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Abstract
We present a simple and quick method to approximate network centrality indexes. 
Our approach, called QuickCent, is inspired by so-called fast and frugal heuristics, 
which are heuristics initially proposed to model some human decision and inference 
processes. The centrality index that we estimate is the harmonic centrality, which is 
a measure based on shortest-path distances, so infeasible to compute on large net-
works. We compare QuickCent with known machine learning algorithms on syn-
thetic network datasets, and some empirical networks. Our experiments show that 
QuickCent can make estimates that are competitive in accuracy with the best alter-
native methods tested, either on synthetic scale-free networks or empirical networks. 
QuickCent has the feature of achieving low error variance estimates, even with a 
small training set. Moreover, QuickCent is comparable in efficiency—accuracy and 
time cost—to more complex methods. We discuss and provide some insight into 
how QuickCent exploits the fact that in some networks, such as those generated by 
preferential attachment, local density measures such as the in-degree, can be a good 
proxy for the size of the network region to which a node has access, opening up the 
possibility of approximating expensive indices based on size such as the harmonic 
centrality. This same fact may explain some evidence we provide that QuickCent 
would have a superior performance on empirical information networks, such as cita-
tions or the internet. Our initial results show that simple heuristics are a promising 
line of research in the context of network measure estimations.
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1  Introduction

1.1 � Heuristics are a model of cognitive processes

Some models based on heuristics have been proposed to account for cognitive mech-
anisms [1], which assume that, though these heuristics are used at a lesser compu-
tational cost, they sacrifice accuracy and lead to systematic errors. This viewpoint 
has been challenged by the so-called Fast and frugal heuristics [2], which are simple 
heuristics initially proposed to model some human decision and inference processes. 
They have shown that very simple human-inspired methods, by relying on statisti-
cal patterns of the data, can reach accurate results, in some cases even better than 
methods based on more information or complex computations [2, 3]. Due to these 
features, fast and frugal heuristics have been applied in problems different from their 
original motivation, including medical decision-making [4], predicting the outcomes 
of sport matches [5] and geographic profiling [6].

1.2 � The problem of centrality computation

In this paper, we provide an example of the usefulness of one of these simple heu-
ristics for estimating the centrality index in a network. Originally, these indexes 
were proposed as a measure of the importance of a node given by its location in a 
social network [7], but today find diverse applications such as identifying influential 
spreaders on epidemic propagation [8], early adopters of innovation [9], or predic-
tion of diseases from cortical networks [10]. We chose to estimate the harmonic 
centrality index [11], a sound measure which, for example, is a competitive rank-
ing function for the relevance of web queries results [12]. It also satisfies a set of 
necessary axioms that any centrality should meet [12], namely that nodes belong-
ing to large groups are important (size axiom); that nodes with a denser neighbor-
hood, i.e. with more connections, are more important (density axiom); and that the 
importance increases with the addition of an arc (score-monotonicity axiom). Con-
sider a directed graph G = (V ,A) , with V the set of nodes and A the set of arcs or 
edges. Formally, let dG(y, x) be the length of the shortest path from node y to x in the 
digraph G. The harmonic centrality of x is computed as

which has the nice property of managing unreachable nodes in a clean way.
Besides its good properties, to compute the harmonic centrality for all nodes in a 

network we need first to solve the all-pairs shortest-path problem. Notice that by the 
total number of pairs of nodes, there is an intrinsic lower bound of ∣ V ∣2 for comput-
ing this centrality, and O(∣ V ∣2) is already a huge constraint for modern networks. 

(1)HG(x) =
∑

y∈V ,y≠x
1

dG(y, x)
,
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There has been a lot of work on optimizing the computation of all-pairs shortest-
paths for weighted networks [13–15] but even under strict constraints on the struc-
ture of the networks  [15] this computation is unfeasible for networks with a large 
number of nodes, usually needing time O(∣ A ∣ ⋅ ∣ V ∣) . Thus, in order to use har-
monic centrality in practice we need ways of estimating or approximating it.

Though there are few centrality indexes satisfying the three axioms [12], some 
simple measures can be built that do satisfy them. One way of doing this, is by 
taking the simple product of a density measure, such as the in-degree, with a size 
measure, such as the number of weakly reachable nodes [12]. While the in-degree is 
cheap to compute, many times stored as an attribute so accessible in constant time, 
size measures have a higher time complexity. For example, the number of reachable 
nodes, for each node, can be computed from the condensation digraph of strongly 
connected components, which may give, in the worst case, a total time complex-
ity of O(∣ A ∣ ⋅ ∣ V ∣ + ∣ V ∣2) . In this paper, we explore whether expensive indexes, 
sensitive to either density and size, such as the harmonic centrality, may be approxi-
mated by cheap local density measures such as the in-degree.

1.3 � Our proposal

Our proposed method, called QuickCent, is a modification of QuickEst [16], a heu-
ristic proposed to represent the cognitive processes underlying the human estima-
tion of magnitudes. Since a wide range of natural and human-made phenomena 
can be modeled as a power-law distribution [17], QuickCent is designed to work 
on these kinds of distributions. QuickCent can be considered as a generalization of 
QuickEst, in the sense that, although in this work we focus on centrality approxima-
tion, it proposes a general procedure to regress a variable on a predictor when some 
assumptions are met. QuickCent is a very simple heuristic based on sequences of 
binary clues associated with nodes in a network; the value of a clue is an indica-
tor of the presence or absence of an attribute signal of greater centrality for a node. 
The method finds the first clue with value 0 (absence), and it outputs an estimate 
according to this clue. All the clues used in QuickCent are based on the in-degree 
of the node, thus QuickCent can be seen as a method to regress a variable (har-
monic centrality) that correlates with a predictor variable (in-degree) that is cheaper 
to compute.

This paper extends previous work by some of the authors [18], mainly by adding 
the study of networks defying the heuristics assumptions (Sect. 4.4) and the perfor-
mance over empirical networks (Sect. 4.5). Besides that, some technical implemen-
tation details (Sect. 3.4), together with the use of the in-degree instead of the degree 
(Sect.  3.1), the examples (Examples 1, 2, 3) and the insight into why harmonic 
centrality can be estimated with in-degree (Sects. 4.5.1 and 4.5.3), are new. From 
suggestive evidence in Sect. 4.5.3, it seems to be that QuickCent is better suited to 
directed networks, rather than to undirected ones as in our previous work [18].
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1.4 � Related work

In the existing literature, methods for estimating centrality measures have led to two 
distinct research directions: one that focuses on the ranking of nodes based on their 
centrality measure without calculating the centrality values for all nodes, and another 
that is dedicated to approximating the exact centrality values themselves.

Previous research focusing on node ranking is based on the observation that real-
world scale-free networks exhibit a sigmoid pattern in the reverse ranking of closeness 
centrality. Leveraging this observation, heuristic methods for closeness ranking have 
been introduced that approximate the sigmoid curve by approximating the closeness 
centrality of nodes positioned at the minimum, middle, and maximum ranks in the net-
work and using it to get the rank of specific nodes based on their explicit closeness 
centrality [19, 20]. Using a similar approach, Saxena et al. [21, 22] estimate the degree 
rank of a node and the variance of the rank estimate based on the degree of a node, 
exploiting the power-law degree distribution characteristic of scale-free networks. The 
method estimates the necessary network parameters of the power-law distribution, 
which yields a functional form for the probability of a node having degree k, which is 
used to estimate the node rank.

