
Vol.:(0123456789)

Computing (2024) 106:2585–2612
https://doi.org/10.1007/s00607-024-01294-x

1 3

REGULAR PAPER

Multi‑label learning for identifying co‑occurring class code
smells

Mouna Hadj‑Kacem1 · Nadia Bouassida1

Received: 4 December 2023 / Accepted: 8 May 2024 / Published online: 27 May 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024

Abstract
Code smell identification is crucial in software maintenance. The existing literature
mostly focuses on single code smell identification. However, in practice, a software
artefact typically exhibits multiple code smells simultaneously where their dif-
fuseness has been assessed, suggesting that 59% of smelly classes are affected by
more than one smell. So to meet this complexity found in real-world projects, we
propose a multi-label learning-based approach to identify eight code smells at the
class-level, i.e. the most sever software artefacts that need to be prioritized in the
refactoring process. In our experiments, we have used 12 algorithms from different
multi-label learning methods across 30 open-source Java projects, where significant
findings have been presented. We have explored co-occurrences between class code
smells and examined the impact of correlations on prediction results. Additionally,
we assess multi-label learning methods to compare data adaptation versus algorithm
adaptation. Our findings highlight the effectiveness of the Ensemble of Classifier
Chains and Binary Relevance in achieving high-performance results.

Keywords  Multi-label learning · Class code smells · Problem transformation ·
Algorithm adaptation

Mathematics Subject Classification  68T05 · 68Q32 · 68N01 · 68T10 · 62H30

1  Introduction

Identifying code smells is a fundamental software maintenance activity. Although
code smells are characterized as suboptimal design choices [1] that do not affect the
functionality of the software, they still pose threats in both short and long terms.

 *	 Mouna Hadj‑Kacem
	 mouna.hadjkacem@gmail.com

	 Nadia Bouassida
	 nadia.bouassida@isimsf.rnu.tn

1	 Mir@cl Laboratory, Sfax University, Sfax, Tunisia

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-024-01294-x&domain=pdf

2586	 M. Hadj‑Kacem, N. Bouassida

1 3

Numerous studies have delved into the effects of the presence of code smells in soft-
ware and have highlighted their harmful impact on software quality as a primary
consequence [2–4]. Various dimensions of software quality are affected, encom-
passing maintainability, correctness and program comprehension [5–7]. Addition-
ally, their influence extends to proneness of both faults and changes [8] with a nota-
ble association with the emergence of technical debt. A technical debt represents a
situation where long-term quality of the code is sacrificed in favour of prioritizing
short-term objectives [9]. This in turn results in the accumulation of a growing bur-
den of deferred costs that manifest in the future.

Considering the significant threats posed by code smells, various aspects of
their existence within the software have been examined. These aspects include the
origins of their introduction [10], their relative severity [11, 12], the identification
methods [13–17] and the way to mitigate them through refactoring [18]. Among
these aspects, the identification of code smells has gained substantial interest due
to its causal relationship with the other mentioned aspects. According to Fontana
et al. [15], previous research in code smell identification can be categorized into
two primary groups. The first category comprises rule-based approaches which
rely on metrics and require domain experts. The second category involves machine
learning-based approaches that are based on learning from training data and have an
advantage in reducing cognitive load as required in the first category.

In the literature, most of the approaches that fall in the machine learning-based
category are designed to identify just one type of code smell within a single soft-
ware artefact, such as a class or a method. However, in practice, a software artefact
typically exhibits multiple code smells simultaneously. In this work [19], the authors
have quantified the diffuseness of code smells in projects and found that 59% of
smelly classes are affected by more than one smell. As a result, the fact of identify-
ing a single code smell per artefact cannot meet the complexities found in real-world
projects. This highlights the importance of addressing the issue from a different per-
spective and emphasizes the need of adopting approaches that can simultaneously
identify multiple code smells within a single artefact.

One of the important approaches for framing this problem is through the utiliza-
tion of multi-label learning [20]. Multi-label learning is a machine learning method
that has the capability to assign multiple labels to a single instance simultane-
ously. Despite its potential, there has been only a limited number of studies which
employed multi-label learning for code smell identification. In the limited number of
studies that have used this approach, the focus has typically been on detecting few
types of code smells, either at the class or method level. However, the field of code
smells is more expansive and encompasses a comprehensive spectrum of distinct
types spanning various levels of granularity, i.e. the Fowler’s catalogue is composed
of 22 types [1]. Therefore, this variety coupled with the high diffuseness of code
smells within projects have accentuated the requirement to address both their identi-
fication and the co-occurrence among them.

In this paper, we target 8 types of code smells that belong to class-level by means
of different multi-label methods: problem transformation, ensemble and algorithm
adaptation methods. Specifically, for the problem transformation method, we use
Binary Relevance, Classifier Chain, Label PowerSet and HOMER. For ensemble

2587

1 3

Multi‑label learning for identifying co‑occurring class…

method, we apply Ensemble of Classifier Chains, Ensemble of Pruned Sets, RAkEL
and AdaBoost MH. Lastly, it’s worth noting that the algorithm adaptation, unlike the
first two methods, has not been employed thus far in the detection of code smells.
For this method, we select BPMLL, BRkNN, IBLR-ML and MLkNN. Our experi-
ments were carried out on 30 open-source Java projects that belong to different sizes
and domains.

The main contributions of this work are as follows:

•	 Explore the co-occurrence of code smells at the class-level to show which code
smells frequently appear together.

•	 Investigate the importance of correlations between different code smells and how
they influence prediction outcomes.

•	 Evaluate and compare different multi-label learning methods to determine the
most efficient approach for identifying code smell, allowing us to discern whether
the results are influenced by the data transformation or the method adaptation.

The reminder of this paper is organized as follows. Section 2 presents the related
work of learning-based approaches. Section 3 outlines the methodology applied in
this study. Section 4 describes the construction of the dataset, whose type is a multi-
label dataset. The experimental findings and discussion are presented in Sect. 5. Sec-
tion 6 addresses potential threats to the validity of our findings. Finally, in Sect. 7,
we conclude the paper.

2 � Related work

Based on the number of identified code smells, machine learning-based methods can
be classified into two categories. The first category involves the detection of one
code smell within an artefact at a time, referred to as single code smell identification
(SCSI). The second category involves identifying multiple code smells simultane-
ously within an artefact, known as multi code smell identification (MCSI). Table 1
lists the studies falling in these categories.

The SCSI category has a larger number of works compared to the MCSI
category. Kreimer [21] introduced a decision tree-based method for detecting
Long Method and Large Class. The method was evaluated on the IYC system
and the WEKA package. Khomh et al. [22, 23] extended the DECOR (DEtec-
tion & CORrection) approach [13] to handle uncertainty in the detection process.
They transformed rule card specifications into BBNs (Bayesian Belief Networks),
introducing BDTEX (Bayesian Detection Expert) based on the GQM (Goal Ques-
tion Metric) technique. This allowed systematic BBN construction without rely-
ing on rule cards. GanttProject and Xerces were used to evaluate the detection of
Blob, Functional Decomposition and Spaghetti Code. Hassaine et al. [24] applied
artificial immune system algorithms to GanttProject and Xerces for code smell
detection by drawing inspiration from the human immune system. Oliveto et al.
[25] proposed ABS (Anti-pattern identification using B-Splines), a method using

2588	 M. Hadj‑Kacem, N. Bouassida

1 3

Ta
bl

e 
1  

M
ac

hi
ne

 le
ar

ni
ng

-b
as

ed
 d

et
ec

tio
n

ap
pr

oa
ch

es

∗

 J
48

 (w
ith

 p
ru

ne
d,

 u
np

ru
ne

d
an

d
re

du
ce

d
er

ro
r p

ru
ni

ng
),

JR
ip

, R
an

do
m

 F
or

es
t,

N
aï

ve
 B

ay
es

, S
M

O
 (w

ith
 R

ad
ia

l B
as

is
 F

un
ct

io
n

an
d

Po
ly

no
m

ia
l k

er
ne

ls
) a

nd
 L

ib
SV

M

(w
ith

 th
e

tw
o

al
go

rit
hm

s C
-S

V
C

 a
nd

 �-
SV

C
 in

 c
om

bi
na

tio
n

w
ith

 L
in

ea
r,

Po
ly

no
m

ia
l,

R
B

F
an

d
Si

gm
oi

d
ke

rn
el

s)

W
or

ks
C

at
eg

or
y

A
lg

or
ith

m
s

C
od

e
sm

el
ls

SC
SI

M
C

SI

[2
1]

x
D

ec
is

io
n

Tr
ee

C
la

ss
-le

ve
l:

La
rg

e
C

la
ss

M
et

ho
d-

le
ve

l:
Lo

ng
 M

et
ho

d
[2

2,
 2

3]
x

B
ay

es
ia

n
B

el
ie

f N
et

w
or

ks
 (B

B
N

s)
 +

 G
oa

l Q
ue

sti
on

 M
et

ric
 (G

Q
M

)
C

la
ss

-le
ve

l:
B

lo
b,

 F
un

ct
io

na
l D

ec
om

po
si

tio
n,

 S
pa

gh
et

ti
C

od
e

[2
4]

x
A

rti
fic

ia
l I

m
m

un
e

Sy
ste

m
 A

lg
or

ith
m

C
la

ss
-le

ve
l:

B
lo

b,
 F

un
ct

io
na

l D
ec

om
po

si
tio

n,
 S

pa
gh

et
ti

C
od

e
[2

5]
x

B
-S

pl
in

es
C

la
ss

-le
ve

l:
B

lo
b

[2
6,

 2
7]

x
Su

pp
or

t V
ec

to
r M

ac
hi

ne
s (

SV
M

)
C

la
ss

-le
ve

l:
B

lo
b,

 F
un

ct
io

na
l D

ec
om

po
si

tio
n,

 S
pa

gh
et

ti
C

od
e,

 S
w

is
s

A
rm

y
K

ni
fe

[1
5]

x
16

 A
lg

or
ith

m
s∗

C
la

ss
-le

ve
l:

