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Abstract
In recent years, distributed adaptive processing has received much attention from 
both theoretical and practical aspects. One of the efficient cooperation structures 
in distributed adaptive processing is the diffusion strategy, which provides a plat-
form for the cooperation of nodes that run an adaptive algorithm, such as the least 
mean-squares (LMS) algorithm. Despite the studies that have been done on the dif-
fusion-based LMS algorithm, the effect of deficient length on such structures has 
been overlooked. Accordingly, in this paper, we study the steady-state performance 
of the deficient length diffusion LMS algorithm. The results of this study show, in 
particular, that setting the tap length below its actual value leads to drastic degrada-
tion of the steady-state excess mean-square error (EMSE) and mean-square devia-
tion (MSD) in diffusion adaptive networks. Furthermore, unlike the full-length case, 
where the steady-state MSD and EMSE decrease significantly with the step size 
reduction, this study shows that in the deficient-length scenario, there are no signifi-
cant improvements in the steady-state performance by reducing the step size. There-
fore, according to this study, the tap length plays a key role in diffusion adaptive 
networks since the performance deterioration due to deficient selection of tap length 
could not be compensated by an adjustment in the step size. Experiments exhibit a 
very good match between simulations and theory.

Keywords  Wireless sensor networks · Diffusion least-mean squares · Deficient 
length · Distributed adaptive estimation · Steady-state analysis

1  Introduction

Distributed parameter estimation is gathered more increased interest in the wire-
less sensor networks (WSNs) application areas. It just relies on the local informa-
tion exchange between neighbouring sensors. It, hence, eliminates the necessity of 
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a powerful fusion center to collect and process the data from the entire sensor net-
work and, as such, decreases the communications power and bandwidth of the con-
ventional centralized approach while preserving similar performance. There are two 
widely considered topologies, diffusion and incremental, for distributed estimation 
over adaptive networks. [1]. However, amongst these structures, diffusion topologies 
show superior performance over incremental topologies in terms of robustness to 
the nodes and link failures and are manageable to distributed implementations [2]. 
As a result, diffusion-based adaptive networks are widely studied that can learn and 
adapt from consecutive data streaming and exhibit good tracking capability and fast 
convergence rates. Besides, based on the diffusion structure, different diffusion tech-
niques have been presented, such as the diffusion recursive least squares (D-RLS) 
[3], diffusion least mean square (D-LMS) [4], diffusion Kalman filter [5], diffusion 
affine projection (D-APA) [6], and diffusion improved multiband-structured subband 
adaptive filter (D-IMSAF) [7]. The convex combination of two D-LMS algorithms 
is proposed in [8] to overcome the tradeoff between the convergence rate and steady-
state error in the traditional D-LMS algorithm. Two D-LMS algorithms with dif-
ferent step sizes are combined in this algorithm, resulting in a lower steady-state 
error and faster convergence rate at the cost of increased computational complex-
ity. Also, motivated by the idea of combining adaptive algorithms, [9] proposed an 
affine combination framework for diffusion topologies, where affine combination 
coefficients are adjusted based on the minimum mean-square-error (MSE) criterion. 
This combined diffusion structure enjoys the best characteristics of all component 
strategies. Since the conventional diffusion adaptive networks experience a signifi-
cant performance degeneration in the presence of impulsive noise, robust D-RLS 
algorithms are developed in [10] to enhance the performance in such noisy sce-
narios. In another approach, to mitigate the performance deterioration experienced 
in diffusion adaptive networks in the presence of impulsive noise, [11] proposed 
a diffusion-based affine projection M-estimate algorithm, which employs a robust 
M-estimate based cost function. Paper [12] has studied the performance analysis of 
diffusion adaptive networks by considering the communication delays of the links 
between nodes. This paper presents the stability conditions in the mean and mean-
square sense. This paper shows that the delayed D-LMS algorithm could converge 
under the same step-sizes limitation of the conventional D-LMS algorithm without 
considering delays. The transient performance of the D-LMS algorithm for the non-
stationary systems has been studied in [13], where each node employs the different 
types of cyclostationary white non-Gaussian signals.