Next, we present research on approximating node centrality measures. Several cen-
trality measures are based on the shortest paths between pairs of nodes, such as har-
monic centrality (see Eq. 1). For large networks, computing shortest paths is intracta-
ble, since the computation is quadratic in the number of nodes. One line of work for 
estimating centrality measures based on shortest path distances focuses on estimating 
the distances used to compute the centrality measures. Rattigan et al. [23] introduced 
the Network Structure Index (NSI) by annotating nodes and mapping pairs of node 
annotations to estimate their shortest distance. Pfeffer et al. [24] proposed an approach 
that computes the shortest paths from all nodes in a network while constraining the 
path distances, which they call k-measure-based centrality measures that can approxi-
mate traditional centrality measures.

Another line of work is based on sampling techniques for estimating centrality meas-
ures, where one computes exact centrality values for a predefined set of sampled nodes, 
and then estimates the centrality values for the remaining nodes by extrapolating the 
contributions of individual nodes in the sample [25, 26]. Chan et al. [27] adapted the 
sample approximation methods for networks that exhibit modularity, using the com-
munity structure of the network to approximate the betweenness centrality measure. 
Cohen et al. [28] proposed a sampling method in which the closeness centrality of a 
node is estimated using its distance to the sampled nodes. Their algorithm provides a 
relative error guarantee. Chechik et al. [29] developed a weighted sampling method that 
offers statistically guaranteed estimates for all nodes.

Our approach exhibits resemblances to previous methods that rank nodes by lever-
aging the statistical regularities observed in scale-free networks, particularly the power-
law degree distribution. Nonetheless, our method diverges by directly computing the 
actual centrality values of nodes, as opposed to focusing solely on their rankings.
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1.5 � Results and future work

Our method is able to generate accurate estimates even if trained with a small 
proportion—lesser than 10%—of the dataset. We compare QuickCent with three 
standard machine learning algorithms trained with the same predictor variable 
over synthetic data and empirical networks. Our results show that QuickCent is 
comparable in accuracy to the best-competing methods tested, and has the low-
est error variance. Moreover, the time cost of QuickCent is in the middle range 
compared to the other methods, even though we developed a naive version of 
QuickCent.

QuickCent has particularly good accuracy on synthetic preferential attachment 
networks, and we discuss how this may be due to the exploitation that higher 
degree nodes are more likely to be found because more paths lead to them, open-
ing up the possibility of approximating expensive size-based measures such as 
harmonic centrality. We also show suggestive evidence that empirical informa-
tion networks, such as citations or the internet, which can be well approximated 
by the preferential attachment growth mechanism [30–32], would provide an 
optimal context for this heuristics.

Working in the future with more general notions of local density [33, 34] may 
serve to extend the validity of the heuristics for more general networks. The 
results of this paper are a proof of concept to illustrate the potential of using 
methods based on simple heuristics to estimate some network measures. Whether 
or not these heuristics provide a realistic model of human cognition, is a wide 
problem [35] which is out of the scope of this work.

1.6 � Structure of the paper

The rest of this paper is structured as follows. We begin in Sect. 2 by introducing 
the general mechanism of QuickCent, while Sect. 3 presents our concrete imple-
mentation. In Sect. 4, we present and discuss the results of our proposal, includ-
ing the comparison with other machine learning methods either on synthetic or 
empirical networks. Finally, Sects. 5 and 6 give possible avenues for future work 
and conclusions.

2 � The QuickCent heuristic

In this section, we give a general abstract overview of our proposal, which we 
call QuickCent. The setting for QuickCent is as follows: the input is a network 
G = (V ,A) and we want to get an accurate estimate of the value of some central-
ity function fC ∶ V ⟶ ℝ . That is, for every v ∈ V  , we want to compute a value 
f̃v that is an estimation of fC(v) . We next explain the general abstract idea of the 
components of QuickCent.
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Analogously to QuickEst [16], our QuickCent method relies on vectors of n binary 
clues. We associate to every node v ∈ V  a vector xv = (x1

v
, x2

v
,… , xn

v
) ∈ {0, 1}n . The 

intuition is that the value of the i− th component (clue) xi
v
 is an indicator of the pres-

ence ( xi
v
= 1 ) or absence ( xi

v
= 0 ) of an attribute signal of greater centrality for node 

v. Our method also considers the following n + 1 sets of nodes:

That is, Si corresponds to nodes that do not have the i− th attribute while having the 
previous one. For each one of the sets Si , with 1 ≤ i ≤ n + 1 , our method needs a 
quantity f̄i which is a summary statistic of the centrality distribution of the nodes in 
set Si . QuickCent must ensure that successive clues are associated with higher cen-
trality values, thus we will have that

With the previous ingredients, the general estimation procedure corresponds to the 
following simple rule.

General QuickCent heuristic: For node v, we iterate over the n clues, con-
sidering every value xi

v
 . When we find the first i verifying that xi

v
= 0 , we stop 

and output the value f̄i . If node v is such that xi
v
= 1 for every i ∈ {1,… , n} , we 

output f̄n+1.

Example 1  This is a simple example where we assume complete knowledge of the 
centrality values of all nodes. Let us consider the following network in Fig.  1 of 
size 25 obtained as a random instance of linear preferential attachment, defined in 
Sect. 3.2. Table 1 displays only the non-zero values of in-degree and harmonic cen-
trality in this network. A reasonable way to aggregate these values is to consider four 
sets Si, i = 1, 2, 3, 4 , with the following binary clues, xi

v
= 1 ( i = 1, 2, 3 ) if and only if 

degin(v) > di , with d1 = 0 , d2 = 3 and d3 = 4 . With this choice, for simple centrality 
approximation it is natural to take, for example, the median of harmonic centrality 
on every set Si as summary statistics, f̄1 = 0 , f̄2 = 1 , f̄3 = 4.666 and f̄4 = 15.75.

QuickCent provides a simple stopping rule: for each node, the search is final-
ized when the first clue with value 0 is found. In this sense, the heuristic is fru-
gal, given that in many cases it can output an estimate without using all the 
available information. If our input is a network in which the vast majority of 
nodes have similar and small centrality values the procedure is likely to stop the 
search early and give an estimate quickly. An example of this behavior is exhib-
ited by the scale-free or power-law distributions, where most values are small, 
but rare unbounded fluctuations may appear, see Sect. 3.2. The assumption of a 
power-law distribution has a reasonable plausibility since this distribution has a 
pervasive presence in many natural and human-made phenomena [17], although 
there has been some recent controversy on this topic [36, 37].

(2)
S1 = {v ∈ V ∣ x1

v
= 0}

Si = {v ∈ V ∣ xi
v
= 0 and xi−1

v
= 1} (2 ≤ i ≤ n)

Sn+1 = {v ∈ V ∣ xn
v
= 1}

(3)f̄1 < f̄2 < ⋯ < f̄n < f̄n+1.
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Up to this point, QuickCent remains similar to QuickEst, whose details can 
be revised elsewhere [16]. The most critical aspects that distinguish QuickCent 
from QuickEst, as well as a specification of each part of the heuristic, are pre-
sented in the next section.

