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Abstract
Influence maximization (IM) problem for messages propagation is an important 
topic in mobile social networks. The success of the spreading process depends on 
the mechanism for selection of the influential user. Beside selection of influential 
users, the computation and running time should be considered in this mechanism 
to ensure the accurecy and efficient. In this paper, considering that the overhead of 
exact computation varies nonlinearly with fluctuations in data size, random algo-
rithm with smoother complexity change was designed to solve the IM problem in 
combination with greedy algorithm. Firstly, we proposed a method named two-hop 
neighbor network influence estimator to evaluate the influence of all nodes in the 
two-hop neighbor network. Then, we developed a novel greedy algorithm, the ran-
dom walk probability cost-effective with lazy-forward (RWP-CELF) algorithm by 
modifying cost-effective with lazy-forward (CELF) with random algorithm, which 
uses 25–50 orders of magnitude less time than the state-of-the-art algorithms. We 
compared the influence spread effect of RWP-CELF on real datasets with a theoreti-
cally proven algorithm that is guaranteed to be approximately optimal. Experiments 
show that the spread effect of RWP-CELF is comparable to this algorithm, and the 
running time is much lower than this algorithm.

Keywords Influence maximization · Mobile social network · Two-hop neighbor 
network influence estimator · Random algorithm · Greedy algorithm
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1 Introduction

The continuous combination of social networks and mobile internet has prompted 
the emergence and development of mobile social networks (MSNs), which enable 
people to spread information and opinions more quickly and widely [1]. As a tool 
for user communication, a piece of information in mobile social networks can 
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spread quickly through “word of mouth” among friends, and this diffusion phe-
nomenon has been found to have many applications, such as viral marketing [2], 
rumor control [3], etc. Viral marketing means that the companies select a group 
of high-influence users in the network to spread product information in the circle 
of friends, so that they can achieve the purpose of product promotion in the entire 
network at a lower cost [4]. The spread of rumors through online networks not 
only threatens public safety but also results in loss of financial property, one of 
the ways to achieve rumor control is to select some users in the network to spread 
an anti-rumor message to curb the spread of rumors [5]. Researchers put forward 
the influence maximization (IM) problem to study this kind of communication 
phenomenon, which has attracted widespread attention. [6].

The goal of IM problem is to find a set of influence seed nodes with a size of k, and 
spread the information to the entire network as much as possible under a specific propa-
gation model through these k seed nodes. Kempe et al. [7] first regarded the influence 
maximization problem as a discrete optimization problem, and proved that it is an NP-
hard problem. With the development of research, many other related problems based on 
IM problems have been proposed [8], such as Budgeted Influence Maximization Problem 
(BIM Problem) [9], Weighted Target Set Selection Problem (WTSS Problem) [10], etc. 
One crucial challenge in influence maximization is to quickly find the seed node set while 
ensuring the effective spread of influence. Many greedy and heuristic algorithms have 
been proposed to solve the influence maximization problem, but they often fail to guar-
antee fast search for the set of seed nodes and great influence spread at the same time [8]. 
We focuse on finding seed node set more efficiently while ensuring effective influence 
spread. The main contributions are listed as follows:

– We propose the two-hop neighbor network influence estimator (TNNIE), the 
method can evaluate the node’s influence in its two-hop neighbor network accu-
rately and quickly, and we theoretically proved the feasibility of the algorithm.

– We design a novel random algorithm named random walk probability (RWP) to 
evaluate the influence of candidate seed nodes and obtain their set of neighbor 
nodes. Based on this, we also develop random walk probability cost-effective 
with lazy-forward (RWP-CELF), a greedy algorithm, to ensure that the problem 
of overlapping influence between nodes is avoided, and quickly find the set of 
seed node.

– The experiments results of six real datasets show that our algorithm runs 20–50 
times faster than state-of-the-art algorithms and has comparable influence spread 
effects to theoretically proven algorithm that are guaranteed to be approximately 
optimal.

The rest of this paper is organized as follows. We introduce two diffusion models 
commonly used to achieve influence maximization and some related work to IM 
problem in Sect. 2. In Sect. 3, We introduce how to extract mobile social networks 
into a graph to solve the problem of maximizing influence and show the methods 
we proposed to solve IM problem. In Sect. 4, we demonstrate the effectiveness and 
efficiency of our proposed methods through experiments. Finally, Sect. 5 concludes 
this paper.
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2  Related work

In this section, we first introduce two commonly used diffusion models and their 
properties, and then introduce some methods to solve influence maximization 
problem.