G
od

 C
la

ss
, D

at
a

C
la

ss
M

et
ho

d-
le

ve
l:

Lo
ng

 M
et

ho
d,

 F
ea

tu
re

 E
nv

y
[3

1]
x

Pr
ob

le
m

 T
ra

ns
fo

rm
at

io
n

(B
in

ar
y

Re
le

va
nc

e,
 C

la
ss

ifi
er

 C
ha

in
s)

 a
nd

En

se
m

bl
e

(B
ag

gi
ng

M
L)

C
la

ss
-le

ve
l:

G
od

 C
la

ss
 a

nd
 D

at
a

C
la

ss
M

et
ho

d-
le

ve
l:

Lo
ng

 M
et

ho
d

an
d

Fe
at

ur
e

En
vy

[2
9]

x
M

ul
ti-

La
ye

re
d

Pe
rc

ep
tro

n
C

la
ss

-le
ve

l:
G

od
 C

la
ss

 M
et

ho
d-

le
ve

l:
Fe

at
ur

e
En

vy
[3

0]
x

Pr
ob

le
m

 T
ra

ns
fo

rm
at

io
n

(B
in

ar
y

Re
le

va
nc

e,
 C

la
ss

ifi
er

 C
ha

in
s,

La
be

l
C

om
bi

na
tio

n)
M

et
ho

d-
le

ve
l:

Lo
ng

 M
et

ho
d

an
d

Fe
at

ur
e

En
vy

[3
3]

x
H

M
M

L:
 H

yb
rid

 M
od

el
 w

ith
 M

ul
ti-

Le
ve

l c
od

e
re

pr
es

en
ta

tio
n

M
et

ho
d-

le
ve

l:
Lo

ng
 M

et
ho

d,
 L

on
g

Pa
ra

m
et

er
s L

ist
, C

om
pl

ex
 M

et
ho

d,

C
om

pl
ex

 C
on

di
tio

na
l,

M
ag

ic
 N

um
be

r,
Lo

ng
 Id

en
tifi

er
, L

on
g

St
at

e-
m

en
t,

M
is

si
ng

 D
ef

au
lt,

 E
m

pt
y

C
at

ch
 C

la
us

e
[2

8]
x

N
ai

ve
 B

ay
es

, K
N

N
, M

ul
til

ay
er

 P
er

ce
pt

ro
n,

 D
ec

is
io

n
Tr

ee
, L

og
ist

ic

Re
gr

es
si

on
, R

an
do

m
 F

or
es

t
C

la
ss

-le
ve

l:
G

od
 C

la
ss

, D
at

a
C

la
ss

M
et

ho
d-

le
ve

l:
Lo

ng
 M

et
ho

d,
 F

ea
tu

re
 E

nv
y

2589

1 3

Multi‑label learning for identifying co‑occurring class…

interpolation curves and metrics to identify anti-pattern signatures for detecting
Blob in Java systems. Maiga et al. [26, 27] introduced a support vector machine-
based approach and later expanded it by proposing SMURF where practitioner
feedbacks are incorporated. Both approaches were validated on ArgoUML,
Azureus and Xerces.

Fontana et al. [15] employed 16 machine learning algorithms for detecting four
code smells. Notably, the authors found that J48 and Random Forest delivered the
highest performance, while support vector machines exhibited lower performance.
The experiments were conducted on four datasets extracted from a large repository
of 74 software systems. Subsequently, various works widely adopted the four data-
sets from the latter study. For instance, in this study [28], the authors have utilized
the mentioned datasets where they have applied six machine learning models along
with two feature selection techniques, which are Chi-squared and Wrapper-based
methods. The subject code smells belong to class and method levels.

Barbez et al. [29] have introduced SMAD (SMart Aggregation of Anti-patterns
Detectors), a method that unifies three detection tools into a single tool using a
boosting ensemble model. The outcomes produced by these tools are aggregated
into a single vector, which is then employed as input for a Multi-Layered Perceptron.

Comparing to the SCSI category, the MCSI category has significantly fewer
research studies. Guggulothu et al. [30] have explored code smell detection through
a multi-label classification approach. They have applied this approach to determine
whether an element at the method level exhibited Long Method and Feature Envy.
To address this, they have employed three techniques, namely Binary Relevance,
Classifier Chains and Label Combination derived from the problem transforma-
tion. The authors combined these techniques with different basic classifiers and have
adopted two datasets proposed by Fontana et al. [15] for the experiments. Similarly,
Kiyak et al. [31] have adopted four datasets put forth by this work [15]. The authors
have employed problem transformation and ensemble techniques. In their experi-
ments, these techniques were tested in conjunction with different basic classifiers,
including Decision Tree, Random Forest, Naive Bayes, Support Vector Machine and
Neural Network. Besides the mentioned machine learning-based approaches, the
multi-label problem has been framed as a search-based approach through a bi-level
optimization problem in this work [32]. In another work, the problem has been car-
ried out using deep learning, where the authors have introduced a Hybrid Model
with Multi-Level code representation (HMML) [33]. This model integrates Graph
Convolutional Neural Networks and Bi-directional Long Short-Term Memory Net-
works with an Attention Mechanism to perform multi-label classification of method-
level code smells.

Unlike previous works in the MCSI category that identify a limited number of
code smells within a code fragment, our research tackles a more extensive set, spe-
cifically eight code smells at the class-level. To accomplish this, we created a large
multi-label dataset derived from 30 open-source projects. Concerning the dataset
balance, we applied a sampling technique that is tailored for multi-label datasets.
Furthermore, we selected various techniques from different multi-label methods,
particularly using algorithm adaptation techniques. Our experiments aim to explore
not only code smell identification but also the relationships between them. We also

2590	 M. Hadj‑Kacem, N. Bouassida

1 3

assess the impact of the choice of techniques by inspecting whether the results
depend more on data transformation or method adaptation.

3 � Methodology

In this section, we will start with formulating our research questions. Based on these
inquiries, we will develop our proposed methodology, which will be presented in
more detail in the following sub-sections.

Three research questions RQs are addressed in this paper:

•	 RQ1: Which code smells frequently co-occur in class-level artefacts?
•	 RQ2: What is the role of correlation in influencing the outcomes of code smell

identification?
•	 RQ3: Does the selection of a multi-label learning method significantly impact

code smell identification results, with a focus on whether this influence is attrib-
uted more to data transformation or method adaptation?

3.1 � Overview of the proposed approach

As illustrated in Fig. 1, our process starts with data retrieval from public reposi-
tories. The selected projects undergo statistical analysis and subsequent annotation
for the identification of specific code smells. This procedure results in dataset crea-
tion. However, since our issue is framed as a multi-label learning problem, the data-
set takes the form of a multi-label dataset (see Sect. 4). Following that, we conduct
quantitative analysis using a variety of multi-label learning techniques to provide
answers to the addressed research questions.

3.2 � Statistical analysis

Statistical code analysis involves the extraction of software metrics. These metrics
are crucial to capture diverse properties of the source code and serve as quantitative
measures of different software aspects. Among the wide range of metrics available
in the literature, we primarily focus on the Chidamber and Kemerer (CK) metrics
[34]. The CK metrics are a set of well-established software measures that provide a
thorough analysis of the codebase. We opted for this metric suite based on the find-
ings in the systematic literature review of Azeem et al. [35], where it was identified
as the most commonly used metric suite for code smell detection. Including but not
limited to, the CK metrics encompass various aspects such as coupling, cohesion
and complexity.

In our research, the CK metrics are used as features in our dataset. As a tool
to compute these metrics, we employ the CK tool [36], an open-source tool.1