Fig. 1   A network randomly generated with linear preferential attachment

Table 1   In-degree and harmonic centrality values for each node of the network from Fig. 1

Nodes that do not appear here have a zero in-degree and centrality. The last two rows correspond to 
QuickCent models described in Example 3. The number of decimal places is truncated to three with 
respect to the source

Node 1 4 8 10 14 17 19 23

In-degree 9 4 4 1 3 1 1 1
Harmonic 15.750 4.833 4.500 1.000 3.500 1.500 1.000 1.000
QC100 13.429 2.973 2.973 1.309 1.309 1.309 1.309 1.309
QC70 6.531 2.197 2.197 1.214 1.214 1.214 1.214 1.214
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3 � A QuickCent implementation

In this section, we propose an instantiation of our general QuickCent method, 
including a way to compute the clues xi

v
 for every node v based on its in-degree in 

Sect. 3.1, and an efficient way to compute the summary statistic f̄i of the centrality 
for every set Si in Sect. 3.4. Section 3.3 makes explicit the assumptions that Quick-
Cent requires to be a ecologically rational heuristic  [16], i.e. the proper network 
conditions that ensure a successful application of the heuristic, including that the 
centrality has a power-law distribution. Necessary concepts of this distribution are 
introduced in Sect. 3.2.

3.1 � Using the in‑degree for the clues

Our approach for computing the binary clues is to employ a proxy variable related 
to the centrality by means of a monotonic function which ensures that Eq. (3) holds, 
with a proxy far cheaper to compute than the actual centrality. Our proxy variable 
is the in-degree of the node, that is, the number of incoming neighbors of the node, 
a basic network property many times stored as a node attribute (thus accessible in 
O(1) time). The intuition for this proxy is that greater in-degree will likely be associ-
ated with shorter distances, which likely increases the harmonic centrality. The in-
degree can itself be considered as a centrality measure [12]. For a node v we denote 
by degin(v) its in-degree.

Now, starting from a set of proportions {pi}ni=1 , where 0 ≤ ⋯ ≤ pi ≤ pi+1 ≤ ⋯ ≤ 1 , 
we can get the respective quantile degree values {di}ni=1 . That is, if F is the cumu-
lative distribution function (CDF) for the in-degree, then di = F−1(pi) for each 
i = 1,… , n . Then, we define the i− th clue for node v as

With this definition, the sets Si are

Example 2  This type of clues where already used in Example 1. The quantile 
degree values d = {0, 3, 4} used there to split the in-degree values shown in Table 1 
from the network in Fig.  1, with the format of the sets shown in Eq. (5), can be 
obtained via the inverse of the in-degree CDF applied to the set of proportions 
p = {0.68, 0.84, 0.96}.

Finally, we propose to compute f̄i analytically as the median of each Si based on 
estimating the parameters of a power-law distribution, as explained in Sect. 3.4. The 
required background on this distribution is in the next subsection.

(4)xi
v
= 1 if and only if degin(v) > di.

(5)
S1 = {v ∈ V ∣ degin(v) ≤ d1},

Si = {v ∈ V ∣ di−1 < degin(v) ≤ di} (2 ≤ i ≤ n),

Sn+1 = {v ∈ V ∣ dn < degin(v)}.
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3.2 � Definition, synthetic model and parameter specification of the power‑law 
distribution

A random variable follows a power-law when its probability density function is 
given by an expression of the form p(x) = Kx−� where � is called the exponent of 
the power-law, and K is a normalization constant depending on � . Few real-world 
distributions follow a power-law on their whole range; many times the power-law 
behavior is observed only for higher values, in whose case it is said that the distribu-
tion “has a power-law tail”. In analytic terms, since this density function diverges 
when x goes to 0, there has to be a lower limit xmin from which the power-law holds. 
That is, xmin is a value that satisfies

Moreover, from (6) it is simple to solve that K = (� − 1)(xmin)
�−1 . The �− th moment 

of x is given by

This expression is well defined for � < 𝛼 − 1 . In particular, the second moment 
⟨x2⟩ diverges when the exponent � ≤ 3 , and the first moment, the mean, diverges 
for exponents � ≤ 2 . These features are reflected in the high heterogeneity of val-
ues sampled from several real-world distributions, which is the reason they are also 
referred to as scale-free [17]. One of the most known synthetic models engendering 
networks with power-law degree is preferential attachment (PA). The PA hypothesis 
states that the rate Π(k) in which a k−degree node creates new links is an increasing 
linear function of k. Suppose the rate Π(k) has the following general form,

Krapivsky et al. [38] prove that for � = 1 , or linear PA, this model reduces to the 
usual power-law BA graph [30] with exponent 3. In the sublinear case, 𝛽 < 1 , the 
degree distribution follows a stretched exponential, that is, the bias favoring more 
connected nodes is weaker, which produces an exponential cutoff that limits the 
size of hubs. On the other hand, for a superlinear attachment 𝛽 > 1 , a single node 
becomes central and connects to nearly all other nodes.

In our work, we need to estimate the � parameter of a power-law distribution. A 
simple and reliable way to estimate � from a sample {xi}mi=1 of m observations from 
a power-law distribution is to employ the maximum likelihood estimator (MLE) 
which in this case is given by the formula [17]

(6)∫
∞

xmin

Kx−�dx = 1.

(7)⟨x�⟩ = ∫
∞

xmin

y�p(y)dy =
� − 1

� − 1 − �
x�
min

.

(8)Π(ki) =
k
�

i
∑

j k
�

j

= C(t)k
�

i
.
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As it is apparent from the previous formula, there are at least two aspects that impact 
the quality of the estimate 𝛼̂ : the number of observations (m in the formula above), 
and, in case we do not know the exact value of xmin , the estimate x̂min that we use for 
it. It is clear how to improve in the first case: we just use more data points. Estimat-
ing xmin is a bit more involved. One possible way of computing an estimate for xmin 
is to visually inspect the log-log plot for the point where the CDF starts to look like 
a straight line. However, this method is imprecise and highly sensitive to noise [39]. 
A better method is the one proposed by Clauset et al. [40], which selects the x̂min 
that makes the distributions of the empirical data and its fitted power-law model 
as similar as possible above x̂min , that is, where the fit model is well defined. This 
similarity, or distance between two probability distributions, could be implemented 
through the Kolmogorov–Smirnov statistic (KS), whose expression, in this case, is 
the following

where S(x) is the CDF of the data for observations with a value greater than xmin , 
and P(x) is the CDF of the power-law model that best fits the data (for example, the 
MLE estimation (9)) in the region x ≥ xmin . Finally, x̂min corresponds to the value 
xmin that minimizes D(xmin).

We estimated xmin with the bootstrap method implemented by the poweRlaw R 
package [41], where several samples xmin are drawn and that minimizing D(xmin) 
is selected. We noticed in our experiments that, with high frequency, this method 
selects xmin as a point with a high value, that is, a xmin value that discards a high por-
tion of the distribution. We have taken the heuristic approach of limiting the search 
space by an upper bound given by the percentile 20 of the distribution of positive 
centrality values,1 since we have seen for many datasets this is enough to span the 
point where the log-log plot of the complementary ECDF starts to behave like a 
straight line. Other authors giving implementations of this method have also noticed 
the difficulties when estimating xmin

2. This method has a statistical consistency 
that has been proved only for some heavy-tailed models [42]. There are alternative 
methods to optimize the KS statistic that perform, for example, a grid search over 
a predefined set of exponent values for each possible xmin that, however, have been 
claimed to present many drawbacks [43].

Finally, the goodness-of-fit of the fitted power-law models is assessed by means 
of the test proposed by Clauset et al. [39]. This test produces a p-value p, computed 

(9)𝛼̂ = 1 + m

(
m∑

i=1

ln
xi

xmin

)−1

.