2.1  Influence diffusion models

The spread of influence is an important evaluation index of the influence maximiza-
tion problem, which is demonstrated by simulation of the diffusion models. Here we 
introduce the two most widely used models: Independent Cascade Model (IC) and 
Linear Threshold Model (LT) [7].

Nodes are divided into two states in both models: active and inactive. In the IC model, 
when a node is activated at time t, it can only try to activate the inactive neighbor nodes at 
time t + 1 , the probability of success is p, this behavior is independent. In the LT model, 
whether a node can change from an unactivated state to an active state depends on the 
activated in-degree nodes. The difficulty of each node activation is randomly generated, 
each node has an activation threshold � ∈ (0, 1) , and the behavior of the activated node is 
not independent. For an inactive node v, when the sum of the in-degree node’s influence 
on it is greater than � , node v becomes the active state. Our algorithm focuses on influence 
maximization under the IC model.

In addition to the two commonly used models mentioned above, many variant 
propagation models based on these two models have been proposed [11]. For exam-
ple, Zhu et al. [12] proposed a classification metric method called SpreadRank and 
designed the Continuous Time Markov Chain Independent Cascade Model (CTMC-
ICM) based on the IC model. Srivastava et  al. [13] designed a new model based 
on the influence of nodes in the local network, taking into account social behavior 
among users and some other factors. Baghmolaei et  al. [14] first introduced trust 
mechanism into the IC model and proposed a trust based latency aware independent 
cascade (TLIC) model. Wang et al. [15] extended the LT model and proposed the 
Linear Threshold with multi level Attention (LT-MLA) model by determining the 
state of nodes through various attitudes.

2.2  Presented approaches

The existing solutions for IM problem can be divided into the following three cat-
egories: greedy algorithms, heuristic algorithms and other alogrithms.

2.2.1  Greedy algorithms

Kempe et al. [7] firstly proposed a hill-climbing greedy algorithm: SimpleGreedy, 
and proved the errors bounded at 

(

1 −
1

e
− �

)

 to the optimal solution approximately. 
However, although the SimpleGreedy algorithm can guarantee high effectiveness, it 
takes a lot of time, and as the network scale becomes larger, its time consumption 
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becomes larger. To solve it, many methods were proposed to reduce the time con-
sumed while ensuring the effectiveness of SimpleGreedy.

According to the submodularity of the diffusion model, Leskovec et al. [16] used Lazy 
Evaluation to reduce the number of node influence evaluations and proposed Cost-Effec-
tive with Lazy-Forward (CELF) to improve the efficiency of the SimpleGreedy algorithm 
up to 700 times, CELF guarantes to achieve at least a fraction 1

2

(

1 −
1

e
− �

)

 of the opti-
mal solution. Goyal et al. [17] proposed CELF++ based on CELF algorithm, which fur-
ther improves the efficiency, but it is still not suitable for large-scale network scenarios. 
Chen et al. [18] proposed a greedy-based algorithm: NewGreedy, which makes the struc-
ture of the network simpler by removing the edges that are not involved in the propagation 
of the network, thereby reducing the running time of the SimpleGreedy algorithm. Kundu 
and Pal [19] proposed a deprecation-based greedy strategy to realize the selection of seed 
nodes for large-scale social networks, and from the perspective of theoretical proof, it 
shows that the algorithm can correctly identify the node to be discarded for any mono-
tonic and sub-module influence function. Shang et al. [20] proposed CoFIM for the prob-
lem of maximizing the influence of large-scale non-overlapping community networks, 
they assume that the influence diffusion of nodes can be divided into cross-community 
and intra-community. Lu et al. [21] proposed a CascadeDiscount algorithm, which esti-
mates the marginal revenue of nodes by removing the influence loss of nodes on neigh-
bors after evaluating the initial influence, and then selects the influence seed node set 
based on a greedy strategy.