1  https://​github.​com/​mauri​cioan​iche/​ck

https://github.com/mauricioaniche/ck

2591

1 3

Multi‑label learning for identifying co‑occurring class…

CK Tool

Statistical Analysis

Labelling

Annotation of Code Smells

Generation of Multi-Label Dataset

Public Repositories

Data Collection

Quantitative Analysis

Metrics

M1 M2 Mn

Projects

Classes

Code Smells

CDSBCpC SG

Transformation to MLD Application of MLSMOTE

Multi-Label Learning
Methods

Problem-Transformation
Method Ensemble Method Algorithm Adaptation

 Method

- Binary Relevance

- Classifier Chain

- Label PowerSet

- HOMER

- Ensemble of CCs

- Ensemble of Pruned Sets

- RAkEL

- AdaBoost MH

- BPMLL

- BRkNN

- IBLR-ML

- MLkNN

Co-Occurrences of Class Code Smells

Fig. 1   Overview of the proposed approach

2592	 M. Hadj‑Kacem, N. Bouassida

1 3

Ta
bl

e 
2  

C
la

ss
-le

ve
l C

K
 m

et
ric

s
A

bb
re

vi
at

io
n

M
et

ric
D

es
cr

ip
tio

n

ab
str

ac
tM

et
ho

ds
Q

ty
N

um
be

r o
f p

ub
lic

 a
bs

tra
ct

 m
et

ho
ds

C
ou

nt
s t

he
 n

um
be

r o
f p

ub
lic

 a
bs

tra
ct

 m
et

ho
ds

an
on

ym
ou

sC
la

ss
es

Q
ty

Q
ua

nt
ity

 o
f a

no
ny

m
ou

s c
la

ss
es

C
ou

nt
s t

he
 n

um
be

r o
f a

no
ny

m
ou

s c
la

ss
es

as
si

gn
m

en
ts

Q
ty

Q
ua

nt
ity

 o
f a

ss
ig

nm
en

ts
C

ou
nt

 th
e

nu
m

be
r o

f a
ss

ig
nm

en
ts

C
BO

C
ou

pl
in

g
be

tw
ee

n
ob

je
ct

s
C

ou
nt

s t
he

 n
um

be
r o

f d
ep

en
de

nc
ie

s a
 c

la
ss

 h
as

cb
oM

od
ifi

ed
C

ou
pl

in
g

be
tw

ee
n

ob
je

ct
s

C
ou

nt
s t

he
 n

um
be

r o
f d

ep
en

de
nc

ie
s a

 c
la

ss
 h

as
co

m
pa

ris
on

sQ
ty

Q
ua

nt
ity

 o
f c

om
pa

ris
on

s
C

ou
nt

s n
um

be
r o

f c
om

pa
ris

on
s

de
fa

ul
tF

ie
ld

sQ
ty

N
um

be
r o

f d
ef

au
lt

fie
ld

s
C

ou
nt

s t
he

 n
um

be
r o

f p
ub

lic
 d

ef
au

lt
fie

ld
s

de
fa

ul
tM

et
ho

ds
Q

ty
N

um
be

r o
f p

ub
lic

 d
ef

au
lt

m
et

ho
ds

C
ou

nt
s t

he
 n

um
be

r o
f p

ub
lic

 d
ef

au
lt

m
et

ho
ds

D
IT

D
ep

th
 in

he
rit

an
ce

 tr
ee

C
ou

nt
s t

he
 n

um
be

r o
f f

at
he

rs
 a

 c
la

ss
 h

as
FA

N
-I

N
–

C
ou

nt
s t

he
 n

um
be

r o
f i

np
ut

 d
ep

en
de

nc
ie

s a
 c

la
ss

 h
as

FA
N

-O
U

T
–

C
ou

nt
s t

he
 n

um
be

r o
f o

ut
pu

t d
ep

en
de

nc
ie

s a
 c

la
ss

 h
as

fin
al

Fi
el

ds
Q

ty
N

um
be

r o
f fi

na
l fi

el
ds

C
ou

nt
s t

he
 n

um
be

r o
f p

ub
lic

 fi
na

l fi
el

ds
fin

al
M

et
ho

ds
Q

ty
N

um
be

r o
f p

ub
lic

 fi
na

l m
et

ho
ds

C
ou

nt
s t

he
 n

um
be

r o
f p

ub
lic

 fi
na

l m
et

ho
ds

in
ne

rC
la

ss
es

Q
ty

Q
ua

nt
ity

 o
f i

nn
er

 c
la

ss
es

C
ou

nt
s t

he
 n

um
be

r o
f i

nn
er

 c
la

ss
es

la
m

bd
as

Q
ty

Q
ua

nt
ity

 o
f l

am
bd

a
ex

pr
es

si
on

s
C

ou
nt

s t
he

 n
um

be
r o

f l
am

bd
a

ex
pr

es
si

on
s

LC
C

Lo
os

e
cl

as
s c

oh
es

io
n

C
al

cu
la

te
s t

he
 n

um
be

r o
f i

nd
ire

ct
 c

on
ne

ct
io

ns
 b

et
w

ee
n

vi
si

bl
e

cl
as

se
s

fo
r t

he
 c

oh
es

io
n

ca
lc

ul
at

io
n

LC
O

M
La

ck
 o

f c
oh

es
io

n
of

 m
et

ho
ds

C
al

cu
la

te
s L

CO
M

 m
et

ric
LC

O
M

*
La

ck
 o

f c
oh

es
io

n
of

 m
et

ho
ds

Is
 a

 n
or

m
al

iz
ed

 m
et

ric
 th

at
 c

om
pu

te
s t

he
 la

ck
 o

f c
oh

es
io

n
of

 c
la

ss

w
ith

in
 a

 ra
ng

e
of

 0
 to

 1
LO

C
Li

ne
s o

f c
od

e
C

ou
nt

s t
he

 li
ne

s o
f c

od
e

2593

1 3

Multi‑label learning for identifying co‑occurring class…

Ta
bl

e 
2  

(c
on

tin
ue

d)

A
bb

re
vi

at
io

n
M

et
ric

D
es

cr
ip

tio
n

lo
gS

ta
te

m
en

ts
Q

ty
N

um
be

r o
f l

og
 st

at
em

en
ts

C
ou

nt
s t

he
 n

um
be

r o
f l

og
 st

at
em

en
ts

 in
 th

e
so

ur
ce

 c
od

e
lo

op
Q

ty
Q

ua
nt

ity
 o

f l
oo

ps
C

ou
nt

s t
he

 n
um

be
r o

f l
oo

ps
m

at
hO

pe
ra

tio
ns

Q
ty

Q
ua

nt
ity

 o
f m

at
h

op
er

at
io

ns
C

ou
nt

s t
he

 n
um

be
r o

f m
at

h
op

er
at

io
ns

m
ax

N
es

te
dB

lo
ck

sQ
ty

M
ax

 n
es

te
d

bl
oc

ks
C

al
cu

la
te

s t
he

 h
ig

he
st

nu
m

be
r o

f b
lo

ck
s n

es
te

d
to

ge
th

er
m

od
ifi

er
s

M
od

ifi
er

s
C

ou
nt

s t
he

 m
od

ifi
er

s o
f c

la
ss

N
O

C
N

um
be

r o
f c

hi
ld

re
n

C
ou

nt
s t

he
 n

um
be

r o
f i

m
m

ed
ia

te
 su

bc
la

ss
es

 th
at

 a
 p

ar
tic

ul
ar

 c
la

ss
 h

as
N

O
F

N
um

be
r o

f fi
el

ds
C

ou
nt

s t
he

 n
um

be
r o

f fi
el

ds
N

O
M

N
um

be
r o

f m
et

ho
ds

C
ou

nt
s t

he
 n

um
be

r o
f m

et
ho

ds
N

O
SI

N
um

be
r o

f s
ta

tic
 in

vo
ca

tio
ns

C
ou

nt
s t

he
 n

um
be

r o
f i

nv
oc

at
io

ns
 to

 st
at

ic
 m

et
ho

ds
nu

m
be

rs
Q

ty
Q

ua
nt

ity
 o

f n
um

be
r

C
al

cu
la

te
s t

he
 n

um
be

r o
f n

um
be

rs
pa

re
nt

he
si

ze
dE

xp
sQ

ty
Q

ua
nt

ity
 o

f p
ar

en
th

es
iz

ed
 e

xp
re

ss
io

ns
C

ou
nt

s t
h

um
be

r o
f e

xp
re

ss
io

ns
 in

si
de

 p
ar

en
th

es
is

pr
iv

at
eF

ie
ld

sQ
ty

N
um

be
r o

f p
riv

at
e

fie
ld

C
ou

nt
s t

he
 n

um
be

r o
f p

riv
at

e
fie

ld
s

pr
iv

at
eM

et
ho

ds
Q

ty
N

um
be

r o
f p

riv
at

e
m

et
ho

ds
C

ou
nt

s t
he

 n
um

be
r o

f p
riv

at
e

m
et

ho
ds

pr
ot

ec
te

dF
ie

ld
sQ

ty
N

um
be

r o
f p

ro
te

ct
ed

 fi
el

ds
C

ou
nt

s t
he

 n
um

be
r o

f p
ub

lic
 p

ro
te

ct
ed

 fi
el

ds
pr

ot
ec

te
dM

et
ho

ds
Q

ty
N

um
be

r o
f p

ub
lic

 p
ro

te
ct

ed
 m

et
ho

ds
C

ou
nt

s t
he

 n
um

be
r o

f p
ub

lic
 p

ro
te

ct
ed

 m
et

ho
ds

pu
bl

ic
Fi

el
ds

Q
ty

N
um

be
r o

f p
ub

lic
 fi

el
ds

C
ou

nt
s t

he
 n

um
be

r o
f p

ub
lic

 fi
el

ds
pu

bl
ic

M
et

ho
ds

Q
ty

N
um

be
r o

f p
ub

lic
 m

et
ho

ds
C

ou
nt

s t
he

 n
um

be
r o

f p
ub

lic
 m

et
ho

ds
re

tu
rn

Q
ty

Q
ua

nt
ity

 o
f r

et
ur

ns
C

ou
nt

s t
he

 n
um

be
r o

f r
et

ur
n

in
str

uc
tio

ns
R

FC
Re

sp
on

se
 fo

r a
 c

la
ss

C
ou

nt
s t

he
 n

um
be

r o
f u

ni
qu

e
m

et
ho

d
in

vo
ca

tio
ns

 in
 a

 c
la

ss
st

at
ic

Fi
el

ds
Q

ty
N

um
be

r o
f s

ta
tic

 fi
el

ds
C

ou
nt

s t
he

 n
um

be
r o

f s
ta

tic
 fi

el
ds

st
at

ic
M

et
ho

ds
Q

ty
N

um
be

r o
f s

ta
tic

 m
et

ho
ds

C
ou

nt
s t

he
 n

um
be

r o
f s

ta
tic

 m
et

ho
ds

str
in

gL
ite

ra
ls

Q
ty

St
rin

g
lit

er
al

s
C

ou
nt

s t
he

 n
um

be
r o

f s
tri

ng
 li

te
ra

ls
sy

nc
hr

on
iz

ed
Fi

el
ds

Q
ty

N
um

be
r o

f s
yn

ch
ro

ni
ze

d
fie

ld
s

C
ou

nt
s t

he
 n

um
be

r o
f p

ub
lic

 sy
nc

hr
on

iz
ed

 fi
el

ds
sy

nc
hr

on
iz

ed
M

et
ho

ds
Q

ty
N

um
be

r o
f p

ub
lic

 sy
nc

hr
on

iz
ed

 m
et

ho
ds

C
ou

nt
s t

he
 n

um
be

r o
f p

ub
lic

 sy
nc

hr
on

iz
ed

 m
et

ho
ds

TC
C

​
Ti

gh
t c

la
ss

 c
oh

es
io

n
M

ea
su

re
s t

he
 c

oh
es

io
n

of
 a

 c
la

ss
 w

ith
 a

 v
al

ue
 ra

ng
e

fro
m

 0
 to

 1

2594	 M. Hadj‑Kacem, N. Bouassida

1 3

Ta
bl

e 
2  

(c
on

tin
ue

d)

