given fuzzy 

numbers in parametric form. In this study, we assume that the balance condition

for the fully fuzzy transportation problem is satisfied. The condition (9) means that 
we have

and

Let us write the solution x̃ij of the problem (5–8) in the parametric form as 
x̃ij = (x

ij
(r), xij(r)) . Therefore, the problem (5–8) turns into the following parametric 

problem:

(5)F =

m∑
i=1

n∑
j=1

c̃ijx̃ij → min

(6)
n∑
j=1

x̃ij = s̃i

(7)
m∑
i=1

x̃ij = d̃j

(8)x̃ij ≥ 0

(9)
m∑
i=1

s̃i =

n∑
j=1

d̃j

(10)
m∑
i=1

s
i
(r) =

n∑
j=1

d
j
(r)

(11)
m∑
i=1

si(r) =

n∑
j=1

dj(r)

(12)
m∑
i=1

n∑
j=1

[
c
ij
(r)x

ij
(r), cij(r)xij(r)

]
→ min

(13)
n∑
j=1

x
ij
(r) = s

i
(r)
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for all i ∈ { 1, 2,… ,m} and j ∈ { 1, 2,… n}

According to the ordering property of fuzzy numbers, the problem of seeking the 
minimum value of the objective function (12) is equivalent to the problem of seek-
ing the minimum value of both the two objective functions given below:

Since the constraints in the problem (12–18) are separable, this problem can be 
divided into 2 problems:

It can be noted that the objective function (19) depends only on x
ij
 and (20) 

depends only on xij . Besides, constraints (13–15) for x
ij
 are independent from the 

constraints (16–17) for xij . Then, the problem (12–18) can be divided into two sepa-
rate problems:

1. Problem A: Minimization of the objective function (19) under conditions 
(13–15),

and (after solving Problem A)
2. Problem B: Minimization of the objective function (20) under conditions 

(16–18).
Once the mentioned problems are solved, i.e. x

ij
 and xij (the left and right ends of 

the fuzzy solution) are determined, we will construct the solution (x
ij
(r), xij(r)) , and 

thus express the fuzziness of the solution. It is worth emphasizing that x
ij
(1) = xij(1) 

(14)
m∑
i=1

x
ij
(r) = d

j
(r)

(15)x
ij
(r) ≥ 0

(16)
n∑
j=1

xij(r) = si(r)

(17)
m∑
i=1

xij(r) = dj(r)

(18)xij(r) ≥ x
ij
(r)

(19)
m∑
i=1

n∑
j=1

c
ij
(r)x

ij
(r) → min

(20)
m∑
i=1

n∑
j=1

cij(r)xij(r) → min
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represents the core (crisp part) of the fuzzy solution, and (x
ij
(r) − x

ij
(1), xij(r) − xij(1)) 

represents its fuzziness.

4  The proposed numerical algorithm

In this section, we describe the proposed numerical algorithm. While developing our 
algorithm, we were inspired by the work of Ebrahimnejad for special fuzzy numbers 
([13]) and by the method proposed by Gasilov et al. [23] and by Gasilov [24] for 
fuzzy and interval differential equations, respectively.

Let us divide the interval [0, 1] into k number equal subintervals with the help 
of the points r0 = 0 < r1 < r2 < ⋯ < rk = 1 . The main idea of the method is solv-
ing Problems A and B iteratively for numbers ri . Note that these problems are clas-
sical linear programming problems. We propose to transform these problems into 
classical transportation problems and solve them with the help of the algorithms 
described in the preliminary information.

Now, let us explain our solution method. First, we solve Problem A for the 
r = r0 . The obtained optimal solution we denote as X∗

0
= (x∗

ij
(r0)) . Let z∗

0
 be the 

optimal value of the objective function (19).
Then iteratively for each t ∈ {1,… , k} , we put r = rt in the objective function 

(19) and change the constraints as below:

for all i ∈ { 1, 2,… ,m} and j ∈ { 1, 2,… , n}.
We note that the balance condition

is satisfied due to (10).
Let X∗

t
= (x∗

ij
(rt)) be the optimal solution of (19) under conditions (21–23) and 

z∗
t
 be the corresponding optimal value of the objective function (19) for 

t = 1, 2, .., k.