2.2.2  Heuristic algorithms

To obtain influence seed node set quickly, scholars have proposed many heuristic algo-
rithms based on centrality metrics. The simplest methods are to select the top k nodes 
of a given centrality metric, such as degree centrality [22], closeness centrality [22], 
betweenness centrality [23], etc., as the set of influence seed nodes. However, the influ-
ence nodes of these high centrality metrics may be aggregated, which leads to a possible 
overlap of influence ranges among the selected influence seed node set, thus making the 
algorithm ineffective. Chen et al. [18] proposed two heuristic algorithms: SingleDiscount 
and DegreeDiscount to select influence seed node set by considering the effect of the cur-
rently selected seed node on subsequent nodes. According to the experimental results, the 
DegreeDiscount algorithm shows a better performance than the SingleDegree algorithm. 
Gao et al. [24] proposed a new notion to evaluate social influence, which is measured by 
two indices based on local attributes and behavioral characteristics. Zhang et al. [25] pro-
posed a scheme that integrates ITÖ algorithm into PSO algorithm to solve the problem of 
maximizing the influence in MSNs.

The heuristic algorithms can select the influential seed node set in a short time, 
but this kind of algorithm often has bad performance in the influence spread. The 
results of dealing with the problem of maximizing influence are not very satisfactory.

The meta-heuristic algorithms were found to be suitable for solving the problem 
of maximizing influence. By imitating the behavior of biological populations and 
the evolution process of some phenomena in physics, the seed node set is obtained. 
Jiang et  al. [26] made the first attempt, they first proposed the EDV (Expected 
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Diffusion Value) influence evaluation function to evaluate the expected value of the 
spread of nodes within one-hop neighbors, and then through the process of optimiz-
ing the EDV function through the simulated annealing algorithm to select the node 
set, the experimental results show this algorithm can obtain an efficiency improve-
ment that is 2–3 orders of magnitude higher than that of the traditional greedy algo-
rithm. Based on EDV, Cui et  al. [27] proposed an evolutionary algorithm named 
degree-descending search evolution (DDSE) based on a degree-decreasing search 
strategy to select seed nodes. Gong et al. [28] proposed LIE (Local Influence Esti-
mation) function to evaluate the influence expected value of seed node set in the 
two-hop neighbor network. Inspired by the efficient evolutionary mechanism based 
on swarm intelligence, Tang et  al. [29] proposed a discrete shuffled frog-leaping 
algorithm for the influence maximization problem.

2.2.3  Other algorithms

In addition to the above two types of methods, there are many other types of meth-
ods proposed to solve IM problem. For example,

Zhang et al. [30] conducted research on a small network, extracted network infor-
mation to construct a transfer probability matrix, and used a clustering algorithm to 
divide the network into communities to identify influential nodes.

Shang et al. [31] designed a framework based on community structure for large-
scale networks to solve the problem of maximizing influence. By dividing the prop-
agation process into two stages, the influence of nodes in the network is evaluated 
from different stages. In addition, they also proposed a framework IMPC based on 
the multi-neighbor potential, and designed an objective function to approximate the 
influence of nodes in the network [32].

Farzaneh et al. [33] proposed the IMBC (Influence Maximization Based on Com-
munity Structure) algorithm, which abstracted communities as hypergraph nodes to 
prune the network, thereby reducing network computational overhead and improv-
ing efficiency.

Kim et al. [34] proposed an Independent Path Algorithm (IPA), which considers 
the probability that all paths between two nodes may have an impact, and assumed 
that the propagation process between each path exists independently of each other, 
through parallel computing Improve efficiency.

Liu et al. [35] also considered the possibility of influence transfer between nodes 
from the propagation path, and improved the computational efficiency by pruning 
the propagation path between nodes.

Although the greedy algorithm can show a good propagation effect, it has the 
problem of high complexity. As the network complexity increases and the network 
scale becomes larger, the time cost of this type of algorithm will become unaccep-
table; heuristic The meta-heuristic algorithm simply uses nodes with high influence 
as seed nodes, and does not take into account the overlapping influence between 
nodes; the meta-heuristic algorithm may fall into a local optimum, resulting in the 
selected seed nodes failing to achieve the optimal Excellent communication effect; 
community-based methods may not perform satisfactorily when faced with network 
situations without obvious community structures.
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3  Influence maximization based on RWP‑CELF

In this section, we first introduce how to extract mobile social networks into a graph to 
solve the problem of maximizing influence and the overview of proposed methods. Then, 
our method, TNNIE, which is used to evaluate the node’s initial influence, will be elabo-
rated on, and we proved its rationality. Next, we describe how RWP algorithm evaluates 
the influence of candidate seed nodes. Finally, We explain how the RWP-CELF algorithm 
avoids the influence overlap problem and the way it selects the set of seed nodes.