In [14], the authors have developed the zeroth-order (ZO)-diffusion algorithm 
by utilizing the gradient-free approach to the adaptation phase of the conventional 
diffusion structure. Furthermore, a modification of the stochastic variance reduced 
gradient (SVRG) named time-averaging SVRG (TA-SVRG) is provided in [14] for 
streaming data processing. Finally, the TA-SVRG algorithm has been applied in the 
ZO-diffusion to decrease the estimation variance and enhance the convergence rate.

Distributed diffusion adaptive techniques are implemented in two phases: the com-
bination phase, in which each sensor combines its neighbourhood information, and the 
adaptation phase, in which each sensor updates its estimate based on an adaptive rule. 
The performance of diffusion networks could be enhanced by developing combination 
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policies that set the combination coefficients based on the data quality. Accordingly, the 
design of combination coefficients has been considered in the literature [15–18].

As discussed, the above-mentioned papers have been developed to estimate the ele-
ments of an unknown parameter vector of interest in a distributed manner. These coop-
erative methods utilize a simple assumption that the dimension of the unknown vec-
tor or the tap-length is known a priori. So, they overlook one crucial point: in some 
contexts, the optimal length of the desired parameter is also unknown, similar to its 
elements. On this basis, the tap-length estimation problem has been considered in the 
distributed context based on diffusion [19–21] and incremental strategies [22, 23].

However, in some cases, for reasons such as power storage (since power consump-
tion is a critical concern in WSNs), such variable tap length approaches are not appli-
cable. So a suppositional length for the unknown vector is considered at each sensor. 
Usually, the exact length of the filter is unknown in advance, so it is possible to apply in 
each sensor node a deficient tap-length adaptive filter, i.e., an adaptive filter whose tap-
length is smaller than that of the unknown desired vector length.

In distributed adaptive filter settings, the steady-state study for deficient length sce-
narios has been conducted only in incremental-based adaptive networks [24]. Despite 
the importance of studying the deficient length scenario for diffusion LMS algorithm, 
in almost all diffusion adaptive networks theoretical analysis, it is supposed that the 
length of the adaptive filter is the same as that of the unknown desired vector. On the 
other hand, theoretical findings on sufficient tap-length diffusion adaptive algorithms 
could not necessarily apply to the practical deficient length cases. Accordingly, from 
practical aspects, it becomes very critical to analyze and quantify the statistical behav-
ior of the deficient length diffusion adaptive algorithms.

On this basis, in this paper, we study the deficient length diffusion LMS adaptive 
networks’ performance in the steady state. More precisely, we derive closed-form 
expressions for the EMSE and MSD for each node to explain the efficiency of length 
deficiency on the steady-state performance of each node. This study shows that setting 
the tap length smaller than its actual value leads to drastic degradation of the steady-
state EMSE and MSD in diffusion adaptive networks. Also, unlike the full-length 
case, where the steady-state MSD and EMSE decrease significantly with the step size 
reduction, this study shows that in the deficient-length scenario, there are no significant 
improvements in the steady-state performance by reducing the step size. Consequently, 
according to this study, the tap length plays a key role in diffusion adaptive networks 
since the performance deterioration due to deficient selection of tap length could not be 
compensated by an adjustment in the step size.

NotationAs a convenience to the reader, Tables 1 and 2 list the main acronyms and 
symbols used in this paper.

2 � Background

Consider a network of J sensors implemented in a diffusion structure to estimate the 
unknown vector wo

Lopt
 of length Lopt . It is supposed that the network nodes have no prior 

information about the length Lopt , and each node is equipped with a filter of length 



2446	 G. Azarnia 

1 3

N ⩽ Lopt . Considering the Combine-Then-Adapt (CTA) strategy, the filter coefficients 
update equation in diffusion adaptive networks would be as [2]:

where the N × 1 column vector � (i)

k
 represents the deficient-length local estimate of 

w
o
Lopt

 at sensor k and time i, and where �k stands for the topologically connected 
nodes to node k (the neighborhood of sensor k, including itself). Note that, in (1), all 
vectors have length N. In (1), the positive constant �k is the step-size at sensor k, and 

(1)

⎧⎪⎨⎪⎩

�
(i−1)

k
=

∑
�∈�k

ck,��
(i−1)

�

�
(i)

k
= �

(i−1)

k
+ �ku

∗
k,i

�
dk(i) − uk,i�

(i−1)

k

�

Table 1   List of main acronyms Acronym Description

CTA​ Combine-Then-Adapt
D-RLS Diffusion recursive least squares
EMSE Excess mean-square error
LMS Least mean-squares
MSD Mean-square deviation
MSE Mean-square-error
WSN Wireless sensor network