A
bb

re
vi

at
io

n
M

et
ric

D
es

cr
ip

tio
n

try
C

at
ch

Q
ty

Q
ua

nt
ity

 o
f t

ry
/c

at
ch

es
C

ou
nt

s t
he

 n
um

be
r o

f t
ry

/c
at

ch
es

un
iq

ue
W

or
ds

Q
ty

N
um

be
r o

f u
ni

qu
e

w
or

ds
C

ou
nt

s t
he

 n
um

be
r o

f u
ni

qu
e

w
or

ds
 in

 th
e

so
ur

ce
 c

od
e

va
ria

bl
es

Q
ty

Q
ua

nt
ity

 o
f V

ar
ia

bl
es

C
ou

nt
s t

he
 n

um
be

r o
f d

ec
la

re
d

va
ria

bl
es

vi
si

bl
eM

et
ho

ds
Q

ty
N

um
be

r o
f p

ub
lic

 v
is

ib
le

 m
et

ho
ds

C
ou

nt
s t

he
 n

um
be

r o
f p

ub
lic

 v
is

ib
le

 m
et

ho
ds

W
M

C
W

ei
gh

t m
et

ho
d

cl
as

s
C

ou
nt

s t
he

 n
um

be
r o

f b
ra

nc
h

in
str

uc
tio

ns
 in

 a
 c

la
ss

2595

1 3

Multi‑label learning for identifying co‑occurring class…

Specifically, this tool analyses Java projects through a static analysis where it
focuses on the source code rather than the compiled version. It encompasses both
class-level and method-level code metrics, but our focus on class code smells leads
us to employ only class-level metrics, as outlined in Table 2.

3.3 � Annotation of code smells

The annotation of code smells is accomplished through the labelling of true
positive samples. The process of labelling, also called oracle creation, is a chal-
lenging and time-consuming task demanding significant expertise in this spe-
cific field. The resultant oracle serves as the basis for assessing the performance
of learning models. There exist three different approaches to ensure the labelling
task [37]: (i) the manual approach involves experienced developers who should
have considerable knowledge in analysing software design problems, (ii) the
tool-based approach is based on existing code smell detection tools, and (iii)
the mixed approach which combines both first approaches where the detection
results of tools are subsequently evaluated by developers.

More recently, a systematic literature review has been conducted on code
smells datasets [38]. The authors have compared between the existing datasets
according to different factors including availability, data source, recency and
completeness of labelling. Considering these criteria, the authors have selected
two datasets as the most comprehensive and adequate code smells datasets:

•	 The first dataset, proposed by Palomba et al. [3], involves the labelling of 13
types of code smells at both class and method levels across different releases
of 30 open source projects. The labelling approach is mixed, wherein a tool
is employed to detect code smells in order to generate a list of potential can-
didates. Subsequently, these results undergo manual validation to classify
them as true or false positives.

•	 The second dataset, called MLCQ, is proposed by Madeyski et al. [39]. This
dataset focuses on four code smells, comprising two at the class-level and
two at the method level. Instances of code smells are extracted from 792
industry-relevant projects. The oracle for this dataset is manually curated by
experienced developers with industrial expertise.

Between these two datasets, although they are both large and heterogeneous,
the first dataset stands out by encompassing a greater diversity of code smells.
In our study, the problem is casted as a multi-label learning approach, aiming
to simultaneously identify multiple code smells. To address this, a substantial
number of labels, i.e., distinct code smell types are required. So, the first dataset
[3] is particularly advantageous in this context as it effectively provides a more
extensive range of identified code smells in its oracle, aligning well with our
research objectives.

In our study, the selected dataset comprises 13 code smells at both class
and method levels. We have selected 8 code smells that pertain to individual

2596	 M. Hadj‑Kacem, N. Bouassida

1 3

fragments and excluded the smells at method-level and the smells that consider
involved classes for their introduction. Further details of the selected smells can
be found in Table 3.

3.4 � Multi‑label learning methods

Learning from multi-label data can be achieved using various methods, including
problem transformation, ensemble and algorithm adaptation methods [40]. Each
method involves distinct techniques for its application. In our study, we have used
all three methods and for each, we have selected four different techniques.

•	 Problem Transformation Method (PTM):
	  In the problem transformation method, a multi-label problem is converted

into one or more single-label classification tasks [20, 41]. This transformation
allows the application of traditional supervised machine learning classifiers
which are originally designed for single-label problems. The outputs of these
single-label classifiers are then aggregated to address the objective of the ini-
tial multi-label classification problem. For this method, we have selected four
different techniques:

•	 Binary Relevance (BR) [20]: The multi-label dataset is decomposed into
multiple binary datasets, where each corresponds to one label. Next, a sin-
gle-label learning algorithm is employed to address each individual binary
dataset.

•	 Classifier Chain (CC) [40]: It operates by connecting binary classifiers in a
chain in order to address label correlation. Each binary classifier includes
the previous predicted labels as supplementary information.

•	 Label PowerSet (LP) [42]: Also known as Label Combination, it trans-
forms a multi-label dataset into a multi-class dataset. It creates a new class

Table 3   Description of subject class code smells

Code smells Definition

Class Data Should Be Private A class that exposes its attributes, thereby violating the principle of data
hiding

Complex Class A class that has a high cyclomatic complexity where it does more than
it should

Large Class Also known as God Class, it dominates most of the system behaviour by
implementing numerous responsibilities

Lazy Class A class that implements minimal functionality and contains few methods
Message Chain A sequence of invocations that indicate a high level of coupling
Middle Man A class that delegates most of its implemented functionalities to other

classes
Spaghetti Code A class that implements complex methods which interact between them
Speculative Generality A class declared as abstract that is unused in the source code

2597

1 3

Multi‑label learning for identifying co‑occurring class…

for each distinct combination of labels, treating each combination as a
unique class in a multi-class problem.

•	 Hierarchy Of Multi-label classifiERs (HOMER) [43]: It constructs a hier-
archy of classifiers with various label combinations while demonstrating its
prediction performance.

	  The primary distinction among these four problem transformation techniques
lies in their conservation of label correlation. Binary Relevance stands out as the
only technique that does not preserve label correlation.

•	 Ensemble Method (EM):
	  The ensemble method involves the combination of several classifiers [44]. The

selected techniques are:

•	 Ensemble of Classifier Chains (ECC) [40]
•	 Ensemble of Pruned Sets (EPS) [45]
•	 RAndom k-labELsets (RAkEL) [44]
•	 AdaBoost MH [46]

•	 Algorithm Adaptation Method (AAM):
	  This method adapts existing single-label classification algorithms to directly

handle multiple labels [20, 41]. Unlike the problem transformation method, the
algorithm adaptation is classifier dependent. The selected algorithms belong to
different learning families:

•	 Back-Propagation Multi-Label Learning (BPMLL) [47]
•	 BRkNN [48]: Binary Relevance implementation of the k Nearest Neighbours

algorithm
•	 Instance-Based Learning by Logistic Regression-ML (IBLR-ML) [49]
•	 Multi-Label k Nearest Neighbours (MLkNN) [50]

4 � Dataset construction

In this section, we describe the construction of the multi-label dataset, encompass-
ing project details and the dataset generation process. Subsequently, we extract the
dataset characteristics given their importance in the experiments.

4.1 � Generation of multi‑label dataset

As mentioned in Sect. 3.3, we will use 30 open-source Java projects from the
selected dataset. These projects are heterogeneous as they vary in size and belong
to diverse application domains. They can be downloaded from GitHub2 and Source-
Forge.3 The complete list of these projects is provided in Table 4.

2  https://​github.​com
3  https://​sourc​eforge.​net/

https://github.com
https://sourceforge.net/

2598	 M. Hadj‑Kacem, N. Bouassida

1 3

As illustrated in Fig. 2, the process begins with each project undergoing a
statistical analysis using the CK tool. Classes are extracted as dataset instances
and CK metrics are computed for each one of them. Following that, the label-
ling is conducted based on the adopted oracle where each type of the eight code
smells corresponds to a label. After processing all projects and code smells, at
this stage, binary datasets are created where each instance has a single label.
These binary datasets are then merged according to the code smell type across
all projects. Ultimately, these binary datasets are transformed into one unified
multi-label dataset (MLD), where each instance is associated with 8 labels rep-
resenting code smells.