(10)D(xmin) = max
x≥xmin

∣ S(x) − P(x) ∣

1  This is the domain where the power-law fit can be computed.
2  The commented code from https://github.com/keflavich/plfit says: ...“The MLE for the power-law 
alpha is very easy to derive given knowledge of the lowest value at which a power law holds, but that 
point is difficult to derive and must be acquired iteratively.”
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via a Monte Carlo procedure, which estimates the probability that the KS distance 
(Eq. (10)) for any random sample is larger than the distance d of a given fit. Thus, if 
p is close to 1, the fit is acceptable since the difference between the empirical data 
and the model fit can be explained by random fluctuations; otherwise, if p is close to 
0, the model is not an appropriate fit to the data [39].

3.3 � The assumptions of QuickCent

The first assumption is the existence of a non-decreasing function g relating the 
in-degree and the centrality.3 If there exists a function g satisfying this condition, 
then the quantiles in the centrality side are equivalent to the application of g on the 
same degree quantiles [44]. With this result, the quantile proportions can be speci-
fied according to characteristics of the centrality distribution, as it is explained in 
Sect. 3.4. In practice, and even more so considering that the in-degree is a discrete 
variable while the centrality is continuous, the object g is a relation rather than a 
function. More formally, let {Ci}

n
i=1

 be the set of quantile centrality values associ-
ated to the proportions {pi}ni=1 that were used to compute the quantile degree values 
{di}

n
i=1

 (see Eq. (4)). Given the above assumption about g, we can rewrite the sets Si 
as follows:

The second assumption is that the centrality index that we want to estimate follows 
a power-law distribution. We add this assumption motivated by the pervasive pres-
ence of this distribution in many natural and human-made phenomena [17], as well 
as the argument that QuickEst would have a negative bias [16], in the sense that it 
is a negative clue (or absent attribute) that stops this heuristic. Thus, a distribution 
such as the power law where most values are small (with mostly negative clues) and 
only a few high values exist (with mostly positive clues), would provide an optimal 
context for the performance of QuickEst. This is consistent with the finding that this 
heuristic predicts well the estimation behavior by some people on this kind of data 
[45]. As we next show, the assumption of the power-law distribution will allow us to 
use some particular properties to approximate the values {Ci}

n
i=1

 used in the rewrit-
ing above, and then use them to efficiently compute the statistics {f̄i}n+1i=1

 for every set 
Si . In Sect. 4.4, we show some experiments to argue that these two assumptions of 
the heuristic are key to ensuring its competitive accuracy.

3.4 � Putting all the pieces together

Let D = (V ,A) be our input network, and recall that we are assuming that the cen-
trality that we want to estimate for D follows a power-law distribution. Let 𝛼̂ be the 
estimate of the exponent from Eq. (9), and x̂min be the estimate of the lower limit 

(11)
S1 = {v ∈ V ∣ g(degin(v)) ≤ C1}

Si = {v ∈ V ∣ Ci−1 < g(degin(v)) ≤ Ci} (2 ≤ i ≤ n)

Sn+1 = {v ∈ V ∣ Cn < g(degin(v))}

3  It is required an additional assumption—left continuity—which can be consulted at Hosseini [44].
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obtained by (10), which have been computed by considering a set of m nodes in V 
and their (real) centrality values. With all these pieces, we can compute the values 
{Ci}

n
i=1

 associated to the proportions {pi}ni=1 easily by using the equation

from which we get that

Now, in order to compute the summary statistics {f̄i}n+1i=1
 , we will use the median of 

every set Si . This median can be computed as follows. Given that we rewrote Si as 
the set of centrality values x such that Ci−1 ≤ x ≤ Ci , then the median mdi of Si must 
verify

from which we obtain that

Moreover, since the extreme points of the distribution are xmin (estimated as x̂min ) 
and ∞ , the two remaining statistics f̄1 and f̄n+1 are computed as

and

We stress that with these formulas we compute the summary statistic f̄i for each set 
Si just by knowing the values {Ci}

n
i=1

 , which are computed by using only the values 
𝛼̂ , x̂min , and the underlying vector of proportions {pi}ni=1 . We choose this last element 
as the quantile probability values that produced equidistant points on the range of 
{log(h(v)) ∣ v ∈ V , h(v) ≥ x̂min} , that is, the set of vertices where the power-law is 
well defined for the harmonic centrality. Logarithmic binning is chosen to gauge the 
tail of the power-law distribution with higher frequency. The length n of the vector 
of proportions required to construct the clues (see Eq.  (4)) was chosen after pilot 
testing on each type of distribution. See SI Section 2 for more details on the length 
of this vector. The election of this vector is a way of adapting QuickCent to distinct 
centrality distributions.

The last element we introduced in our procedure, is the use of an additional 
quantile centrality value C0 = x̂min , with the goal of spanning the centrality values 

(12)∫
Ci

x̂min

Kx−𝛼̂dx = pi

(13)Ci = x̂min ⋅ (1 − pi)
1

1−𝛼̂ .

(14)∫
Ci

mdi

Kx−𝛼̂dx =
1

2 ∫
Ci

Ci−1

Kx−𝛼̂dx

(15)mdi =

(
(Ci−1)

1−𝛼̂ + (Ci)
1−𝛼̂

2

) 1

1−𝛼̂

= f̄i (2 ≤ i ≤ n)

(16)f̄1 =

(
(C1)

1−𝛼̂ + (x̂min)
1−𝛼̂

2

) 1

1−𝛼̂

(17)f̄n+1 = 2
1

𝛼̂−1 ⋅ Cn
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h(v) < x̂min with greater accuracy. Since for this range of the vertex set the power-
law distribution is no longer valid, the representative statistic f̄0 we have used 
is simply the empirical median of the harmonic centrality in the set of nodes v 
such that degin(v) ≤ g−1(x̂min) . With this element, it turns out that, if we use a pro-
portions vector {pi}ni=1 of length n, the total number of medians {f̄i}n+1i=0

 is (n + 2) . 
In the code provided to produce the analyses of this paper [46], this element is 
optional (and activated by setting rm=True or rms=True). All the results in this 
paper were obtained with this centrality quantile and median.

Example 3  We continue revisiting Example 1. The power-law exponent 𝛼̂(1) (Eq. 9) 
that turns out from the fit to the whole set of centrality values and by fixing xmin = 1 , 
is 2.067. The set of proportions shown in Example 2 comes from evaluating the 
centrality CDF on the set of points {1, 2.506, 6.283} , which correspond to xmin and 
two points ( n = 2 ) that in logarithmic scale turn out to be equidistant to the mini-
mum and maximum of the set {log(h(v)) ∣ v ∈ V , h(v) ≥ x̂min} , the (log) centrality 
domain of the given network where the power law is valid. From these parameters 
and the expressions shown in this section, one can get the medians required by 
QuickCent to make estimates. These can be examined in Table 1, corresponding to 
the model QC100, which has a MAE (mean absolute error) over the whole digraph 
of 3.606e − 01 . A more interesting case may be computed when 𝛼̂(1) is derived from 
a random sample of the centrality distribution. For example, by taking a sample 
without replacement of size 70% one may get an exponent estimate of 𝛼̂(1) = 2.477 , 
which has a MAE of 6.948e − 01 and QuickCent estimates that can be examined in 
the model QC70 in Table 1.