Table 2   The main symbols

Symbol Description

|x| The absolute value of a scalar x
‖x‖2 The �2-norm of a vector x

‖x‖2∑ The weighted norm for a column vector x ; x∗
∑
x

E{X} The statistical expectation of X
0
N×1 The column vector of zeros of length N
0
N

The N × N square-zero matrix
0
N×M The N ×M zero matrix
I
N

The N × N identity matrix
()T The transpose of a matrix or a vector
()∗ The adjoint (or Hermitian transpose)
tr(.) The trace of a matrix
A
⨂

B The Kronecker product of two matrices
A
⨀

B The block Kronecker product of two block matrices
vec The standard vectorization operator
bvec The block vectorization operator
diag{.} The (block) diagonal matrix consisting of the specified arguments
col{.} The column vector obtained by stacking the specified arguments
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the local combiners {ck,� ⩾ 0} meet the requirement 
∑J

�=1
ck,� = 1 . The combiners 

{ck,�} are collected in a matrix C = [ck,�] that reflects the network topology. In (1), 
the data are supposed to follow the linear model [25]:

In this equation, vk(i) represents white background noise with zero-mean and vari-
ance �2

v,k
 , which is assumed to be independent of uLopt�,j for all �, j.

In (2), uLoptk,i is a vector of length Lopt , and uk,i consists of N first elements of uLoptk,i . 
In this regard, uLoptk,i

 could be written as uLoptk,i
=
[
uk,i, ūk,i

]
 , where 

uk,i =
[
uk(i), uk(i − 1), ..., uk(i − N + 1)

]
 and ūk,i =

[
uk(i − N), ..., uk

(
i − Lopt + 1

)]
 , 

with uk(i) representing the ith element of uk,i.

3 � Steady‑state analysis of deficient tap‑length CTA diffusion LMS 
algorithm

Now, we intend to analyze the steady-state behavior of the CTA diffusion LMS algo-
rithm when a conjectural deficient length is applied for the unknown parameter. In this 
regard, the unknown vector is treated as the composition of two vectors stacked on top 

of each other as 

[
w
(1)

N

w
(2)

Lopt−N

]
 , where w(1)

N
 consists of the first N entries of wo

Lopt
 , and w(2)

Lopt−N
 

consists of the Lopt − N final elements.
To assess the steady-state performance, we analyze the MSD and EMSE measures 

for each sensor k, which are defined as [2]: 

where � (i−1)

Lopt ,k
 is defined as:

where � (i−1)

N,k
= �

(i−1)

k
− w

(1)

N
 . With the definition of � (i−1)

Lopt ,k
 , (3) could be rewritten as: 

(2)dk(i) = uLoptk,i
w
o
Lopt

+ vk(i)

(3a)MSDk = E

{‖‖‖�
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Lopt ,k

‖‖‖
2
}

(3b)EMSEk = E
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|||
2
}
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where R
uk
= E

{
u
∗
k,i
uk,i

}
 and R

uk
= E

{
u
∗

k,i
uk,i

}
 . The components of the regressors 

are assumed to be uncorrelated zero-mean Gaussian processes with variance �2
u,k

 . It 
is also assumed that uLoptk,i is independent of uLopt�,j for k ≠ � and i ≠ j . This assump-
tion will imply the independence of uk,i from � (i−1)

N,k
 . To proceed, we rewrite (1) as:

where the condition 
∑

�∈�k
ck,� = 1 is imposed. Let us subtract w(1)

N
 from both sides 

of (6):

For ease of analysis, we define some quantities:
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Let C = {ck,�} represents the combination coefficient matrix; we also define 
G = C

⨂
IN , where 

⨂
 represents the standard Kronecker product.

With the expressed notation, we rewrite (7) as:

Also, with the expressed notation, the local MSD and EMSE at sensor k can be 
rewritten as: 

 Also, to characterize the network performance, the network MSD and EMSE could 
be considered as: 

where R
U
= E

{
U

∗
i
U

i

}
= diag

{
R
u1
,… , R

uJ

}
 and 

R
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= E
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i
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}
.
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}
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}
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What all these measures have in common is the weighted norm 
�����

(i−1)

N

����
2

∑ . On 

this basis, evaluating the weighted norm on both sides of (8) and then taking expec-
tations yields the following relation:

where
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 on the right-hand side of (11) is due 

to the deficient length adaptive filter application at each node. This term, which con-
tains all the omitted entries of the unknown vector, does not appear in the sufficient 
length scenario.