Proposition 1 For all t = 1, 2,… , k , the inequality z∗
t−1

≤ z∗
t
 holds.

(21)
n∑
j=1

x
ij
(rt) = s

i
(rt)

(22)
m∑
i=1

x
ij
(rt) = d

j
(rt)

(23)x
ij
(rt) ≥ x∗

ij
(rt−1)

(24)
m∑
i=1

s
i
(rt) =

n∑
j=1

d
j
(rt)
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Proof According to the first condition in the definition of fuzzy numbers, we have 
the inequality c

ij
(rt−1) ≤ c

ij
(rt) . Moreover, from the constraint (23), the inequality 

x∗
ij
(rt−1) ≤ x∗

ij
(rt) holds. Therefore, we obtain the desired inequality

  ◻

We note that the minimization of (19) under conditions (21–23) is not classical 
transportation problem. We can transform this problem into a classical transpor-
tation problem by the substitution of the variables. For this, we do the following 
substitution:

Therefore, we obtain

Since the second term is a constant in the expression of z
t
 , the problem of the seek-

ing minimum of this function becomes equivalent to the minimization of the first 
term:

As a result of our substitution, constraint (21) becomes as follows:

Since 
n∑
j=1

x∗
ij
(rt−1) = s(rt−1) , so we can rewrite the constraint (21) in the form below:

Note that according to the first condition in the definition of fuzzy numbers, the 
numbers on the right-hand side of the constraint (26) are non-negative. Similarly, 
the constraints (22–23) can be written as follows after the substitution:

z∗
t−1

=

m∑
i=1

n∑
j=1

c
ij
(rt−1)x

∗
ij
(rt−1) ≤

m∑
i=1

n∑
j=1

c
ij
(rt)x

∗
ij
(rt) = z∗

t

x
ij
(rt) = y

ij
(rt) + x∗

ij
(rt−1)

z
t
=

m∑
i=1

n∑
j=1

c
ij
(rt)xij(rt) =

m∑
i=1

n∑
j=1

c
ij
(rt)y

ij
(rt) +

m∑
i=1

n∑
j=1

c
ij
(rt)x

∗
ij
(rt−1)

(25)
m∑
i=1

n∑
j=1

c
ij
(rt)y

ij
(rt) → min

n∑
j=1

(y
ij
(rt) + x∗

ij
(rt−1)) =

n∑
j=1

y
ij
(rt) +

n∑
j=1

x∗
ij
(rt−1)) = s(rt)

(26)
n∑
j=1

y
ij
(rt) = s(rt) − s(rt−1)

(27)
m∑
i=1

y
ij
(rt) = d

j
(rt) − d

j
(rt−1)
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for all i ∈ { 1, 2,… ,m} and j ∈ { 1, 2,… , n}.
Note that according to the first condition in the definition of fuzzy numbers, the 

numbers on the right-hand side of the constraint (27) are non-negative. The prob-
lem (25–28) is a classical transportation problem. We can summarize the discussion 
above with the following steps.

Step 1 To find an initial feasible solution to Problem A for r = r0 , apply the 
North–West corner algorithm. Then find an optimal solution X∗

0
= (x∗

ij
(r0)) and the 

optimal value z∗
0
 of the objective function for this problem by applying MODI 

algorithm.
Step 2 Assign t = 1.
Step 3 Apply North–West corner algorithm to the problem (25–28) for r = rt to 

find initial feasible solution. Then find an optimal solution Y∗
t
= (y∗

ij
(rt)) of the prob-

lem by applying the MODI algorithm.
Step 4 Get an optimal solution of the (19) under conditions (21–23) by the for-

mula X∗
t
= Y∗

t
+ X∗

t−1

Step 5 Calculate the optimal value of the function (19) by the formula 

z∗
t
=

m∑
i=1

n∑
j=1

c
ij
(rt)x

∗
ij
(rt)

Step 6 t = t + 1

Step 7 If t ≤ k then go to Step 3, otherwise stop.
After applying these steps, we can find the values of the first components of 

the fuzzy optimal solution x̃∗
ij
= (x∗

ij
(r), x

∗

ij
(r)) and fuzzy optimal value 

z̃∗ = (z∗(r), z
∗
(r)) of the problem (5–8) for the r = r0 = 0, r = r1,… , r = rk = 1 . 