This completes all the ingredients for our instantiation of QuickCent, as we 
have the values for the clues (x1

v
, x2

v
,… , xn

v
) computed from the in-degree of the 

node v, plus the values {di}ni=1 as shown in Eq. (4), and also the summary statistics 
{f̄i}

n+1
i=0

 for each set Si , which are the two pieces needed to apply the heuristic.

4 � Results

In the present section, we show the results of applying QuickCent on synthetic 
data and empirical networks, and we compare it with alternative procedures for 
centrality estimation. We first show the comparison of QuickCent with other 
methods when applied on randomly generated linear PA networks, considering 
accuracy and time measurements in Sects.  4.2 and  4.3. The experiments show 
a great accuracy of QuickCent on these networks, together with intermediate 
elapsed times. Section 4.4 reviews the output of QuickCent on null network mod-
els where its accuracy is not as good relative to other methods, with the aim of 
showing that the two assumptions of QuickCent presented in Sect. 3.3 are jointly 
required as a necessary condition for the competitive performance of this heu-
ristics. The same benchmark presented for the synthetic case was applied to the 
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empirical datasets, and the results are shown in Sect. 4.5. These last experiments 
confirm the trends observed before regarding the importance of the QuickCent 
assumptions for its performance, particularly the monotonic map from in-degree 
to harmonic centrality, and show how this insight in turn explains the superior 
performance on linear PA networks, and moreover, on empirical digraphs well 
approximated by this mechanism such as information networks. The experi-
ments to check the fulfillment of QuickCent assumptions by the different net-
works are shown in Sections 1, 3, and 4 from the Supplementary Information (SI) 
document.

4.1 � Experiments specifications

In all of our experiments, we consider harmonic centrality as the target to estimate. 
The number of nodes chosen for the synthetic networks experiments is 10, 000 and 
1000 for the null models, with the aim of accelerating the bootstrap computations 
to check the assumptions of QuickCent on each network. In the case of empirical 
networks, since the goal is to test an agnostic set of networks, the range of the 39 
network sizes is widened to a minimum of 32 and a maximum of 146005 nodes.

The norm that we employed to summarize the error committed on each node is 
the mean absolute error (MAE), and also the relative error in Sect. 4.5. It is reasona-
ble to use MAE when the summary statistic chosen for each centrality interval is the 
median, since the conditional median is the solution to the regression problem for 
the Minkowski loss with L1 norm [47]. On the other hand, the relative error, which 
is the ratio between the absolute error deviation and the actual harmonic centrality, 
is used with the goal of obtaining a metric that is valid for distinct networks, with 
possibly distinct sizes and error magnitudes. For obvious reasons, the relative error 
is only computed for those nodes where the harmonic centrality is strictly greater 
than zero.

Regarding the estimate of the lower limit of the distribution, in Sects.  4.2 and 
4.4.1, the fixed value x̂min = 1 was used to simplify the calculations, since there is a 
good fit of this power-law model to the harmonic distributions in these experiments. 
On the other hand, Sects. 4.4.2 and 4.5 where more general networks were tested, 
used the procedure explained in Sect.  3.2 to estimate the lower limit. For general 
networks, it should be more accurate to use the fitted value of x̂min than a fixed value, 
although this depends on the variability range existing on the values less than x̂min , 
which can introduce potentially large contributions to the estimation error.

Finally, all the experiments were performed on the R language [48] with igraph 
library [49] for graph manipulation, and ggplot2 library [50] to produce the plots. In 
each one of the plots displaying the error distributions, there is a boxplot showing 
the MAE distribution for each regression method. Each boxplot goes from the 25th-
percentile to the 75-th percentile, with a length known as the inter-quartile range 
(IQR). The line inside the box indicates the median and the rhombus indicates the 
mean. The whiskers start from the edge of the box and cover until the furthest point 
within 1.5 times the IQR. Any data point beyond the whisker ends is considered an 
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outlier, and it is drawn as a dot. Finally, all of the experiments were carried out in 
a Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz, with 24 cores, and 29 GB RAM.

4.2 � Experiments with synthetic networks

In this section, we compare the performance of known existing regression methods 
with QuickCent. Specifically, whether it can deliver reasonable estimates, in relation 
to alternative solutions for the same task. This is not a trivial matter, considering 
that QuickCent is designed to do little computational work of parameter estimation 
and output production, possibly with limited training data, while common alterna-
tive machine learning (ML) methods generally perform more complex computa-
tions. For a fair comparison, all other methods use only the in-degree as an explana-
tory variable. In rigor, QuickCent is able to produce the estimates only from the 
binary clues, without using the in-degree. The competing methods considered are 
linear regression (denoted by L in plots), a regression tree (T) [51, 52] and a neural 
network (NN) [53], which are representatives of some of the most known machine 
learning algorithms. We used Weka [52] and the RWeka R interface [54] to imple-
ment T and NN using default parameters.

The results of this experiment are shown in Fig. 2 with training sizes of 100% , 
25% and 6.25% , where the test set is always the entire digraph. In the figure, it can be 
seen the remarkable result that QuickCent (QC) produces the lowest MAE errors of 
all the methods, either in terms of the IQR length, the mean, median, and outliers. 
This performance is due to the fact that linear PA networks do meet the assumptions 

Fig. 2   Benchmark with other ML methods for linear PA digraph instances and training sizes 100% , 25% 
and 6.25% . The number after the dot of each method corresponds to the size of the training set. The 
number 8 after QC corresponds to the length of the proportions vector. For display purposes, the vertical 
limit of the plot has been set to 21, since with this value the points of all MAE distributions are contained 
in the plot, except those of the neural network models, which have outliers well beyond the magnitude of 
the other methods’ outliers (max(NN.100) = 252.163, max(NN.25) = 116.302, max(NN.6.25) = 87.064)
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of the QC heuristic. These networks are known as a paradigmatic case of power-law 
networks [30]. On the other hand, Fig. 3 shows the relation between in-degree and 
harmonic centrality for a random linear preferential attachment network, showing 
that the approximation of assuming that it behaves as a monotonic function is justi-
fied. In the SI Section 1 there are additional experiments to validate these assump-
tions for linear PA networks, as well as for the other regimes of the PA model.

Thus, the main takeaway is that QC, when its assumptions are fulfilled, is able 
to produce estimates at the same level as much more complex ML methods, with 
likely lower variance. This fact is consistent with the argument given by Brighton 
and Gigerenzer [55] claiming that the benefits of simple heuristics are largely due to 
their low variance. The argument relies on the decomposition of the (mean squared) 
error into bias, the difference between the average prediction over all data sets and 
the desired regression function, and variance, the extent to which the estimates for 
individual datasets vary around their average [47]. Thus, along the range of the bias-
variance trade-off of models, simple heuristics are relatively rigid models with high 
bias and low variance, avoiding the potential overfitting of more complex models.

By examining the contrast of the outliers between the distinct training sizes, 
it can be noticed that QC suffers the least impact from scarce data. In the case of 
L and NN, they share the unexpected pattern of having errors that are lower for 
the training sizes that do not span the whole network. Since there are only a few 
large values in the entire graph, when the training sample gets smaller, the sample 
values have a better linear fit, in comparison to larger samples. Therefore, a linear 
model adjusted to some small sample provides a good fit to the small-to-moderate 
centrality size nodes, which is the case for most of the nodes. This also explains 
the presence of higher errors and outliers on the smaller training sizes for the 
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Fig. 3   Scatterplot of in-degree versus harmonic centrality for a random instance of linear preferential 
attachment network. The axes are in logarithmic (base 10) scale
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linear regression. On the other hand, the behavior of the regression tree is more 
similar to that of QuickCent.