Table 4   Description of 30 open-source projects

Projects Release #Classes KLOC Description

Apache Ant 1.8.3 855 128 Java based build tool
Apache Cassandra 1.1 624 110 Database management system
Apache Derby 10.9 1989 444 Relational database management system
Apache Hadoop 0.9 277 50 A framework for distributed datasets
Apache HBase 0.94 732 269 Distributed database system
Apache Hive 0.9 1193 201 Data warehouse software
Apache Ivy 2.1.0 369 51 A tool for managing project dependencies
Apache Karaf 2.3 492 43 Runtime container for applications deployment
Apache Lucene 3.6 2388 375 Search engine software library
Apache Nutch 1.4 250 35 Web crawler
Apache Pig 0.8 945 184 Platform for analysing large datasets
Apache Qpid 0.18 1606 194 Messaging tool
Apache Struts 2.3.4 1274 143 MVC framework
Apache Wicket 1.4.20 1135 170 Java web application framework
Apache Xerces 2.1.0 776 121 XML parser
ArgoUml 0.34 1769 174 UML diagram generator
aTunes 2.0.0 648 55 Player and audio manager
Eclipse Core 3.6.0 1194 270 Integrated development environment
Elasticsearch 0.19 2167 206 RESTful Search and Analytics Engine
Freemind 0.9.0 465 53 Mind-mapping software
Hibernate 4.1.8 236 35 Java persistence framework
HsqlDB 2.2.8 462 151 HyperSQL database engine
Incubating 0.6 535 87 Codebase
Jboss 6.0.0 2434 373 Application server
jEdit 4.5 567 96 Programmer’s text editor
JFreeChart 1.0.14 617 124 Java chart library
JHotDraw 7.6 613 77 Graphic framework
JSL 0.99n 10 0.5 Java Service Launcher
jVLT 1.3.2 272 23 Vocabulary Learning Tool
Sax 2.0 38 0.3 XML Parser

2599

1 3

Multi‑label learning for identifying co‑occurring class…

4.2 � Characteristics of multi‑label dataset

There exist various metrics that capture specific characteristics of a multi-label
dataset. These metrics provide important information, such as label distribution,
inter-label relationship and imbalance level [20, 51]. These information serve as
crucial criteria for subsequent experimental steps. The most important metrics
include:

•	 Cardinality assesses the average number of active labels Yi per sample, with D
is the dataset and N representing the number of instances.

•	 Density is the cardinality divided by the number of labels |L| .

•	 Mean Imbalance Ratio (MeanIR) describes the mean ratio of imbalance
among the labels L . The higher the value is, the more imbalanced the MLD is.

(1)Card(D) =
1

N

N∑

i=1

||Yi||

(2)Dens(D) =
Card(D)

|L|
=

1

|L|
1

N

N∑

i=1

||Yi||

Projects Statistical Analysis Annotation of Code Smells

P1: Project 1

P2: Project 2

P30: Project 30

Metrics-P1

Metrics-P2

Metrics-P30

CDSBP-P1 CpC-P1 LgC-P1 LzC-P1 MC-P1 MM-P1 SC-P1 SG-P1

CDSBP-P2 CpC-P2 LgC-P2 LzC-P2 MC-P2 MM-P2 SC-P2 SG-P2

CDSBP-P30 CpC-P30 LgC-P30 LzC-P30 MC-P30 MM-P300 SC-P30 SG-P30

Ps: ALL-Projects Metrics-Ps CDSBP-Ps CpC-Ps LgC-Ps LzC-Ps MC-Ps MM-Ps SC-Ps SG-Ps

Metrics

M1 M2 Mn

Projects

Classes

Code Smells

CDSBP CpC SG

Transformation to Multi-Label Dataset

CDSBP: Class Data Should Be Private - CpC: Complex Class - LgC: Large Class - LzC: Lazy Class - MC: Message Chain - MM: Middle Man - SC: Spaghetti Code - SG: Speculative Generality

Data Preparation

Mapping

Fig. 2   Construction of multi-label dataset

2600	 M. Hadj‑Kacem, N. Bouassida

1 3

To calculate these metrics, we have used mldr package [52]. As shown in Table 5,
the MLD comprises 23 distinct label sets, representing possible combinations.
According to Charte et al. [51], the MLD is considered as imbalanced if its MeanIR
surpasses 1.5. Following this, our MLD is imbalanced, which means that some
labels have high frequency while others are less represented. To deal with, we have
applied Multilabel Synthetic Minority Over-sampling Technique (MLSMOTE)
[53]. MLSMOTE is a multi-label oversampling algorithm able to generate synthetic
instances based on a randomly chosen instances that include minority labels and
their nearest neighbour instances.

5 � Experiments and results

In this section, we will present the results and discuss the research questions that
have been addressed. But before doing so, we will provide the context of the experi-
mentation by presenting the experimental set-up and evaluation metrics.

5.1 � Experimental settings

In our experimentation, we have applied three multi-label learning methods: PTM,
EM and AAM. Within PTM, we selected BR, CC, LP and HOMER. For EM, we
employed ECC, EPS, RAkEL and AdaBoost MH. And for the AAM, we choose
BPMLL, BRkNN, IBLR-ML and MLkNN. Some of these techniques necessitate a
basic classifier to be implemented, for which we opted for the Random Forest clas-
sifier. Our selection is motivated by two key factors. Firstly, Random Forest has
yielded significant results in this study [30], particularly in effectively detecting both
Long Method and Feature Envy. Secondly, our focus was directed towards exploring
diverse multi-label techniques built upon the same basic classifier, aiming for a com-
prehensive evaluation of these techniques.

(3)MeanIR =
1

�L�
�

l∈L

IRLbl(l) where IRLbl(l) =

max
l�∈L

(

∑N

i=1
[[l� ∈ Yi]])

∑N

i=1
[[l ∈ Yi]]

Table 5   Characteristics of MLD Characteristics Values

Samples 26,932
Labels 8
Label sets 23
Cardinality 0.048
Density 0.006
MeanIR 13.357

2601

1 3

Multi‑label learning for identifying co‑occurring class…

The implementation of these techniques was accomplished using MULAN 1.5.0
[54], a Java library designed for learning from multi-label data. MULAN is built on
the WEKA library [55] and provides a diverse range of classification and ranking
algorithms. Concerning the validation, we utilized 5-fold cross-validation approach
where the dataset is split into five folds, i.e. four folds used for training and the
remaining fold for testing.

5.2 � Evaluation metrics

The assessment of multi-label learning techniques involves distinct metrics com-
pared to single-label learning. Due to the association of each sample with multi-
ple labels simultaneously, evaluating performance in multi-label learning is more
complex where the metrics fall into two broad categories: example and label-based
metrics [56]. Example-based metrics involve averaging differences between actual
and predicted label sets across the samples in the dataset. This category includes
two sub-categories: classification metrics (SubsetAccuracy, HammingLoss,
F −Measure , Accuracy) and ranking metrics (Coverage, AveragePrecision, Rank-
ingLoss). In the second category, label-based metrics, the performance for each label
is calculated individually and then averaged over all labels (Macro/MicroAveraging)
[20, 57]. In the equations, for a given instance ( xi ), ( Zi ) denotes the set of predicted
labels and ( Yi ) denotes the set of actual labels. The total number of instances and the
total number of labels are respectively represented by (N) and ( |L|).

•	 Example-based classification metrics

•	 HammingLoss ( ↘ ) is the symmetric difference ( Δ ) between predicted ( Zi )
and actual labels ( Yi ). It is averaged over total number of labels ( |L| ) and total
number of instances (N). Lower HammingLoss indicates better performance.

•	 SubsetAccuracy ( ↗ ), also called ExactMatchRatio, known as one of the most
strict evaluation measurements. It evaluates the proportion of accurately clas-
sified samples accross all the samples, where the predicted label set matches
the actual labels.

•	 F −Measure ( ↗ ) represents the harmonic mean of precision and recall. Pre-
cision is the ratio of correctly predicted labels to the total number of actual
labels, averaged across all instances, while recall is the ratio of correctly
predicted labels to the total number of predicted labels, averaged across all
instances.

(4)HammingLoss =
1

N

1

|L|

N∑

i=1

||YiΔZi||

(5)SubsetAccuracy =
1

N

N∑

i=1

[[Yi = Zi]]

2602	 M. Hadj‑Kacem, N. Bouassida

1 3

•	 Accuracy ( ↗ ) is the proportion of correctly predicted labels to the total
number of labels for an instance.

•	 Example-based ranking metrics

•	 Coverage ( ↘ ) is a metric that measures, on average, how a learning algo-
rithm needs to go in the ranked list of predictions to cover all the true
labels of an instance. A lower coverage value indicates better perfor-
mance.

•	 AveragePrecision ( ↗ ) calculates the proportion of relevant labels ranked
before each label and then makes the average across all relevant labels.

•	 RankingLoss ( ↘ ) measures the proportion of label pairs that are incor-
rectly ordered in reverse.

•	 Label-based metrics

•	 Micro∕Macro averaging ( ↗ ), the macro approach computes the metric
for each label and averages the values over all labels, while the micro
approach considers predictions for all instances together by aggregat-
ing TP, TN, FP, FN values for all labels and then calculates the measure
across all labels.

(6)F − measure = 2 ∗
Precision ∗ Recall

Precision + Recall

(7)Accuracy =
1

N

N∑

i=1

||Yi ∩ Zi
||

||Yi ∪ Zi
||

(8)Coverage =
1

N

i=1∑

N

argmax
y∈Yi

(rank(xi, y)) − 1

(9)AveragePrecision =
1

N

i=1∑

N

1

||Yi||

∑

y∈Yi

|||
{
y�|rank(xi, y�) ⩽ rank(xi, y), y

�
∈ Yi

}|||
rank(xi, y)

(10)RLoss =
1

N

i=1∑

N

1

||Yi||
|||Yi

|||

|||ya, yb ∶ rank(xi, yb) > rank(xi, yb), (ya,b) ∈ Yi × Yi
|||

(11)F1 −Macro =
1

|L|
∑

l∈L

F1(TPl,FPl, TNl,FNl)

(12)F1 −Micro = F1

(
∑

l∈L

TPl,
∑

l∈L

FPl,
∑

l∈L

TNl,
∑

l∈L

FNl

)

2603

1 3

Multi‑label learning for identifying co‑occurring class…

5.3 � Co‑occurrence of code smells at class‑level

To address the first research question RQ1, we opted for the utilization of a chord
diagram to offer a comprehensive understanding of potential co-occurrences among
two or more code smells at the class-level. Chord diagrams serve as a visual repre-
sentation to connect entities through chords, providing a graphical representation of
relationships. It is important to note that the thickness of these chords reflects the
frequency of co-occurrences between code smells: thicker chords denote more fre-
quent co-occurrences, while thinner lines suggest less common associations.