We can express the functions x∗
ij
(⋅) and z∗(⋅) approximately by using these values. 

Similarly, by solving Problem B we can find the functions x∗
ij
(⋅) and z∗(⋅) approxi-

mately. However, in this case, we begin from r = rk = 1 and perform calculations 
from right to left. The reason is that the parametric function representing the 
right-hand side is non-increasing due to 2nd condition in the definition of the 
fuzzy number. In other words, we first solve Problem B for r = rk = 1 . Now let’s 
explain how to use condition (18) when we solve problem B. We use this condi-
tion only once when solving problem B for r = rk = 1 as follows:

As a result, for r = rk = 1 we find an optimal solution X
∗

k
= (x

∗

ij
(rk)) and opti-

mal value z∗
k
 of the objective function. Then we solve, the following problems for 

t = k − 1, k − 2,… , 0 iteratively:

(28)y
ij
(rt) ≥ 0

(29)xij(1) ≥ x∗
ij
(1)

(30)
m∑
i=1

n∑
j=1

cij(rt)xij(rt) → min



3207

1 3

Heuristic algorithm for an optimal solution of fully fuzzy…

for all i ∈ { 1, 2,… ,m} and j ∈ { 1, 2,… , n}

Here, we denote optimal solution of the problem (30–33) for 
t = k − 1, k − 2,… , 0 by X

∗

t
= (x

∗

ij
(rt)) and optimal value of the objective function 

by z∗
t
.

Proposition 2 For t = k − 1, k − 2,… , 0 , the inequality z∗
t
≥ z

∗

t+1
 holds.

Proof of Proposition 2 is similar to the proof of Proposition 1.
Since Problem B is not a classical transportation problem to solve the problem 

for r = rk = 1 we use a substitution xij(1) = yij(1) + x∗
ij
(1) . After this substitution, 

the problem becomes the following classical transportation problem:

for all i ∈ { 1, 2,… ,m} and j ∈ { 1, 2,… , n}

Similarly, since the problem (30–33) is not a classical transportation problem, 
we use a substitution, xij(rt) = yij(rt) + x

∗

ij
(rt+1) . After this substitution, we have to 

solve the following classical transportation problem:

(31)
n∑
j=1

xij(rt) = si(rt)

(32)
m∑
i=1

xij(rt) = dj(rt)

(33)xij(rt) ≥ x
∗

ij
(rt+1)

(34)
m∑
i=1

n∑
j=1

cij(1)yij(1) → min

(35)
n∑
j=1

yij(1) = s(1) − s(1)

(36)
m∑
i=1

yij(1) = dj(1) − d
j
(1)

(37)yij(1) ≥ 0

(38)
m∑
i=1

n∑
j=1

cij(rt)yij(rt) → min
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for all i ∈ { 1, 2,… ,m} and j ∈ { 1, 2,… , n}

According to the second condition in the definition of the fuzzy number, the 
numbers on the right-hand side of the constraints (35), (36),(39) and (40) are non-
negative. To find the expressions of the functions x∗

ij
(⋅) and z∗(⋅) approximately, 

we apply the steps below:
Step 1 To find an initial feasible solution apply the North–West corner algo-

rithm to the problem (34–37). Then find an optimal solution Y
∗

k
= Y

∗
(1) = (y

∗

ij
(1)) 

for this problem by applying the MODI algorithm.
Step 2 Find an optimal solution X

∗

k
= X

∗
(1) = (x

∗

ij
(1) ) and optimal value 

z∗
k
= z∗(1) of the objective function in Problem B for r = rk = 1 by the formulas:

Step 3 Assign t = k − 1

Step 4 Apply North–West corner algorithm to the problem (38–41) for r = rt to 
find initial feasible solution. Then find an optimal solution Y

∗

t
= (y

∗

ij
(rt)) of the prob-

lem by applying MODI algorithm.
Step 5 Get an optimal solution of the problem (30–33) by the formula 

X
∗

t
= Y

∗

t
+ X∗

t+1
.