4.3 � Time measurements

The time cost is a critical feature of any approximation method because it meas-
ures the tradeoff between accuracy and cost. Elapsed time measurements were 
taken in the experiments shown in Sect.  4.2, and the results are displayed in 
Table 2. These times consider the training and inference time for each method, 
without including any centrality computation.

From the table, we can see that the elapsed time of QC is in the middle range 
of the compared methods. The linear regression has the lowest times, around two 
orders of magnitude faster than QuickCent, and one order of magnitude smaller than 
the regression tree time, and the neural network has the highest elapsed time. Note 
also that there is no significant time difference between the distinct training sizes for 
QC. This can be explained by the fact that the differences in sample sizes only affect 
the number of terms in the sum in Eq. (9) when estimating the exponent 𝛼̂ , and sum-
ming a list of values is an extremely simple and quick procedure.

These elapsed times from Table 2, as well as the results from Sect. 4.2, do not 
include the estimation of x̂min , since the fixed value of 1 was used. If we do estimate 
x̂min on the same set of 1000 linear PA digraphs of size 10000 nodes, the mean and 
standard deviation of the elapsed times are 1011 and 70 ms. For 1000 PA networks 
with exponent � = 0.5 (Eq. 8) of the same size, the mean and s.d. are 1312 and 77 
milliseconds, and for 1000 PA networks with exponent � = 1.5 of the same size, 
the mean and s.d. are 74 and 32 milliseconds. These times show that, for general 
networks where it could be necessary to estimate x̂min , these computations may add 
up a considerable computational overhead to those performed by QuickCent, which, 
however, are dependant on the type of network under consideration. More statistics 
regarding these elapsed times can be reviewed in Tables 1, 2, and 3 from Section 1 
in the SI document.

Based on these results, QuickCent is among the lowest time complexity methods 
tested, and it also may present a competitive execution time for very large networks 
given its rather invariant elapsed time, having a time execution pattern similar to 

Table 2   Mean and standard deviation of elapsed time in milliseconds over 1000 linear PA digraphs of 
size 10000 nodes, for each of the 4 machine learning methods

The number after the name of the statistic (mean or standard deviation) corresponds to the size of the 
training size expressed as a percentage of the total vertex set

Mean 6.25 S.D. 6.25 Mean 25 S.D. 25 Mean 100 S.D. 100

L 2.5 0.7 2.9 0.8 5 0.94
QC 131.2 21.2 133 29.6 127 29.35
T 32.1 11.7 32.7 8.9 38 5.80
NN 98.7 12.1 284.1 21.4 1007 57.24
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that of the regression tree. Among the computations that QuickCent performs, the 
most expensive ones correspond to the selection problem of finding the median of 
the lowest centrality values (Sect. 3.4), plus the quantile degree values (Sect. 3.1). 
The procedure used to compute the proportions vector (Sect. 3.4) also relies on solv-
ing the selection problem (of the maximum of the set of centrality values) and sort-
ing the centrality values set (to find the proportions). Even the estimation of x̂min 
relies on the selection problem of computing the maximum (Eq. 10) of a set of val-
ues. Selection and sorting may be solved in expected and worst-case linear time [56] 
on the input size, that is, linear on the network size O(∣ V ∣) . In contrast to the highly 
optimized R implementations for L, T, and NN, we considered only a naive imple-
mentation of QuickCent without, for example, architectural considerations. With 
these improvements such as using more appropriate data structures, these times 
could still be improved. We left as future work the construction of an optimized 
implementation for QuickCent.

4.4 � Networks defying QuickCent assumptions

Up to this point, we have mainly seen examples of networks where QuickCent exhib-
its quite good performance compared to competing regression methods. In order to 
give a full account of QuickCent capabilities and its ecological rationality [16], one 
should also have an idea of the networks where its accuracy deteriorates. To accom-
plish this, we will look at the two assumptions of QuickCent, namely, the power-law 
distribution of the centrality, and its monotonic map with the in-degree, to show that 
they are jointly required as a necessary condition for the competitive performance 
of the heuristic. Our approach here is to work with two null network models, each 
acting as a negation of the conjunction of the two assumptions, which provide strong 
evidence for this claim.

4.4.1 � Response to the loss of the monotonic map

Our first null model is a scale-free network built by preferential attachment, just as 
in the previous experiments, but after a degree-preserving randomization [57] of the 
initial network, which is simply a random reshuffling of arcs that keeps the in- and 
out-degree of each node constant. The aim is, on the one hand, to break the struc-
ture of degree correlations found in preferential attachment networks [58, 59], which 
may be a factor favoring a monotonic relationship between in-degree and harmonic 
centrality, and on the other hand, to maintain a power-law distribution for the har-
monic centrality by preserving the degree sequence of nodes in the network. This 
last feature does not ensure that the harmonic distribution is a power-law, since ran-
domization also affects this property. However, the experiments performed to check 
the assumptions of QuickCent on the randomized networks, shown in SI Section 3, 
confirm that these networks do satisfy them. Finally, Fig.  4 shows the impact of 
randomization on each regression method. This is an experiment where 1000 PA 
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networks (exponent 1) of size 1000 were created, and the four ML methods used in 
Sect. 4.2 were trained on each network with samples of size 30% of the total node-
set, using only the in-degree as the predictor variable for the harmonic centrality. 
The same procedure was run on each network after applying degree-preserving ran-
domization on 10000 pairs of arcs. The plot shows that the randomization has a sim-
ilar impact on the performance loss of each method, which is an expected result due 
to the fact that the only source of information used by each method, the in-degree, 
becomes less reliable due to the weaker association with harmonic centrality thanks 
to the arc randomization. Since QuickCent was the most accurate of the methods 
tested on the initial PA networks, it appears to be also one of the most affected meth-
ods by randomization.

Fig. 4   Effect of randomization on different ML methods using 30% of the training size. Each boxplot 
group is labeled with the name of the ML method, a dot, and the type of network on which the estimates 
are made (‘PL’ for the initial PA network, ‘RPL’ for the network after randomization). QC8 corresponds 
to QuickCent with a proportion vector of length 8, and analogously for QC1. For display purposes, the 
vertical limit of the plot has been set to 18, since with this value the points of all MAE distributions are 
contained in the plot, except those of the neural network models, which have outliers beyond the magni-
tude of the other methods’ outliers (max(NN.PL)=33.177, max(NN.RPL)= 39.718)

Table 3   General description 
of the two empirical control 
networks

The fields in the table are the dataset name, the number of nodes 
with positive in-degree (N), the mean in-degree of nodes with posi-
tive in-degree (  ̄degin ), the Spearman correlation between the positive 
values of in-degree and harmonic centrality (Corr), the meaning of 
the arcs, and the original reference. The name corresponds to the 
Internal namefield in the KONECT database. To access the site to 
download the dataset, append the internal name to the link http://
konect.cc/networks/

Name N ̄degin Corr Arc meaning Refs.

moreno_blogs 990 19.21 0.872 Blog hyperlink [64]
subelj_jung-j 2208 62.81 0.808 Software dependency [65]
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4.4.2 � Response to the loss of the power‑law distribution of centrality