3.1  Extracted mobile social networks and overview of methods

Mobile social networks are often abstracted as graphs to solve the problem of maximiz-
ing influence. The structure of mobile social networks can be represented by a graph 
G = (V ,E) . A node is used to represent an independent individual participating in the 
network, and V is a collection of these nodes. A certain relationship between two users in 
the network is abstracted as an edge between them, and E is used to represent the set of 
these edges. Nodes usually have two states in the network, active and inactive. The entire 
network is abstracted as a graph composed of user nodes and user relationships, and mes-
sages are transmitted between users through the edges in the network. The notations in 
this paper are shown in Table 1.

The overview of the proposed methods is shown in Fig. 1.
Firstly, the network is initialized, users are abstracted as nodes, and the relationship 

between users is regarded as edges. Then calculate the influence of all nodes according to 
the TNNIE algorithm and sort them in descending order. Select the node with the greatest 
influence in the ranking and assign it to u, add u to the seed node set Sk , and then calculate 
according to the RWP algorithm with u as the center to obtain the neighbor node set S and 
the probability set Q of these neighbor nodes being affected. According to Q and S, delete 
neighbor nodes in the network that can be highly influenced by u. Then calculate the top 
nodes with the highest influence among the remaining network nodes, select seed node to 

Table 1  Notations Notation Definition

G(V, E) Graph consisting of a set of nodes V and a set of edges E
v Node v
du The degree of node u
Du Normalized degree of node u
�
∗(u) The influence of node u in its two-hop neighbor network

L Random walk length
p The propagation probability of each edge
pr The random walk probability
S Node set
u The most influential node among the remaining nodes
Q The probability set of neighbor nodes being affected by 

influential node
k The size of the seed node set
Sk Seed set of size k
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assign values to u according to the calculation results S of these nodes, add u to the seed 
node set Sk and delete neighbor nodes highly influenced by u. Repeat the above steps until 
the size of the seed node set is k, and finally output the seed node set.

3.2  Two‑hop neighbor network influence estimator algorithm

Christakis and Fowler [36] considered that the spread of one’s influence is limited to a 
few local friends, and cannot spread to the entire network, named Three Degree Theory. 
Pei et al. [37] pointed out that the expected influence diffusion of nodes in the network 
depends on the influence of the second-order neighborhood of nodes. Following this, we 
propose Two-hop neighbor network influence estimator (TNNIE) to evaluate the influ-
ence of a node in the two-hop neighbor network and we demonstrate its reasonableness.

Lemma 1 In the independent cascade model, give a graph G(V,E), the influence of 
node u in its two-hop neighbor network is represented by �∗(u) , when the propaga-
tion probability of each edge is a constant p, it can be defined as:

Proof In the IC model, the behavior of nodes to influence neighbor nodes is inde-
pendent, so the expected influence spread of a node u in one-hop network can be 
computed as:

�
∗(u) = 1 + p ⋅ du + p2 ⋅

∑

vi∈N
−
(u)

dvi

�1(u) = �0(u) + �
∗
1
(u) = 1 +

∑

vi∈N
−
(u)

pu,vi

Fig. 1  Overview of the proposed methods
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the pu,vi indicate the probability of node u activating its neighbor node vi . Based on 
�1(u) , the expected influence spread of u in two-hop network can be computed as:

because the propagation probability of each edge is a constant p, so:

therefore

  ◻

According to Lemma 3.1, the influence of a node in two-hop neighbor network can 
be calculated by Eqs. (1) and (2):

Normalize the degree of the node using the Eq. (2), the du indicate u‘s degree and 
dmax indicate the maximum node degree in the network.

3.3  Random walk probabiliy

The traditional greedy algorithm evaluates the influence of candidate seed nodes in the 
network through the Monte Carlo simulation method. The results obtained by this method 
are accurate, but this method takes a lot of time and is not applicable in large-scale net-
works. Therefore, we design the RWP algorithm, which is used for accurate and fast influ-
ence evaluation of candidate seed nodes when selecting seed node sets, and can obtain the 
neighbor node sets that may be influenced by candidate seed nodes to prepare for avoid-
ing influence overlap.