Step 6 Calculate the optimal value of the function (30) by the formula 

z
∗

t
=

m∑
i=1

n∑
j=1

cij(rt)x
∗

ij
(rt)

Step 7 t = t − 1

Step 8 If t ≥ 0 , then go to Step 4, otherwise stop.
After applying these steps, we can find the values of the second components of 

the fuzzy optimal solution x̃∗
ij
= (x∗

ij
(r), x

∗

ij
(r)) and fuzzy optimal value 

z̃∗ = (z∗(r), z
∗
(r)) of the problem (5–8) for the r = r0 = 0, r = r1,… , r = rk = 1 . By 

using these values we can express the functions x∗
ij
(⋅) and z∗(⋅) approximately. There-

fore, we find fuzzy optimal solution x̃∗
ij
= (x∗

ij
(r), x

∗

ij
(r)) and the optimal value 

z̃∗ = (z∗(r), z
∗
(r)) of the fuzzy objective function approximately.

(39)
n∑
j=1

yij(rt) = s(rt) − s(rt+1)

(40)
m∑
i=1

yij(rt) = dj(rt) − dj(rt+1)

(41)yij(rt) ≥ 0

X
∗

k
= Y

∗

k
+ X∗

k

z
∗

k
=

m∑
i=1

n∑
j=1

cij(1)x
∗

ij
(1)
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5  Sample problems and results

In this section, we apply our algorithm to some examples. Example 3 is taken from 
the work of Ebrahimnejad [13]. He solves this example for the trapezoidal fuzzy 
numbers in his work. We compare the proposed algorithm with Ebrahimnejad’s 
algorithm in Examples 3 and 4.

Example 1 Suppose that there are 2 suppliers and 2 distributors. Let the following 
fuzzy numbers give the capacities of suppliers and distributors:

Moreover, costs for transporting unit product from a supplier with number 
i ∈ {1, 2} to the distributor j ∈ {1, 2} are given by fuzzy numbers:

Since s̃1 + s̃2 = d̃1 + d̃2 , the balance condition is satisfied. We divide the interval 
[0, 1] into k numbers equal subintervals by the points r0 = 0 < r1 < r2 < ⋯ < rk = 1 . 
To explain the proposed algorithm clearly, we choose k = 2 . We first solve the prob-
lem for the left ends of fuzzy numbers. The input of the problem for the first step of 
our algorithm is shown in Table 3.

After applying the North–West corner algorithm, we find an initial feasible solution 
as x

11
= 15, x

12
= 5, x

21
= 0, x

22
= 50 . The input of the MODI algorithm is given in 

the Table 4.
According to MODI algorithm we calculate the values u and v by formula 

ui + vj = c
ij
 by checking nonempty cells. For this we first put u1 = 0 . From 

u1 + v1 = c
11

 we get v1 = 2 , from u1 + v2 = c
12

 we obtain v2 = 1 and from 

s̃1 = (s
1
(r), s1(r)) = (−2r2 + 11r + 20, −10r + 39)

s̃2 = (s
2
(r), s2(r)) = (30r + 50, −2r2 − 19r + 101)

d̃1 = (d
1
(r), d1(r)) = (20r + 15, −2r2 − 13r + 50)

d̃2 = (d
2
(r), d2(r)) = (−2r2 + 21r + 55,−16r + 90)

c̃11 = (2r + 2,−2r + 6); c̃12 = (−2r2 + 5r + 1,−6r + 10)
c̃21 = (2r + 3,−2r + 7); c̃22 = (2r + 4,−4r2 − 2r + 12)

Table 3  Example1: Input data 
of left-end problem for r

0
= 0

d
1

d
2

s
1

2 1 20
s
2

3 4 50
15 55

Table 4  Example 1: Input data 
of MODI algorithm for the left-
end problem for r