Our second null model is the directed Erdös-Rényi graph model [60–62], and is 
chosen with the aim of gauging the impact of losing the power-law distribution of 
the centrality while maintaining the monotonic map from in-degree to centrality. 
This model is known to have a Poisson degree distribution [61], a behavior very 
different from a heavy-tailed distribution. According to our simulations shown in 
SI Section 4, this model turns out to be ideal for our purposes, since we have cho-
sen connection probabilities that ensure a unimodal distribution for centrality and 
a strong correlation with in-degree, i.e. with a mean in-degree greater than 1 [62]. 
To get a fair control on the performance of QuickCent, we have taken two empirical 
digraphs that satisfy the given condition of the mean in-degree, with node sets of 
size near 1000, just to accelerate the bootstrap p-value computations. The networks 
are extracted from the KONECT database [63],4 and their meta-data is shown in 

Fig. 5   Effect of centrality distri-
bution on different ML methods 
using 30 % of training size. Each 
boxplot group is labeled with 
the name of the ML method, a 
dot, and the type of network on 
which the estimates are made 
(‘mb’ for moreno_blogs, ‘sj’ 
for subelj_jung-j, ‘ERmb’ for 
the ER digraph created with the 
parameters of moreno_blogs, 
and analogously for ‘ERsj’). The 
number after ‘QC’ is the length 
of the vector of proportions used 
by that method, correspond-
ing to the best accuracy for the 
respective network. For display 
reasons, the vertical limit of the 
control networks plot has been 
set at 184, since with this value 
the points of all MAE distribu-
tions are contained in the plot, 
except that of NN.sj which has a 
maximum value of 999.578

4  http://konect.cc/
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Table 3. The fields N and ̄degin given in this table, are used to determine the network 
size and the connection probability used to instantiate the respective ER digraphs 
from the identity ̄degin = p ⋅ (N − 1).

Finally, in Fig. 5 we can see the results of an experiment analogous to the one 
with the first null model, that is, there are 1000 iterations where the same four 
ML methods were trained on each network, two ER graphs with the two connec-
tion probabilities and sizes given by the two empirical/control networks, with ran-
dom samples of size 30% of the total node-set, using only the in-degree. Since the 
unimodal distribution of ER digraphs is very different from a power-law, in this 
experiment we have taken the approach of using the parameter x̂min estimated by the 
method reviewed in Sect. 3.2, instead of a fixed lower limit as in the previous experi-
ments. Now, by comparing the two plots in Fig. 5, one can observe a noticeable dif-
ference in the behavior of QuickCent in the two cases. While QuickCent achieves an 
average accuracy relative to other regression methods on the control networks with 
centrality distributions that are more or less close to heavy-tailed, on ER digraphs 
with similar characteristics to the controls, QuickCent consistently performs worse 
than other methods. The performance of QuickCent in these plots corresponds to the 
best possible for each network as a function of the length of the proportions vector, 
denoted by the number after ‘QC’. These results reveal the critical importance of the 
centrality distribution of the dataset for the proper functioning of QuickCent. On the 
other hand, all of the methods exhibit better performance on the ER digraphs than 
on the corresponding control network, probably due to less heterogeneity in the val-
ues to be predicted on the former.

4.5 � Experiments with empirical networks

In this section, we present the performance of QuickCent on some real network 
datasets, either by itself or in comparison to other machine learning methods. The 
aim is to assess these heuristics in more diverse contexts, as well as to study some of 
the patterns reviewed in previous sections.

We selected 39 datasets, all of them extracted from the KONECT network data-
base [63],5 a public online database of more than one thousand network datasets. 
The criteria for selecting the networks were to select 2–3 networks of distinct mag-
nitude orders of size, from every network category of the database where the net-
works are unipartite rather than bipartite, with the goal of using a simple frame-
work that spans all the networks reviewed in this work. Each category corresponds 
to networks coming from distinct fields, and hence, representing different systems. 
General descriptors of these datasets, as well as several statistics we have computed, 
are displayed in Table 4. There, we see that we have a diverse set of networks, with 
distinct edge meanings and sizes ranging from 32 to 146005 nodes.

In the following subsections, we present the most important patterns we have 
found by studying the correlations among some columns of this table, together with 

5  http://konect.cc/
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their discussion. Section 4.5.1 shows how the QuickCent assumptions impact differ-
ently on the central tendency and variability of relative errors of the heuristic, and 
discusses how preferential attachment may leverage this. Section 4.5.2 studies the 
factors affecting the performance of QuickCent relative to other methods, showing 
suggestive evidence regarding the key role of the monotonic map of in-degree and 
harmonic centrality for general networks. Finally, Sect. 4.5.3 shows suggestive evi-
dence that information networks such as citations or the internet would provide an 
optimal context for QuickCent, and how this is related to the preferential attachment 
mechanism.

4.5.1 � Ecological rationality of QuickCent

The merit of QuickCent is analyzed by studying its relative errors, both the mean 
of relative errors within a network (mRE), and their standard deviation (sdRE). The 
first index reflects the general volume of errors in relation to the actual centrality 
values, while the second is their uniformity across nodes in the network. We have 
found that mRE has a Spearman correlation of −0.397 with p-value 0.013 to CHD, 
which in turn is the Spearman correlation of the (log) harmonic centrality to the 
(log) degree. That is, the better the monotonic relationship between degree and har-
monic, the smaller the mean of relative errors, which may be interpreted as the role 
of the first assumption of QuickCent. On the other hand, sdRE presents a Spear-
man correlation of −0.355 with p-value 0.026 to GOF, the goodness-of-fit p-value 
of the power-law fit. This means that, the better the power-law fit, or as explained 
in Sect. 3.2, the greater GOF is, the more uniform the relative error is within a net-
work. As seen in Sect. 4.2 from the performance of linear models, it is not trivial to 
get a uniform performance across the entire spectrum of a power-law, and it makes 
perfect sense that this is achievable by models with a good fit. The significance of 
these correlations is important, and the fact that they are obtained on an arbitrary 
selection of empirical networks, speaks that the adequacy or the ecological rational-
ity of QuickCent is a structural feature of it.

These results may open the discussion on why QuickCent has the best perfor-
mance on preferential attachment networks (Sect. 4.2). The simulations we display 
in SI Section 1 suggest a clear scale-free distribution of the harmonic centrality on 
these networks, which may be considered another result of this work. We do not 
know of any result describing the behavior of harmonic centrality on digraphs as, for 
example, those known for PageRank and the in-degree [66]. However, the previous 
correlations suggest that the relationship between in-degree and harmonic may have 
a stronger effect on the performance. There is converging evidence showing that 
preferential attachment, which in its usual formulation requires global information 
about the current degree distribution, can be the outcome of link-creation processes 
guided by the local network structure, such as a random walk adding new links to 
neighbors of connected nodes, or in simple words, meeting friends of friends [32, 
67]. The reason is that the mechanism of choosing a neighbor of a connected node 
makes those higher-degree nodes more likely to be chosen by the random walk, 
which in turn makes more paths lead to them. That is, the local density could indeed 
reflect the access to larger parts of the network. Of course, preferential attachment 
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is not the only mechanism capable of producing scale-free networks [68–70], and 
the distinct generative mechanisms may engender or not, a stronger relationship 
between density and size in the resulting network. This insight may be the reason 
why the monotonic relationship between harmonic centrality and in-degree is more 
apparent in the preferential attachment model than in some empirical networks.