In Fig. 3, the chord diagram presents a graphical depiction of 8 entities, i.e. class
code smells, interconnected by chords to illustrate the strength of their relation-
ships. Notably, our analysis reveals that, on average, half of the instances affected
by Spaghetti Code exhibit co-occurrences with Large Class, while the remain-
ing half co-occurs with Complex Class. We also found that, approximately, 35%
of smelly instances of Complex Class tend to co-occur with Spaghetti Code, while
others demonstrate associations with Message Chain, with the remaining linked to
Large Class. Through our analysis, three prominent and recurrent co-occurrences
have emerged: {Complex Class and Large Class}, {Spaghetti Code, Large Class and
Complex Class} and {Spaghetti Code and Large Class}.

The presence of the pair {Complex Class and Large Class} indicates a consist-
ent relationship, implying that when Complex Class is present in a class, the like-
lihood of Large Class being present is notably high. The frequent co-occurrence

6 Cla

te

0

0.2
5

0.5

0.75

1

94

Com
lass

0

0.25

0.
5

0.
75

1

95Lar lass

2 2 1
0

0.25

0.5

0.75

1

76

Sp
a

Co
de

10 Sp

Fig. 3   Chord diagram of class code smells co-occurrences

2604	 M. Hadj‑Kacem, N. Bouassida

1 3

of these two smells often stems from their inherent software design characteris-
tics. For instance, a Complex Class, characterized by its high cyclomatic com-
plexity, may tend to assume multiple responsibilities, thereby giving rise to the
appearance of the Large Class smell. The additional occurrences of {Spaghetti
Code, Large Class and Complex Class} and {Spaghetti Code and Large Class}
highlight important patterns for developers to consider during maintenance activ-
ities. This may suggest that when a class is affected by the first co-occurrence
of Large Class and Complex Class, it tends to lead to the emergence of lengthy
methods, thereby elevating the overall complexity of the class. This, in turn, may
ultimately pave the way for the emergence of Spaghetti Code. Instances where an
artefact is affected by more than one code smell are considered critical, empha-
sizing the need for a high priority in the refactoring process.

Table 6   Example-based classification results

Subset Accuracy Hamming Loss F-Measure Accuracy

HOMER 0.9573±0.0014 0.0060±0.0002 0.9592±0.0015 0.9587±0.0015
BR 0.9624±0.0022 0.0051±0.0003 0.9637±0.0020 0.9634±0.0020
LP 0.9618±0.0027 0.0053±0.0004 0.9629±0.0025 0.9626±0.0025
CC 0.9612±0.0017 0.0053±0.0003 0.9630±0.0017 0.9626±0.0017
RAkEL 0.9584±0.0035 0.0058±0.0005 0.9605±0.0034 0.9600±0.0034
ECC 0.9627±0.0018 0.0052±0.0002 0.9641±0.0016 0.9638±0.0016
EPS 0.9618±0.0018 0.0053±0.0003 0.9635±0.0019 0.9631±0.0019
AdaBoost MH 0.9558±0.0013 0.0061±0.0002 0.9558±0.0013 0.9558±0.0013
BPMLL 0.9152±0.0197 0.0118±0.0026 0.9170±0.0196 0.9166±0.0196
BRkNN 0.9575±0.0022 0.0058±0.0003 0.9583±0.0022 0.9581±0.0022
IBLR-ML 0.9566±0.0020 0.0059±0.0003 0.9580±0.0019 0.9577±0.0019
MLkNN 0.9572±0.0020 0.0058±0.0003 0.9582±0.0019 0.9579±0.0020

Table 7   Example-based ranking results

Coverage Average Precision Ranking Loss

HOMER 0.0787±0.0039 0.7162±0.0242 0.0101±0.0007
BR 0.0355±0.0040 0.8301±0.0099 0.0043±0.0005
LP 0.1004±0.0100 0.6168±0.0112 0.0135±0.0014
CC 0.0358±0.0045 0.8322±0.0136 0.0042±0.0006
RAkEL 0.0743±0.0086 0.7018±0.0181 0.0094±0.0011
ECC 0.0173±0.0032 0.9118±0.0092 0.0018±0.0004
EPS 0.0411±0.0046 0.7950±0.0187 0.0050±0.0005
AdaBoost MH 0.1050±0.0078 0.5090±0.0079 0.0143±0.0011
BPMLL 0.0309±0.0042 0.8003±0.0453 0.0037±0.0006
BRkNN 0.0607±0.0084 0.7544±0.0173 0.0078±0.0011
IBLR-ML 0.0388±0.0048 0.7868±0.0119 0.0048±0.0006
MLkNN 0.0391±0.0048 0.7920±0.0147 0.0048±0.0006

2605

1 3

Multi‑label learning for identifying co‑occurring class…

Ta
bl

e 
8  

L
ab

el
-b

as
ed

 re
su

lts

M
ic

ro
-a

vg
 P

M
ic

ro
-a

vg
 R

M
ic

ro
-a

vg
 F

1
M

ac
ro

-a
vg

 P
M

ac
ro

-a
vg

 R
M

ac
ro

-a
vg

 F
1

H
O

M
ER

0.
50

87
±

0.
01

60
0.

38
72

±
0.

03
72

0.
43

91
±

0.
02

89
0.

34
22

±
0.

07
38

0.
30

67
±

0.
06

63
0.

32
01

±
0.

06
98

B
R

0.
67

61
±

0.
04

31
0.

31
13

±
0.

04
10

0.
42

46
±

0.
04

06
0.

46
60

±
0.

09
47

0.
27

00
±

0.
07

48
0.

31
65

±
0.

08
02

LP
0.

65
89

±
0.

06
25

0.
27

50
±

0.
02

87
0.

38
66

±
0.

03
26

0.
42

70
±

0.
08

29
0.

24
03

±
0.

06
74

0.
28

67
±

0.
07

33
C

C
0.

63
12

±
0.

03
37

0.
31

97
±

0.
03

17
0.

42
31

±
0.

02
71

0.
42

66
±

0.
06

98
0.

27
86

±
0.

07
30

0.
32

10
±

0.
07

31
R

A
kE

L
0.

53
75

±
0.

04
27

0.
39

58
±

0.
03

17
0.

45
54

±
0.

03
28

0.
36

19
±

0.
08

69
0.

31
38

±
0.

09
02

0.
32

97
±

0.
08

70
EC

C
0.

63
54

±
0.

02
89

0.
36

42
±

0.
03

39
0.

46
22

±
0.

03
12

0.
39

59
±

0.
06

83
0.

28
62

±
0.

06
23

0.
31

55
±

0.
05

88
EP

S
0.

61
53

±
0.

03
86

0.
37

46
±

0.
02

92
0.

46
41

±
0.

02
04

0.
40

40
±

0.
09

38
0.

29
46

±
0.

07
49

0.
31

71
±

0.
06

81
A

da
B

oo
st

M
H

0.
00

00
±

0.
00

00
0.

00
00

±
0.

00
00

0.
00

00
±

0.
00

00
0.

05
00

±
0.

06
12

0.
05

00
±

0.
06

12
0.

05
00

±
0.

06
12

B
PM

LL
0.

23
13

±
0.

08
43

0.
31

17
±

0.
11

04
0.

23
80

±
0.

04
72

0.
20

69
±

0.
05

03
0.

24
77

±
0.

04
24

0.
19

36
±

0.
05

27
B

R
kN

N
0.

70
42

±
0.

10
39

0.
09

45
±

0.
02

29
0.

16
63

±
0.

03
78

0.
42

86
±

0.
18

98
0.

12
40

±
0.

07
39

0.
16

58
±

0.
07

99
IB

LR
-M

L
0.

58
43

±
0.

05
86

0.
14

38
±

0.
01

34
0.

23
03

±
0.

01
84

0.
39

22
±

0.
09

02
0.

16
83

±
0.

06
86

0.
21

84
±

0.
07

15
M

Lk
N

N
0.

67
15

±
0.

07
95

0.
10

58
±

0.
02

46
0.

18
14

±
0.

03
55

0.
36

09
±

0.
12

18
0.

13
89

±
0.

07
45

0.
18

09
±

0.
07

87

2606	 M. Hadj‑Kacem, N. Bouassida

1 3

5.4 � Role of correlation between code smells in prediction results

The presence or absence of correlations between specific code smells can signifi-
cantly impact the code smell identification task. To delve into this aspect, multi-
label learning algorithms may either preserve or ignore these correlations during the
detection process. To address this, in the context of RQ2, our investigation involves
a comparative analysis between algorithms that preserve correlations and those that
do not based on various evaluation metrics.

Tables 6, 7 and 8 present the identification results categorized by different evalua-
tion metrics. Table 6 focuses on example-based classification metrics. Among these
metrics, Subset Accuracy represents the strictest metric, where ECC is the top-
performing algorithm, closely followed by BR, with more than 0.96. Similarly for
Accuracy and F-measure metrics, ECC and BR demonstrate superior performance.
For Hamming Loss, where lower values approaching zero are desired for optimal
results, BR outperforms ECC.

Table 7 presents the evaluation of algorithms using three example-based ranking
metrics. Lower values for Coverage and Ranking Loss indicate better performance.
Notably, the ensemble technique ECC provides the top performance, followed by
the adaptation algorithm technique BPMLL. For the Average Precision, the problem
transformation technique CC and its ensemble version exhibit superior performance
followed by BR. Across all the three evaluation metrics, AdaBoost MH is ranked as
the lowest-performing algorithm.