�2(u) = �0(u) + �
∗
1
(u) + �

∗
2
(u) = 1 +

∑

vi∈N
−
(u)

pu,vi +
∑

vi∈N
−
(u)

∑

vj∈N
−

(vi)

pu,vi ⋅ pvivj

pu,vi = pvivj
∑

vi∈N
−
(u)

= du

∑

vj∈N
−

(vi)

= dvj

�
∗(u) = 1 + p ⋅ du + p2 ⋅

∑

vi∈N
−
(u)

dvi

(1)Du =
du

dmax

(2)�
2∗(u) =1 + p ⋅ Du + p2 ⋅

∑

vi∈N
−
(u)

Dvi
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Algorithm 1  Random Walk Probability (RWP)

Random walk is often used to search for a node’s neighbor nodes. Fu et al. [38] used 
random walk technology to obtain neighbors of each node, and gathered the vertices with 
similar neighbors into a community. Okuda et al. [39] proposed Restrained Random Walk 
to get a node’s neighbors which are in the same community. Although random walk can 
obtain a node’s neighbor node set. But whether one node can influence another node is a 
question of probability. As the number of hops increases, the influence of seed nodes will 
decrease, which means the probability of activating nodes will also decrease. Therefore, 
we design RWP algorithm, which calculates the probability of each neighbor node being 
walked by performing multiple random walks from as the probability of being influenced, 
and obtains the set of nodes consisting of neighboring nodes with high probability of 
being influenced.

The whole process of RWP is described in Algorithm 1. Where So is used to store the 
neighbor nodes traversed by each random walk (nodes that are repeatedly walked will be 
stored multiple times); S is used to store all the neighbor nodes that the random walk has 
gone through after de-duplication. startnode indicated the node from which to start each 
random walk. Lines 2–11 represent a limited number of random walks from candidate 
seed node u, and the distance of each walk is L. In order to obtain the set of neighbor 
nodes as accurately as possible, the number of random walks is set to twice the degree of 
u. Lines 12–19 count the set of neighbor nodes that have been randomly walked from u 
after de-duplication, and calculate the probability that each neighbor node may randomly 
walk, nodes with random walk probability pn higher than random walk probability pr are 
stored in Sinf  . Finally, the neighbor node set Sinf  is returned, and the number of nodes in 
Sinf  is the influence spread range of the candidate seed node u.
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3.4  Random walk probability cost‑effective with lazy‑forward

CELF was proposed to solve the inefficiency of SimpleGreedy [16], it guarantes to 
achieve at least a fraction 1

2

(

1 −
1

e
− �

)

 of the optimal solution with a theoretically 
proven. It reduces the number of Monte Carlo simulations each time a seed node is 
picked according to submodularity, thus reducing the running time.

Although CELF can effectively maximize the influence, it still has problems such 
as inefficiency in finding the set of seed node, which is not suitable for large-scale 
networks. When the CELF algorithm selects the optimal seed node in each round, 
the candidate seed node and the already selected seed nodes are combined together 
to calculate the influence spread range through Monte Carlo simulation, which not 
only increases the redundancy of the selected seed node calculation, but also ignore 
the overlapping influence between nodes. Therefore, we develop RWP-CELF to 
select the seed node set more efficiently while ensuring that the problem of overlap-
ping influence between nodes is avoided.

Algorithm  2  Random Walk Probability Cost-Effective with Lazy-Forward 
(RWP-CELF)
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In RWP-CELF, after each round of seed node selection, the neighbor nodes of 
the node will be deleted from the network. When selecting a seed node next time, 
candidate nodes are selected in the pruned network and their influence spread evalu-
ation is calculated. In this way, the problem of overlapping influence between can-
didate nodes and already selected seed nodes is avoided. The most influential node 
calculated by TNNIE is added to the seed node set in the first iteration, and in the 
following iterations, the RWP algorithm is used to calculate only the possible influ-
ence spread of candidate nodes in the pruned network and compare the spread range 
(without considering the influence spread of the already selected seed nodes), redun-
dant computation is avoided, and the optimal node is added to the seed node set.