4.5.2 � Competitiveness of QuickCent

Up to this point, we have studied the performance of QuickCent by itself. In order 
to conclude its performance on empirical networks in comparison to other machine 
learning methods, we have proposed to compute the percentile of QuickCent MAE 
median, with respect to the distribution of errors of all the 4 methods shown in 
Sect. 4.2. This distribution works as a rough approximation of the error any (ran-
domly sampled) learning method would make on this task of approximating the har-
monic centrality by using knowledge of the in-degree. Thus, a low percentile of the 
QuickCent MAE median signals a competitive performance of these heuristics in 
relation to other methods, and vice versa.

We have obtained that the Spearman correlation of percMED to GHD is −0.221 
with a p-value of 0.176, while its correlation to GOF is 0.015 with a p-value of 
0.929. From these values, one can see that the key variable giving a competitive 
performance to QuickCent is the monotonic map from in-degree to harmonic. The 
differential influence of GHD versus GOF may be an expression of the fact that, 
since power-law distributions may suit several possible distributions, the QuickCent 
assumption of the monotonic map imposes a stronger requirement on the input data-
sets. Finally, the fact that the structure of QuickCent is reflected in its performance 
relative to other methods, may be an expression of the no-free-lunch theorem, which 
states on one of its formulations that at root, how well any algorithm performs is 
determined by how well it is aligned with the distribution that governs the problems 
on which that algorithm is run, rather than the operation of the algorithm itself [71].

4.5.3 � Ideal networks for QuickCent

The insight described before about the monotonic map between the in-degree and 
the harmonic centrality on networks generated by preferential attachment (PA), as 
well as the importance of this assumption for the QuickCent advantage, nurtures the 
conjecture that QuickCent may be best suited to empirical networks better described 
by PA growth. Such networks are, for example, information networks such as the 
Internet or citations, more than pure social networks such as friendships [31, 36, 
67]. There is evidence that, if one assumes that some nodes to form links are found 
uniformly at random, while others are found by searching locally through the current 
structure of the network, it turns out that the more pure social networks appear to be 
governed largely by random meetings, while others like the World Wide Web and 
citation networks involve much more network-based link formation [67].

We have performed a basic test of this hypothesis by building an indicator varia-
ble that is equal to 1 if a network of our dataset is an information network and 0 oth-
erwise. It is not straightforward to define whether a given network is informational 
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or not. We have taken the simple approach of discriminating the networks based 
on the network categories supplied by the very KONECT database. Thus, we 
consider information networks those belonging to the categories Software (sub-
elj_jdk, subelj_jung-j, linux), Hyperlink (wikipedia_link_gan, wikipedia_link_mg, 
dimacs10-polblogs), Computer (p2p-Gnutella05, p2p-Gnutella31, topology), Cita-
tion (cit-HepPh, dblp-cite, subelj_cora) and Online contact (elec, wikisigned-k2, 
sx-mathoverflow). With these definitions, information networks exhibit a mean of 
percMED of 0.535, and 0.651 for non-information networks. The Kruskal–Wallis 
p-value, of the null hypothesis that the location parameters of the distribution are the 
same in each group, is 0.094. Better or worse p-values may be obtained by playing 
with categories that are in the limit of being considered informational. For exam-
ple, if communication networks (facebook-wosn-wall, wiki_talk_gl, wiki_talk_sv) 
are also informational, now the same results are 0.544, 0.661 and 0.081. While this 
hypothesis would require more datasets to be confirmed, these results deliver sug-
gestive evidence that this conjecture is correct.

Finally, we have also examined if there are any QuickCent performance differ-
ences between directed and non-directed networks. If we create an indicator vector 
whose ith−coordinate is equal to 1 iff the respective ith-network is non-directed, we 
get that the mRE mean is 8251.384 for non-directed networks, and 6622.454 for 
directed networks, with a Kruskal–Wallis p-value of 0.135. This suggests an over-
all better performance of QuickCent on directed networks, which is the framework 
adopted in this work, that is, using the in-degree, in contrast to our previous related 
work where the degree was used [18]. This feature, together with changes in some 
technical details of the heuristics (see Sect. 3.4), may explain the better performance 
on linear PA networks obtained in the current work, in comparison to the previous 
work. The indicator vector we defined previously also presents a Spearman corre-
lation to CHD of −0.248 with a p-value of 0.128, pointing to the pattern that the 
monotonic map from degree to harmonic may be weaker in non-directed networks, 
in relation to directed ones. However, in this dataset of 39 networks, the number of 
directed and non-directed networks are not balanced, and these conclusions should 
be taken with care.

5 � Future work

Applying QuickCent to other types of networks, such as bipartite, or centrality 
measures is not a direct task, since, depending on the type of network considered, 
degree and centrality may be strongly or weakly related. We plan to address these 
extensions in future work, where research on possible improvements achievable by 
tuning the vector of proportions may be addressed. One possible line of research is 
to formulate the problem of finding the proportion quantiles as that of obtaining an 
optimal quantizer [72]. There is some resemblance between our problem of finding 
the quantiles minimizing the error with respect to some distribution and that of find-
ing the optimal thresholds of a piecewise constant function minimizing the distor-
tion error of reproducing a continuous signal by a discrete set of points. On the other 
hand, future work should deal with extensions and flexibility of the clues employed, 
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trying other clues or new ways to integrate different clues. The idea raised in our 
work of using a local density measure to approximate expensive size-based central-
ity indices could be generalized to be valid on more general networks, for example, 
by using a more general notion of local density than the in-degree, such as a modi-
fied degree measure to ensure minimum overlapping between spreading regions 
[33], or spreading indices based on the degree and neighbors’ degree [34]. Some of 
these ideas may add more size-based information to the local density measures.

In the literature, there is previous work specifically tailored to centrality estima-
tion using ML methods, but for other centrality indices beyond harmonic centrality. 
In particular Brandes and Pich study specific estimations for closeness and between-
ness centrality  [26]. It would be interesting to compare our method with the one 
proposed by Brandes and Pich [26], but this would amount to changing and adapting 
their method to harmonic centrality. This kind of approach may benefit from exploit-
ing the kind of network patterns that QuickCent leverages. It also would be interest-
ing to study different centrality indices in a QuickCent-like method, according to 
their axiomatic characterization of centrality [12], that is, taking into account their 
differential sensitivity to local density or size, and how this impacts the estimation 
performance against the network type where the approximation is applied. We leave 
this adaptation and further comparison as future work.

6 � Conclusion

The results of this paper are a proof of concept to illustrate the potential of using 
methods based on very simple heuristics to estimate some network centrality meas-
ures. Our approach shares similarities with prior methods that rank nodes by utiliz-
ing statistical regularities found in scale-free networks, but differs in that it calcu-
lates the actual centrality values of nodes, rather than their rankings. Our results 
show that QuickCent is comparable in accuracy to the best-competing methods 
tested, with the lowest error variance, even when trained on a small proportion of 
the dataset, and all of this at intermediate time cost relative to the other methods 
using a naive implementation. We give some insight into how QuickCent exploits 
the fact that in some networks, such as those generated by preferential attachment, 
local density measures, such as the in-degree, can be a good proxy for the size of the 
network region to which a node has access, opening up the possibility of approxi-
mating expensive indices based on size such as the harmonic centrality. This same 
fact may explain some evidence we provide that QuickCent would have superior 
performance on empirical information networks, such as citations or the internet.

7 � Supplementary information

This article has an accompanying supplementary document, which includes the 
experiments for checking the fulfillment of assumptions of the heuristics by the dis-
tinct networks shown in the Results section. It also shows the results of experiments 
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on the robustness of QuickCent on the distinct regimes of the Preferential Attach-
ment network model.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s00607-​024-​01303-z.
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