0
= 0

15/2 5/1
0/3 50/4
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u2 + v2 = c
22

 we get u2 = 3 . Then we calculate penalties by the formula 
Pij = ui + vj − c

ij
 for empty cells. In this example, we have only one empty cell. For 

this cell P21 = u2 + v1 − c
21

= 3 + 2 − 3 = 2 > 0 . We mark the cells (2,1) and (1,2) 
by “+”, and the cells (1,1) and (2,2) by “-”. The minimum value in the negative cells 
is 15, so we subtract 15 from the values of these cells and we add 15 to the positive 
cells. After this operation, we find the solution X

0
 as below:

For this solution from the MODI algorithm, we calculate the values 
u1 = 0, v2 = 1, u2 = 3, v1 = 0, P11 = −2 . Since P11 < 0 , we find an optimal solu-
tion. For this solution optimal value is z∗

0
= 1 × 20 + 3 × 15 + 4 × 35 = 205.

The solutions of the other cases ( t = 1 (r1 = 0.5) and t = 2 (r2 = 1) ) for the left-
end problem are given in Table 5.

Now we solve the problem (30–33) to find the right end of the fuzzy optimal 
solution. Let’s first solve the problem for t = 2 (r2 = 1) . So we need to solve the 
problem (34–37). Input data for this problem are given in Table 6.

The only solution to this problem is

Hence we find an optimal solution

 For this solution, the optimal value is z∗
2
= 561 . The solutions to the other cases 

( t = 1 (r1 = 0.5) and t = 0 (r0 = 0) are shown in the Table 7.
Thus, we found the left-end and right-end of the fuzzy optimal solution and fuzzy 

optimal value at 3 different points. These values are shown in Table 8.

X
0
=

[
0 20

15 35

]

Y
∗

2
=

[
0 0

0 0

]

X
∗

2
=

[
0 29

35 45

]

Table 5  Example 1: Solutions of the left-end problem for t = 1 (r
1
= 0.5) and t = 2 (r

2
= 1)

t Input Data
for (25–28)

Initial 
solution Y

t
 

for
(25–28)

Input for
MODI

Optimal 
Solution Y∗

t
 

for
(25–28)

Optimal 
Solution X∗

t
 

for
(19–23)

Optimal 
Value z∗

t
 for

(19–23)

1
[
5 0

5 10

] [
0 5

10 5

] [
0 25

25 40

]
375

2
[
4 0

6 9

] [
0 4

10 5

] [
0 29

35 45

]
561
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Now we can combine the points found for the left end of a fuzzy number with an 
increasing function and those found for the right end with a decreasing function. The 
simplest way to do this is to connect consecutive points with line segments because 
there is no condition for the left and right end functions to be smooth in the defini-
tion of parametric fuzzy numbers. In this study, computer-assisted solutions of the 
examples were made using MATLAB, and the graphics of the solutions were drawn 
using the standard MATLAB functions. Another way is to use one of the monotone 
polynomial fitting methods [25]. Since in this example we have 3 points for each 
component of the fuzzy optimal solution, let’s write the second-degree polynomial 
passing through these points and check whether the resulting polynomial is mono-
tonic in the range [0,1]. For example, since x∗

11
(0) = 0 , x∗

11
(0.5) = 0 and x∗

11
(1) = 0 , 

it is clear that the polynomial sought is x∗(r) = 0 for every r. Since x∗
12
(0) = 20 , 

x∗
12
(0.5) = 25 and x∗

12
(1) = 29 , so x∗

12
(r) = −2r2 + 11r + 20 . We can easily see that 

this function is increasing in the range [0,1]. Similarly, we can build other functions 
and consequently assume that the approximate optimal solution is as follows:

Accordingly, the left end of the objective function is as follows:

Therefore, z∗ = 4r4 − 32r3 + 73r2 + 311r + 205

For this solution, the expression of the objective function at the right end will be as 
follows:

i.e.

The fuzzy optimal solution of Example 1 obtained on the computer with the pro-
posed algorithm by taking k = 1000 is shown in Fig. 1, and the fuzzy optimal value 
is shown in Fig. 2. In these figures values of r are shown on the horizontal axis and 
the values of the appropriate functions on the vertical axis.