To proceed, we calculate the moments in the relations (11) and (12). First, 
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where �k� is the k�-block of �  . Therefore, W∗(O)
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E
�
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∗

i
UiD

∑
DU∗

i
Ui
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W
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could be calculated as:
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}
bvec{

∑
} = ϝbvec{

∑
}

(20)
W

∗(O)

Lopt−N
E
{
U

∗

i
UiD

∑
DU∗

i
Ui

}
W

(O)

Lopt−N

=

(
bvec

{(
W

(O)

Lopt−N
W

∗(O)

Lopt−N

)T
})T(

D
⨀

D
)
ϝ bvec{

∑
}
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where B = diag
{
�1,�2,… ,�J

}
 , and

where �(�)
k

 is given by

where � = 2 for real regressors and � = 1 for complex data.
Substituting the resulting moments in (11) and (12) leads to the following relation 

for deficient length diffusion LMS adaptive networks.

where

and

In steady-state, (24) yields to

Therefore, the network and local MSD and EMSE could be evaluated as:

(21)

bvec{
∑̃

} =
(
GT

⨀
G∗

)
bvec{

∑
}

−
(
GT

⨀
G∗

)(
DR

U

⨀
IJN

)
bvec{

∑
}

−
(
GT

⨀
G∗

)(
IJN

⨀
R
U
D
)
bvec{

∑
}

+
(
GT

⨀
G∗

)(
D
⨀

D
)
B bvec{

∑
}

(22)�k = diag
{
�
(1)

k
,… , �

(J)

k

}

(23)�
(�)

k
=

�
rkr

T
k
+ �R

uk

⨂
R
uk

� = k

R
u
�

⨂
R
uk

� ≠ k

(24)E

������
(i)

N

����
2

bvec{
∑
}

�
= E

������
(i−1)

N

����
2

S bvec{
∑
}

�
+ Z bvec{

�
}

(25)
S =

(
GT

⨀
G∗

)

×
[
I −

(
DR

U

⨀
IJN

)
−
(
IJN

⨀
R
U
D
)
+
(
D
⨀

D
)
B

]

(26)
Z =

(
bvec

{(
W

(O)

Lopt−N
W

∗(O)

Lopt−N

)T
})T(

D
⨀

D
)
ϝ

+
(
bvec

{
D2

(
R
V

⨂
IN

)
R
U

})T

(27)E

������
(∞)

N

����
2

(I−S) bvec{
∑
}

�
= Z bvec{

�
}

(28)MSDNet =
1

J
Z(I − S)−1bvec{IJN} +

‖‖‖w
(2)

Lopt−N

‖‖‖
2
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4 � Simulation results

This section compares the theoretical derivations with the computer experiments. 
All simulations are performed in MATLAB© software and examined in the HP lap-
top with Windows 10 Pro 64-bit, with Processor Intel®-coreTM i5-3340M CPU @ 
2.70GHz and 8GB of RAM. All expectations are resulted from averaging over 100 
independent runs. We consider a network with J = 10 sensors where each sensor 
runs a local filter with N taps to estimate the unknown vector 
wo
Lopt

= col{1, 1, ..., 1}∕
√
Lopt with length Lopt = 10 . The zero-mean Gaussian noise 

and regressors are independent in space, and i.i.d. in time. Their statistics profile and 
the network topology are illustrated in Fig. 1. The step size at each sensor is set to 
�k = 0.01 . Also, for the local combiners {ck,� ⩾ 0} , the Metropolis rule is utilized as 
[25]:

where jk Indicates the degree of node k, i.e., jk = |�k|.
Figure 2 shows the steady-state MSD per node, where every node runs an adap-

tive filter of lengths N = 5 , N = 8 (to model the deficient length scenario), and 
N = 10 (which implies the sufficient length scenario). As can be seen from this 
figure, there is a good match between simulation and theoretical results. Also, this 
figure confirms that by decreasing the tap-length from its actual value, the steady-
state MSD deteriorates drastically, such that, for only two units of length reduction 
( N = 8 ), the steady-state MSD in node #1 decreases from −51.49 to −6.98 dB.