The whole process of RWP-CELF is described in Algorithm 2. The Sk is used to 
store the seed nodes. Initialize Sk in step 1. Then, calculate every node’s influence by 
TNNIE and sort the nodes in descending order based on their influence to obtain the 
ranking list INF (lines 2–5). Lines 6–29 select the seed node set of size k. Initialize each 
parameter in line 7, S is used to store the set of neighbor nodes that the candidate seed 
node may influence. u is used to store a seed node, and num represents the rank of the 
select candidate seed node in the list INF. In lines 9–14, the first node in INF is selected 
to store in u, and get the node’s S through RWP, then add u to Sk . For each node in S, 
delete the node from the network G and list INF. Lines 16–26 select the remaining seed 
nodes. When u is NULL, select two nodes ranked num and num + 1 as candidate seed 
nodes, compare S1 of node u1 and S2 of node u2 , if Num(S1) > Num(S2) , repeat lines 
11–14, otherwise num = num + 1 , and this while loop.

4  Experimental evaluation and results

This section verifies the effectiveness of our proposed methods through simulation 
experiments. Our experiments are run on a Mac OS system with a 2.6 GHz six-core 
Intel Core i7 and 16 GB of RAM. The codes used in the experiment are all written in 
python and operated on the Pycharm platform.

4.1  Data sets

We demonstrate the performance of our propose methods by conducting experiments 
on six real-world datasets. And in order to verify the generality of the scheme, both 
directed networks and undirected networks are selected for experiments.

• AstroPh and CondMat datasets [40] are undirected networks formed by the collabo-
rative relationship between the authors.

• Slashdot [41] is a undirected social network, which shows popular technology-
related news.

• The Epinions [42] data set comes from the consumer review website Epinions.com, 
which contains the who-trust-whom relationship. On this website, each user can 
comment on a certain product online, while other users will express trust and dis-
trust of the comments.
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• The Eu-Email [40] network was created by European research institutes collect-
ing email data. Nodes represent email addresses, and the behaviors of sending and 
receiving email information between nodes constitute a set of edges.

• Stanford [41] is a network graph obtained from the Stanford University website. 
Nodes are used to represent web pages, and links between web pages are repre-
sented by directed edges.

Some statistics of six datasets are shown in Table 1. |V| represents the number of nodes, 
and |E| represents the network’s edges number. davg represents the average node degree. 
AC represents the average clustering coefficient. Type indicates whether the network is 
a directed graph or an undirected graph

4.2  Baseline algorithms

To prove the effectiveness and efficiency of our approach, Our algorithm will be 
contrasted with five state-of-the-art algorithms on six datasets. The parameters of 
these comparison algorithms are set according to the suggestions given in the origi-
nal text. The propagation probability we set in the IC model is the same as most of 
the comparative literature [27–29].

• CELF [16]: A notable greedy-based algorithm that searches for influential node 
sets based on submodularity property and “lazy-forward” strategy. The Monte-
Carlo simulation time is set to 10,000 to estimate nodes’ marginal gain.

• SSA [43]: An optimal sampling framework based on the idea of reverse influ-
ence sampling. The parameters � is set to 0.1, and � is set to 0.1 and 0.01.

• DPSO [28]: An effective meta-heuristic algorithm. After a certain number of 
optimization iterations, k seed nodes with the best LIE adaptation value will be 
selected. The learning factors are set to 2, and the inertia weight � is set to 0.8.

• DDSE [27]: An evolutionary algorithm based on a degree-decreasing search 
strategy to select seed nodes. The diversity of the population is set to 0.6, the 
mutation probability is set to 0.1, and the crossover probability cr will be set to 
0.4.

• DSFLA [29]: A discrete shuffled frog-leaping algorithm based on network topol-
ogy characteristics to identify influential nodes. The parameter setting pattern 
where F = 100, m = 20, n = 5, q = 3 ∗ n∕4 and Iter = 30.

4.3  RWP‑CELF parameter settings

In the RWP-CELF, there are two key parameters: random walk probability pr and 
walklength L. According to the literature [36, 37], we set the size of L to 3. We 
choose the best random walk probability pr through experiments.

We select ca-AstroPh dataset to test the best random walk probability pr . The 
experimental results are shown in Table 2. As the results, we can observe that when 
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pr is set to 0.4, the maximum spread size can be obtained while ensuring time effi-
ciency (Table 3).

4.4  Influence spread comparison

We evaluate the performance of the six algorithms on six datasets through experi-
ments. The maximal evolutionary generation gmax of DSFLA, DPSO, and DDSE is 
set to 100. For DPSO, DDSE, DSFLA, and RWP-CELF, perform 1000 simulation 
experiments to obtain the average influence spread for comparison.