In Table 8, in contrast to the results in Tables 6 and 7, the results show a decrease
for both macro and micro averaging metrics. This shift occurs because label-based
metrics are computed for each label rather than each instance. Regarding micro-
averaged F-measure, the top three algorithms are associated with the ensemble
method: EPS, followed by ECC and RAkEL. On the other hand, for macro-averaged
F-measure, RAkEL takes the first place, followed by CC and HOMER. Across all
metrics in both macro and micro averaging, AdaBoost MH consistently ranks as the
lowest-performing algorithm.

To establish a comprehensive comparison, we employed both the Friedman test
and the post-hoc Nemenyi test [58] to evaluate the overall performance of all algo-
rithms across various metric categories. The test aids in determining significant dif-
ferences between algorithms based on their rankings, enabling the identification of
statistically significant variances among pairs of algorithms. As depicted in Fig. 4,
the average ranking of each technique within every classification metric category
is utilized to determine which classifiers exhibit superior performance compared to
others. The statistical significance test highlights that ECC, BR and CC are consid-
ered as the top-ranked algorithms, while AdaBoost MH is consistently ranked as the
lowest-performing algorithm across all evaluation categories. In summary, address-
ing RQ2 regarding the potential impact of the considered correlation on algorithm
performance, our analysis suggest that the correlation taken into account by the
algorithms does not have a substantial effect on their overall performance.

2607

1 3

Multi‑label learning for identifying co‑occurring class…

5.5 � Comparing multi‑label learning methods

In the last question, RQ3 focus into another factor that potentially influences the
results by taking a higher level of abstraction compared to the previous question.
Instead of focusing on individual algorithms, RQ3 centers on the broader method
categories to which these algorithms belong. As mentioned earlier, the algorithms
fall into three categories: PTM, EM and AAM. In the first two methods, PTM and
EM, the multi-label dataset undergoes a transformation to suit problem-solving,
while in AAM, the algorithm is adapted to directly operate on the multi-label data-
set. To conduct a comprehensive comparison, boxplots are employed across all eval-
uation metrics, as illustrated in Fig. 5.

The boxplot diagrams concerning example-based classification and label-based
metrics showed close distributions, with PTM slightly outperforming EM in terms
of variance reduction, followed by AAM. In terms of subset accuracy, F-measure
and accuracy, the mean value achieved by PTM is 0.96, whereas AAM attains 0.94.
Regarding Hamming loss, where lower values indicate better performance, there is
a notable distinction, PTM yields a mean value of 0.005425, whereas AAM stands
at 0.007325. However, for example-based ranking metrics, PTM and EM exhib-
ited the largest interquartile range compared to AAM. Specifically, in the Coverage
measure, the values of EM range between 0.0173 and 0.105, while for AAM, it falls
between 0.0309 and 0.0607. We found that the same observations in Coverage apply
to Ranking Loss and Average Precision, where lower values denote superior perfor-
mance. Notably, techniques within the AAM category demonstrated a closer range
by reflecting less variability compared to the other two methods.

Fig. 4   Average rank diagrams for (a) example-based classification metrics, (b) example-based ranking
metrics and (c) label-based metrics

2608	 M. Hadj‑Kacem, N. Bouassida

1 3

Fig. 5   Boxplots for comparing multi-label learning methods

2609

1 3

Multi‑label learning for identifying co‑occurring class…

Thus, for RQ3, our findings suggest that the choice of a multi-label learning
method can impact the results, where problem-transformation and ensemble meth-
ods demonstrate better results in example-based classification and label-based met-
rics but lower results in example-based ranking metrics compared to the adaptation
algorithm method.

6 � Threats to validity

In this section, we discuss potential threats to the validity of our study.

•	 Construct Validity: The construction of the selected oracle combines automated
and manual processes. A tool identifies potential code smells, generating a can-
didate list, which is then subjected to manual validation. While the presence of
false positives and negatives in the oracle cannot be ruled out, it is essential to
note that in the literature, this oracle is highly recognized as a well-established
one for code smell identification problem.

•	 Internal Validity: In our work, the multi-label dataset exhibits a considerable
Mean Imbalance Ratio, a common issue in multi-label learning due to label dis-
tribution. To address this, we implemented MLSMOTE, a Synthetic Minority
Over-sampling Technique designed for multi-label learning, which has reduced
the imbalance ratio.

•	 External Validity: Our experiments are carried out on 30 Java open-source pro-
jects, limiting the generalizability of our findings to other programming lan-
guages or industrial projects. Further research is needed to explore this potential
limitation.

7 � Conclusion

In this study, we presented a multi-label learning-based approach to identify eight
class code smells across a diverse set of 30 open-source Java projects. Employing
12 different algorithms, with four selected from each of the three existing multi-
label learning methods, our investigation delved into the co-occurrence of code
smells at the class-level. Our analysis revealed three significant and recurring co-
occurrences: {Complex Class and Large Class}, {Spaghetti Code, Large Class
and Complex Class} and {Spaghetti Code and Large Class}.

We further explored the influence of correlations between various code smells
on prediction outcomes. Across different evaluation metrics spanning diverse cat-
egories, we found that ECC, BR and CC emerged as the top-ranked algorithms
showing that the consideration of correlations by the algorithms did not signifi-
cantly impact their overall performance.

Additionally, our investigation extended to the evaluation and comparison of
different multi-label learning methods, aiming to discern the efficiency of data
transformation versus method adaptation in identification results. The results

2610	 M. Hadj‑Kacem, N. Bouassida

1 3

suggested that the choice of a multi-label learning method can indeed impact
the outcomes, where the problem-transformation and ensemble methods exhibit
superior performance in example-based classification and label-based metrics but
lower results in example-based ranking metrics compared to the adaptation algo-
rithm method.

For future work, we aim to broaden our research by incorporating other types
of code smells and applying the approach to different programming languages.
Furthermore, we plan to utilize our research findings to create a recommendation
system for prioritizing code refactoring operations.

Funding  This study was not funded.

Data availability  The dataset used in this study is publicly available and was obtained from the research
study referenced in [3].

Declarations 

Conflict of interest  The authors declare that they have no Conflict of interest.

References

	 1.	 Fowler M, Beck K, Brant J, Opdyke W, Roberts D (1999) Refactoring: improving the design of
existing code. Pearson Education India

	 2.	 Kaur A (2020) A systematic literature review on empirical analysis of the relationship between
code smells and software quality attributes. Arch Comput Methods Eng 27(4):1267–1296

	 3.	 Palomba F, Bavota G, Di Penta M, Fasano F, Oliveto R, De Lucia A (2018) On the diffuseness
and the impact on maintainability of code smells: a large scale empirical investigation. Empir
Softw Eng 23(3):1188–1221. https://​doi.​org/​10.​1007/​s10664-​017-​9535-z

	 4.	 Soh Z, Yamashita A, Khomh F, Guéhéneuc YG (2016) Do code smells impact the effort of dif-
ferent maintenance programming activities? In: IEEE 23rd international conference on software
analysis, evolution, and reengineering, vol 1, pp 393–402

	 5.	 Abbes M, Khomh F, Gueheneuc Y-G, Antoniol G (2011) An empirical study of the impact of two
antipatterns, blob and spaghetti code, on program comprehension. In: 2011 15Th European confer-
ence on software maintenance and reengineering, pp 181–190. IEEE

	 6.	 Politowski C, Khomh F, Romano S, Scanniello G, Petrillo F, Guéhéneuc Y-G, Maiga A (2020) A
large scale empirical study of the impact of spaghetti code and blob anti-patterns on program com-
prehension. Inf Softw Technol 122:106278

	 7.	 Sjøberg DI, Yamashita A, Anda BC, Mockus A, Dybå T (2012) Quantifying the effect of code
smells on maintenance effort. IEEE Trans Softw Eng 39(8):1144–1156

	 8.	 Khomh F, Di Penta M, Gueheneuc Y-G (2009) An exploratory study of the impact of code smells
on software change-proneness. In: 2009 16th working conference on reverse engineering, pp 75–84.
IEEE

	 9.	 Cunningham W (1992) The wycash portfolio management system. ACM SIGPLAN OOPS Messen-
ger 4(2):29–30

	10.	 Tufano M, Palomba F, Bavota G, Oliveto R, Di Penta M, De Lucia A, Poshyvanyk D (2017) When
and why your code starts to smell bad (and whether the smells go away). IEEE Trans Softw Eng
43(11):1063–1088

	11.	 Dewangan S, Rao RS, Chowdhuri SR, Gupta M (2023) Severity classification of code smells using
machine-learning methods. SN Comput Sci 4(5):564

	12.	 Fontana FA, Zanoni M (2017) Code smell severity classification using machine learning techniques.
Knowl-Based Syst 128:43–58

https://doi.org/10.1007/s10664-017-9535-z

2611

1 3

Multi‑label learning for identifying co‑occurring class…

	13.	 Moha N, Gueheneuc YG, Duchien L, Meur AFL (2010) DECOR: a method for the specification and
detection of code and design smells. IEEE Trans Softw Eng 36(1):20–36. https://​doi.​org/​10.​1109/​
TSE.​2009.​50

	14.	 Palomba F, Bavota G, Di Penta M, Oliveto R, De Lucia A, Poshyvanyk D (2013) Detecting bad
smells in source code using change history information. In: Proceedings of the 28th IEEE/ACM
international conference on automated software engineering, pp 268–278. IEEE Press

	15.	 Arcelli Fontana F, Mäntylä MV, Zanoni M, Marino A (2016) Comparing and experimenting
machine learning techniques for code smell detection. Empir Softw Eng 21(3):1143–1191

	16.	 Hadj-Kacem M, Bouassida N (2018) A hybrid approach to detect code smells using deep learning.
In: Proceedings of the 13th international conference on evaluation of novel approaches to software
engineering, pp 137–146. SciTePress

	17.	 Sharma T, Efstathiou V, Louridas P, Spinellis D (2021) Code smell detection by deep direct-learn-
ing and transfer-learning. J Syst Softw 176:110936