X∗(r) =

[
0 −2r2 + 11r + 20

20r + 15 10r + 35

]

z∗ = (−2r2 + 11r + 20)(−2r2 + 5r + 1) + (20r + 15)(2r + 3) + (10r + 35)(2r + 4)

X
∗
(r) =

[
0 −10r + 39

−2r2 − 13r + 50 −6r + 51

]

z
∗
= (−6r + 10)(−10r + 39) + (−2r + 7)(−2r2 − 13r + 50) + (−4r2 − 2r + 12)(−6r + 51),

z
∗
= 28r3 − 120r2 − 699r + 1352

Table 6  Example 1: Input data 
of the right-end problem for 
r
2
= 1

d
1

d
2

s
1

4 4 0
s
2

5 6 0
0 0
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[
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[
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Remark 1 Actually, we cannot claim that the fuzzy solution X̃ = (X(r),X(r)) we 
obtained is the exact solution of the problem. Also, the functions x

ij
(r) and xij(r) may 

not be always expressed with a polynomial function same degree with input func-
tions as in Example 1. We show this situation in Example 2 below.

Example 2 Suppose 2 suppliers and 2 distributors are given. Let the capacities of 
suppliers and distributors be given by the following fuzzy numbers.

Table 8  Example 1: Fuzzy 
optimal solution and fuzzy 
optimal value for r = 0 r = 0.5 
and r = 1)

r X
∗(r) X

∗
(r) z∗(r) z

∗
(r)

0
[

0 20

15 35

] [
0 39

50 51

]
205 1352

0.5
[

0 25

25 40

] [
0 34

43 48

]
375 976

1
[

0 29

35 45

] [
0 29

35 45

]
561 561

Fig. 1  Example 1: Fuzzy optimal solution ( k = 1000)



3214 N. Kartli et al.

1 3

Moreover, transportation costs for transporting unit product from supplier with num-
ber i ∈ {1, 2} to the distributor j ∈ {1, 2} are given by fuzzy numbers:

Since s̃1 + s̃2 = d̃1 + d̃2 , the balance condition is satisfied.
We apply the proposed algorithm to this example for k = 2 . We note that the left 

ends of the fuzzy numbers in Example 2 are the same as the left ends of the numbers 
in Example 1. Therefore, the left end of the fuzzy optimal solution of the problem 
will be the same as the solution in Example 1. By applying the proposed algorithm 
to the right ends for t = 2 (r2 = 1), t = 1 (r1 = 0.5), t = 0 (r0 = 0) we obtain the 
following optimal solutions, respectively:

Since d1 is a second-order polynomial function, we can expect that either x11 or x21 is 
a second-order polynomial function non-increasing over [0,1]. However, we find 

s̃1 = (s
1
(r), s1(r)) = (−2r2 + 11r + 20, −20r + 49)

s̃2 = (s
2
(r), s2(r)) = (30r + 50, −2r2 − 9r + 91)

d̃1 = (d
1
(r), d1(r)) = (20r + 15, −2r2 − 13r + 50)

d̃2 = (d
2
(r), d2(r)) = (−2r2 + 21r + 55,−16r + 90)

c̃11 = (2r + 2,−2r + 6); c̃12 = (−2r2 + 5r + 1,−6r + 10)

c̃21 = (2r + 3,−2r + 7); c̃22 = (2r + 4,−4r2 + 10)

X
∗

2
=

[
0 29

35 45

]
;X

∗

1
=

[
2 37

41 45

]
;X

∗

0
=

[
9 40

41 50

]

Fig. 2  Example 1: The fuzzy number representing the optimal value of the objective function ( k = 1000)
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that x21(0) = x21(0.5) = 41 , so according to Roll theorem x21 cannot be non-decreas-
ing over [0,1] and second-order polynomial function. In this case, x11 has to be a 
second-order polynomial function. Let x11(r) = a(r − b)(r − 1) . Since x11(0) = 9 we 
have a.b = 9 . From x11(0.5) = 2 we get 2 = a(0.5 − b)(−0.5) . Hence −4 = 0.5a − ab , 
and a = 10, b = 0.9 . As a result, we find the function x11(r) = 10r2 − 19r + 9 , but 
this function is decreasing over 

(
0,

19

20

)
 and is increasing over 

(
19

20
, 1

)
 . We know 

about optimal solutions for the right ends if the optimal solution is

then X
∗
(1) =

[
0 29

35 45

]
 , X

∗
(0.5) =

[
2 37

41 45

]
,X

∗
(0) =

[
9 40

41 50

]
.