Figure  2 shows the influence spread performance of the six algorithms in six 
datasets with IC model propagation probability p = 0.01. From Fig. 2, we can con-
clude that RWP-CELF achieves satisfactory influence spread in all six real networks. 
In the AstroPh network and CondMat network, RWP-CELF has almost achieved the 
same influence spread as CELF. In the Slashdot network and the Epinions network, 
RWP-CELF shows the best influence spread when the number of seed nodes is 
small, and as the number of seed nodes increases, the influence spread in the Slash-
dot network is weaker than CELF, DPSO, and DSFLA, only weaker than CELF and 
DPSO in the Epinions network. In the Eu-Emal network, RWP-CELF is slightly 
inferior to CELF and DPSO and is obviously stronger than the other three algo-
rithms. In the Stanford network, the influence spread of RWP-CELF is almost the 
same as the best algorithm. We can also observe that with the increase of the num-
ber of seed nodes, the influence propagation range of RWP-CELF presents a smooth 
growth trend, indicating that our method follows the strategy of finding the node 
with the largest marginal gain as the seed node.

4.5  Running time comparison

We compare the running time of six algorithms to find 100 seed nodes in six net-
works to show the efficiency of our algorithm. Among them, the unit of the running 
time of CELF is minutes, while the others are seconds.

In Fig. 3, we can observe that the running time of DDSE, SSA, and RWP-CELF 
under most networks is almost the same, In the AstroPh network and CondMat net-
work, DDSE, SSA, and RWP-CELF even take less than 10  s to identify the seed 
node set. But as shown in Fig.  1, we can observe that RWP-CELF is better than 

Table 2  Network datasets Network |V| |E| davg AC Type

AstroPh 18772 198110 21.107 0.677 Undirected
CondMat 23133 186936 16.162 0.055 Undirected
Slashdot 77360 905468 23.409 0.087 Undirected
Epinions 75879 508837 13.412 0.261 Directed
Eu-Email 265214 420045 3.168 0.456 Directed
Stanford 281903 2312497 16.406 0.598 Directed
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DDSE, and SSA in influence spread on all networks, and in the CondeMat network, 
RWP-CELF take the shortest time. Although the CELF algorithm performs almost 
the best in all networks in terms of efficiency, it takes too much time. In the Slash-
dot network, it even spends 31 h to search for the seed nodes. Although the DPSO 
and DSFLA algorithms also have good performance in influence spread, they take 
a much longer time than RWP-CELF. For example, in Eu-Email and Stanford net-
works, RWP-CELF only needs more than ten seconds to search for the seed node 
set, while DPSO and DSFLA require hundreds or even thousands of seconds.

Although our algorithm has well performance in propagation efficiency and 
time efficiency, as RWP-CELF is an improved seed node selection algorithm 
based on CELF, which is an algorithm that improves greedy algorithms based 
on submodularity and only selects the current optimal target, there is a possibil-
ity that the seed node selected in each round of our algorithm may be in a local 
optimal situation. This leads to the fact that the selected seed node cannot be 
guaranteed to be the one that can achieve the highest actual marginal gain among 
all candidate nodes.

5  Conclusions

In this paper, considering that the overhead of exact computation varies nonlin-
early with fluctuations in data size, random algorithm is designed to solve the IM 
problem in combination with greedy algorithm. Through experiments on six real 
data sets, it is shown that compared with the other five algorithms, our algorithm 
can achieve a short running time while ensuring the effectiveness of influence 
spread.

In future work, how to achieve higher global actual marginal gain when selecting 
seed nodes is one of our research directions, such as introducing optimization algo-
rithms for improvement. And, how to ensure effective influence spread with better 
efficiency to solve the influence maximization problem in large-scale networks is the 
focus of our next research. Moreover, it is often not possible to obtain the complete 
network due to the high cost of obtaining the entire network topology. How to maxi-
mize the influence with the missing part of the network structure is also the next step 
of our research goal.

Table 3  Parameter setting 
comparison experiment on 
ca-AstroPh

Tests pr Running time(s) Spread size

Test1 0.1 3.23 510
Test2 0.2 3.52 514
Test3 0.3 3.72 517
Test4 0.4 3.58 525
Test5 0.5 3.80 514
Test6 0.6 3.62 511
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Fig. 2  Comparison of influence 
spread of the six algorithms on 
six datasets
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Fig. 2  (continued)
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