	18.	 Mens T, Tourwe T (2004) A survey of software refactoring. IEEE Trans Softw Eng 30(2):126–139.
https://​doi.​org/​10.​1109/​TSE.​2004.​12658​17

	19.	 Palomba F, Bavota G, Di Penta M, Fasano F, Oliveto R, De Lucia A (2018) A large-scale empirical
study on the lifecycle of code smell co-occurrences. Inf Softw Technol 99:1–10

	20.	 Tsoumakas G, Katakis I (2007) Multi-label classification: an overview. Int J Data Wareh Min
(IJDWM) 3(3):1–13

	21.	 Kreimer J (2005) Adaptive detection of design flaws. Electron Not Theor Comput Sci
141(4):117–136

	22.	 Khomh F, Vaucher S, Guéhéneuc YG, Sahraoui H (2009) A Bayesian approach for the detection of
code and design smells. In: Ninth international conference on quality software, pp 305–314 https://​
doi.​org/​10.​1109/​QSIC.​2009.​47

	23.	 Khomh F, Vaucher S, Yann-Gaël G, Sahraoui H (2011) BDTEX: a GQM-based Bayesian approach
for the detection of antipatterns. J Syst Softw 84(4):559–572

	24.	 Hassaine S, Khomh F, Gueheneuc YG, Hamel S (2010) IDS: an immune-inspired approach for the
detection of software design smells. In: Seventh international conference on the quality of informa-
tion and communications technology, pp 343–348 https://​doi.​org/​10.​1109/​QUATIC.​2010.​61

	25.	 Oliveto R, Khomh F, Antoniol G, Gueheneuc YG (2010) Numerical signatures of antipatterns: an
approach based on B-splines. In: 14th European conference on software maintenance and reengi-
neering, pp 248–251. https://​doi.​org/​10.​1109/​CSMR.​2010.​47

	26.	 Maiga A, Ali N, Bhattacharya N, Sabané A, Guéhéneuc YG, Aimeur E (2012) SMURF: a SVM-
based incremental anti-pattern detection approach. In: 19th working conference on reverse engineer-
ing, pp 466–475. https://​doi.​org/​10.​1109/​WCRE.​2012.​56

	27.	 Maiga A, Ali N, Bhattacharya N, Sabané A, Guéhéneuc YG, Antoniol G, Aïmeur E (2012) Sup-
port vector machines for anti-pattern detection. In: Proceedings of the 27th IEEE/ACM international
conference on automated software engineering, pp 278–281. https://​doi.​org/​10.​1145/​23516​76.​23517​
23

	28.	 Dewangan S, Rao RS, Mishra A, Gupta M (2021) A novel approach for code smell detection: an
empirical study. IEEE Access 9:162869–162883

	29.	 Barbez A, Khomh F, Guéhéneuc Y-G (2020) A machine-learning based ensemble method for anti-
patterns detection. J Syst Softw 161:110486

	30.	 Guggulothu T, Moiz SA (2020) Code smell detection using multi-label classification approach.
Softw Qual J 28(3):1063–1086

	31.	 Kiyak EO, Birant D, Birant KU (2019) Comparison of multi-label classification algorithms for code
smell detection. In: 2019 3rd international symposium on multidisciplinary studies and innovative
technologies (ISMSIT), pp 1–6. IEEE

	32.	 Boutaib S, Elarbi M, Bechikh S, Palomba F, Said LB (2022) A bi-level evolutionary approach for
the multi-label detection of smelly classes. In: Proceedings of the genetic and evolutionary compu-
tation conference companion, pp 782–785

	33.	 Li Y, Zhang X (2022) Multi-label code smell detection with hybrid model based on deep learning.
In: SEKE, pp 42–47

	34.	 Chidamber SR, Kemerer CF (1994) A metrics suite for object oriented design. IEEE Trans Softw
Eng 20(6):476–493

	35.	 Azeem MI, Palomba F, Shi L, Wang Q (2019) Machine learning techniques for code smell detec-
tion: a systematic literature review and meta-analysis. Inf Softw Technol 108:115–138

	36.	 Aniche M (2015) Java code metrics calculator (ck). https://​github.​com/​mauri​cioan​iche

https://doi.org/10.1109/TSE.2009.50
https://doi.org/10.1109/TSE.2009.50
https://doi.org/10.1109/TSE.2004.1265817
https://doi.org/10.1109/QSIC.2009.47
https://doi.org/10.1109/QSIC.2009.47
https://doi.org/10.1109/QUATIC.2010.61
https://doi.org/10.1109/CSMR.2010.47
https://doi.org/10.1109/WCRE.2012.56
https://doi.org/10.1145/2351676.2351723
https://doi.org/10.1145/2351676.2351723
https://github.com/mauricioaniche

2612	 M. Hadj‑Kacem, N. Bouassida

1 3

	37.	 Trindade RPF, Silva Bigonha MA, Ferreira KAM (2020) Oracles of bad smells: a systematic litera-
ture review. In: Proceedings of the 34th Brazilian symposium on software engineering, pp 62–71.
Association for Computing Machinery

	38.	 Zakeri-Nasrabadi M, Parsa S, Esmaili E, Palomba F (2023) A systematic literature review on the
code smells datasets and validation mechanisms. ACM J Comput Cult Herit 55(13s):1–48

	39.	 Madeyski L, Lewowski T (2020) MLCQ: Industry-relevant code smell data set. In: Proceedings
of the evaluation and assessment in software engineering. EASE ’20, pp 342–347. Association for
Computing Machinery. https://​doi.​org/​10.​1145/​33832​19.​33832​64

	40.	 Read J, Pfahringer B, Holmes G, Frank E (2011) Classifier chains for multi-label classification.
Mach Learn 85(3):333

	41.	 Tsoumakas G, Katakis I, Vlahavas I (2010) Mining multi-label data. Data mining and knowledge
discovery handbook, pp 667–685

	42.	 Read J (2008) A pruned problem transformation method for multi-label classification. In: Proceed-
ings of 2008 New Zealand computer science research student conference (NZCSRS 2008), vol
143150, p 41

	43.	 Tsoumakas G, Katakis I, Vlahavas I (2008) Effective and efficient multilabel classification in
domains with large number of labels. In: Proceedings of ECML/PKDD 2008 workshop on mining
multidimensional data (MMD’08)

	44.	 Tsoumakas G, Katakis I, Vlahavas I (2011) Random k-labelsets for multi-label classification. IEEE
Trans Knowl Data Eng 23(7):1079–1089

	45.	 Read J, Pfahringer B, Holmes G (2008) Multi-label classification using ensembles of pruned sets.
In: 2008 Eighth IEEE international conference on data mining, pp 995–1000. IEEE

	46.	 Schapire RE, Singer Y (2000) Boostexter: a boosting-based system for text categorization. Mach
Learn 39(2/3):135–168

	47.	 Zhang ML, Zhou ZH (2006) Multi-label neural networks with applications to functional genomics
and text categorization. IEEE Trans on Knowl Data Eng 18:1338–1351

	48.	 Spyromitros E, Tsoumakas G, Vlahavas I (2008) An empirical study of lazy multilabel classification
algorithms. In: Proceedings of 5th hellenic conference on artificial intelligence (SETN 2008)

	49.	 Cheng W, Hullermeier E (2009) Combining instance-based learning and logistic regression for mul-
tilabel classification. Mach Learn 76(2–3):211–225

	50.	 Zhang M-L, Zhou Z-H (2007) ML-KNN: a lazy learning approach to multi-label learning. Pattern
Recogn 40(7):2038–2048

	51.	 Charte F, Rivera AJ, Jesus MJ, Herrera F (2015) Addressing imbalance in multilabel classification:
measures and random resampling algorithms. Neurocomputing 163:3–16. https://​doi.​org/​10.​1016/j.​
neucom.​2014.​08.​091

	52.	 Charte F, Charte D (2015) Working with multilabel datasets in R: the mldr package. R J
7(2):149–162

	53.	 Charte F, Rivera AJ, Jesus MJ, Herrera F (2015) MLSMOTE: approaching imbalanced multilabel
learning through synthetic instance generation. Knowl-Based Syst 89:385–397

	54.	 Tsoumakas G, Spyromitros-Xioufis E, Vilcek J, Vlahavas I (2011) Mulan: a java library for multi-
label learning. J Mach Learn Res 12:2411–2414

	55.	 Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining
software: an update. ACM SIGKDD Explor Newslett 11(1):10–18

	56.	 Zhang M-L, Zhou Z-H (2013) A review on multi-label learning algorithms. IEEE Trans Knowl Data
Eng 26(8):1819–1837

	57.	 Gibaja E, Ventura S (2014) Multi-label learning: a review of the state of the art and ongoing
research. Wiley Interdiscip Rev Data Min Knowl Discov 4(6):411–444

	58.	 García S, Fernández A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple com-
parisons in the design of experiments in computational intelligence and data mining: Experimental
analysis of power. Inf Sci 180(10):2044–2064

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

https://doi.org/10.1145/3383219.3383264
https://doi.org/10.1016/j.neucom.2014.08.091
https://doi.org/10.1016/j.neucom.2014.08.091

	Multi-label learning for identifying co-occurring class code smells
	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Overview of the proposed approach
	3.2 Statistical analysis
	3.3 Annotation of code smells
	3.4 Multi-label learning methods

	4 Dataset construction
	4.1 Generation of multi-label dataset
	4.2 Characteristics of multi-label dataset

	5 Experiments and results
	5.1 Experimental settings
	5.2 Evaluation metrics
	5.3 Co-occurrence of code smells at class-level
	5.4 Role of correlation between code smells in prediction results
	5.5 Comparing multi-label learning methods

	6 Threats to validity
	7 Conclusion
	References