The graphical representation of the fuzzy optimal solution for Example 2 is 
given in Fig. 3.

The fuzzy number expressing the value of the objective function for this opti-
mal solution is given in Fig. 4.

Example 3 Suppose 3 suppliers and 4 distributors are given. Let the capacities of 
suppliers and distributors be given by the following fuzzy numbers.

X
∗
(r) =

[ x∗11(r) x
∗
12(r)

x∗21(r) x
∗
22(r)

]

Fig. 3  Example 2: Fuzzy optimal solution ( k = 2)
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Transportation charges are as follows:

This problem is formulated with trapezoidal numbers in [13], and the following 
optimal solution is found:

s̃1 = (s
1
(r), s1(r)) = (55r + 3500,−420r + 4000)

s̃2 = (s
2
(r), s2(r)) = (−50r + 3125,−10r + 3200)

s̃3 = (s
3
(r), s3(r)) = (520r + 2475,−125r + 3400)

d̃1 = (d
1
(r), d1(r)) = (450r + 2050,−350r + 3050)

d̃2 = (d
2
(r), d2(r)) = (50r + 3000,−100r + 3200)

d̃3 = (d
3
(r), d3(r)) = (50r + 2100,−60r + 2250)

d̃4 = (d
4
(r), d4(r)) = (75r + 1950,−45r + 2100)

̃c11 = (19 + r, 22 − r); ̃c12 = (59 + 3r, 65 − 2r)

̃c13 = (90 + 5r, 99 − 2r); ̃c14 = (150 + 10r, 170 − 5r)

̃c21 = (97 + 2r, 105 − 2r); ̃c22 = (15 + 2r, 21 − 2r)

̃c23 = (110 + 2r, 119 − 4r); ̃c24 = (190 + 20r, 240 − 20r)

̃c31 = (260 + 2r, 270 − 6r); ̃c32 = (240 + 7r, 255 − 6r)

̃c33 = (272 + 2r, 290 − 11r); ̃c34 = (320 + 6r, 340 − 8r)

0 0.2 0.4 0.6 0.8 1
r

0

200

400

600

800

1000

1200

1400

F

Fig. 4  Example 2: Fuzzy optimal value ( k = 2)
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For this solution, the optimal value is determined as (999, 500, 1, 166, 890, 1, 359, 
725). We note that in [13] there is a statement that x̃ij ’s are non-negative triangular 
fuzzy numbers, but we think this is a typo since the solution found is expressed in 
trapezoidal fuzzy numbers, not in triangular numbers. We solve this example for 
k = 1, 2, 4, 1000 by our proposed algorithm. For k = 1 our solution coincides with 
the solution found in [13]. The graphics of this solution are shown in Figs.  5,  6 
and 7. When Example 3 was solved for k = 2 , a change was seen in the components 
X12, X13, X32, X33 , but the other components remained unchanged. The graphics of 
the changing components are shown in Figs. 8 and 9. The difference between the 
solution of the k = 4 case and the solution of the k = 2 case was also in the same 
components X12, X13, X32, X33 . The graphics of these components are shown in 
Figs. 10 and 11. In the case of k = 1000 , all components of the fuzzy optimal solu-
tion are shown in Figs. 12, 13 and 14

With the proposed algorithm, the value of the objective function of this problem 
is shown in Fig. 15.

x̃∗
11

= (2050, 2105, 2130, 2410) x̃∗
12

= (0, 0, 0, 0)

x̃∗
13

= (1450, 1450, 1450, 1450) x̃∗
14

= (0, 0, 0, 0)

x̃∗
21

= (0, 0, 0, 0) x̃∗
22

= (3000, 3050, 3065, 3075)

x̃∗
23

= (125, 125, 125, 125) x̃∗
24

= (0, 0, 0, 0)

x̃∗
31

= (0, 395, 570, 570) x̃∗
32

= (0, 0, 35, 115)

x̃∗
33

= (525, 575, 615, 615) x̃∗
34

= (1950, 2025, 2055, 2100)