A similar achievement is observed for the EMSE evaluation criterion, illustrated 
in Fig. 3. This figure confirms the close match between simulation and theoretical 
results of the EMSE measure. According to Fig. 3, similar to MSD, by decreasing 
the tap length from its actual value, the performance from the steady-state EMSE 
point of view degrades considerably. For example, for node #7 , as indicated in 

(29)EMSENet =
1

J
Z(I − S)−1bvec{RU} +

1

J

‖‖‖W
(O)

Lopt−N

‖‖‖
2

R
U

(30)MSDk = Z(I − S)−1bvec
{
diag

{
0(k−1)N , IN , 0(J−k)N

}}
+
‖‖‖w

(2)

Lopt−N

‖‖‖
2

(31)

EMSEk = Z(I − S)−1bvec
{
diag

{
0(k−1)N ,Ruk

, 0(J−k)N
}}

+
‖‖‖W

(O)

Lopt−N

‖‖‖
2

diag

{
0
(k−1)(Lopt−N),Ruk

,0
(J−k)(Lopt−N)

}

(32)ck,� =

⎧⎪⎨⎪⎩

1∕max(jk, j�) if k ≠ � are linked

0 if k and � are not linked

1 −
∑

m∈�k�{k}

ck,m if k = �
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(a) (b)

Fig. 1   Network topology a, and statistical settings b for J = 10 sensors

(a) (b)

(c)

Fig. 2   The steady-state local MSD vs. node for N = 5 a, N = 8 b, and N = 10 c 
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Fig. 3, for tap lengths N = 3 , N = 7 , and N = 10 , the steady-state EMSE is −3.75, 
−7.54, and −53.55 dB, respectively.

It is evident from Figs. 2 and 3 that the steady-state MSD and EMSE are sensitive 
to the sensor statistics in both sufficient and deficient length scenarios.

The dependency of the steady-state MSD and EMSE on the filter tap-length 
is seen clearly in Fig.  4. According to this figure, the steady-state measures are 
improved as the tap length tends to its actual value. However, this improvement 
occurs slowly for N < Lopt , changing the length from 9 to 10 improves the value of 
the steady-state measures by about 41 dB.

Figures 5 and 6 show another interesting finding concerning deficient length dif-
fusion LMS adaptive networks: in the case of deficient length, the steady-state MSD 
and EMSE curves continue to grow at a slower rate as � increases. These figures also 
reveal the acceptable matching between simulation and theoretical findings. Also, 

(a) (b)

(c)

Fig. 3   The steady-state local EMSE vs. node for N = 3 a, N = 7 b, and N = 10 c 
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we can see from these figures that, by tending the tap length to its optimum value, 
the performance increases as expected. As can be seen from Fig. 5, by decreasing 
the step size from 0.01 to 0.001, the network MSD is improved by about 10.483 dB 
in the case of sufficient length, but this improvement is about 0.006 dB in the case of 
deficient length N = 6.

5 � Concluding remarks

In this paper, we studied the steady-state behavior of the deficient length diffusion 
LMS algorithm. We provided a closed-form expression for the EMSE and MSD 
of each node to clarify the efficiency of length deficiency on the steady-state per-
formance of each sensor. The results verified the dependency of the steady-state 
MSD and EMSE on the filter tap length. It was concluded that the performance of 

(a) (b)

Fig. 4   Network MSD a, and Network EMSE b per N 

(a) (b)

Fig. 5   Network MSD vs. � for deficient length aand full length b scenarios
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diffusion adaptive networks is considerably affected in the deficient length scenario, 
or equivalently, the steady-state measures are improved as the tap length tends to its 
actual value. Unlike the full-length case, where the steady-state MSD and EMSE 
decrease significantly with the step size reduction, this research showed that in the 
deficient-length scenario, there are no considerable improvements in the steady-
state performance by reducing the step size, or equivalently, in the case of deficient 
length, the steady-state MSD and EMSE curves continue to grow at a slower rate as 
step-size increases. Therefore, it can be concluded that the tap length plays a critical 
role in diffusion adaptive networks since the performance deterioration due to the 
deficient selection of tap length could not be compensated by an adjustment in the 
step size.
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