Fig. 5  Example 3: Fuzzy optimal solution x̃
1j ( k = 1)
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Fig. 6  Example 3: Fuzzy optimal solution x̃
2j ( k = 1)

Fig. 7  Example 3: Fuzzy optimal solution x̃
3j ( k = 1)
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Fig. 8  Example 3: Fuzzy optimal solution x̃
1j ( k = 2)

Fig. 9  Example 3: Fuzzy optimal solution x̃
3j ( k = 2)
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Fig. 10  Example 3: Fuzzy optimal solution x̃
1j ( k = 4)

Fig. 11  Example 3: Fuzzy optimal solution x̃
3j ( k = 4)
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Fig. 12  Example 3: Fuzzy optimal solution x̃
1j ( k = 1000)

Fig. 13  Example 3: Fuzzy optimal solution x̃
2j ( k = 1000)
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Example 4 Suppose 2 suppliers and 2 distributors are given. Let the capacities of 
suppliers and distributors be given by the following fuzzy numbers.

Moreover, transportation charges for a unit product from a supplier with number 
i ∈ {1, 2} to the distributor j ∈ {1, 2} are given by fuzzy numbers:

Since s̃1 + s̃2 = d̃1 + d̃2 , the balance condition is satisfied.

If we solve Example 4 with the method suggested by Ebrahimnejad [13], we get 
the fuzzy optimal solution shown in Fig. 16 and the fuzzy optimal value shown in 
Fig. 17. (In our proposed algorithm, this means getting k = 1 .) We see that since all 

s̃1 = (s
1
(r), s1(r)) = (9r + 20, −20r + 49)

s̃2 = (s
2
(r), s2(r)) = (30r + 50, −11r + 91)

d̃1 = (d
1
(r), d1(r)) = (20r + 15, −15r + 50)

d̃2 = (d
2
(r), d2(r)) = (19r + 55,−16r + 90)

c̃11 = (2r + 2,−2r + 6)

c̃12 = (3r + 1,−6r + 10)

c̃21 = (2r + 3,−2r + 7)

c̃22 = (2r + 4,−4r + 10)

Fig. 14  Example 3: Fuzzy optimal solution x̃
3j ( k = 1000)
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fuzzy numbers given in Example 1 are triangular numbers then the obtained fuzzy 
optimal solution and the fuzzy optimal value are triangular numbers.

However, since both charges and variables are fuzzy numbers in a fully fuzzy 
transportation problem, the problem loses its linearity. Therefore, it is difficult to 
expect the fuzzy optimal solution and the fuzzy value to be the same as the type of 
fuzzy inputs given in the problem. We can see this in Figs. 18 and 19 when we apply 
our proposed algorithm to this example by choosing k = 4.

6  Conclusion

In this study, we consider the fully fuzzy transportation problem. In the problem, 
transportation charges, and supplier and distributor capacities are expressed with 
fuzzy numbers given in the parametric form. We first transform the fuzzy prob-
lem into 2 independent problems with a method similar to the method proposed for 
interval differential equations in study [26]. Then we formulate these linear pro-
gramming problems as in [13], but we have two important differences from [13]. 
Firstly, our proposed method is not only valid for the endpoints and core of the fuzzy 
number but also works for the general case. Secondly, we solve linear programming 
problems more easily by transforming them into transportation problems. We solve 
examples showing that our proposed algorithm applies to all fuzzy numbers given in 
the parametric form.

Fig. 15  Example 3: Fuzzy optimal value ( k = 1000)
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Fig. 16  Example 4: Fuzzy optimal solution ( k = 1)

Fig. 17  Example 4: Fuzzy optimal value ( k = 1)
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Fig. 18  Example 4: Fuzzy optimal solution ( k = 4)

Fig. 19  Example 4: Fuzzy optimal value ( k = 4)
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