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Abstract

Distribution System Operators (DSOs) and Aggregators benefit from novel Energy
Generation Forecasting (EGF) approaches. Improved forecasting accuracy may make
it easier to deal with energy imbalances between production and consumption. It also
aids operations such as Demand Response (DR) management in Smart Grid architec-
ture. This work aims to develop and test a new solution for EGF. It combines various
methodologies running EGF tests on historical data from buildings. The experimenta-
tion yields different data resolutions (15 min, one hour, one day, etc.) while reporting
accuracy errors. The optimal forecasting technique should be relevant to a variety of
forecasting applications in a trial-and-error manner, while utilizing different forecast-
ing strategies, ensemble approaches, and algorithms. The final forecasting evaluation
incorporates performance metrics such as coefficient of determination (R?), Mean
Absolute Error (MAE), Mean Squared Error (MSE) and Root Mean Squared Error
(RMSE), presenting a comparative analysis of results.
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1 Introduction

Secured sustainability requires higher effective energy management with minimal
energy losses. As a result, the future power grid should give exceptional levels of
flexibility in energy management. To that end, intelligent decision making requires
accurate future energy demand and load forecasts. EGF is essential in the development
and management of power systems. It enables energy suppliers to estimate electricity
usage and plan for future power demands. It also enables power distributors to optimal
manage and match future electricity production with demand. As a result, EGF has
recently gained considerable attention, sometimes proven to be a challenging subject.

In the context of EGF, this article presents time-series data analysis, a commonly
used approach for evaluating a succession of values associated with unique times-
tamps. This includes elaborating on common evaluation metrics, such as coefficient
of determination (R?), Mean Absolute Error (MAE), Mean Squared Error (MSE) and
Root Mean Squared Error (RMSE), mostly derived from statistics to assess the pre-
dictive ability of each implemented model. The forecasting methods and algorithms
that were utilized in this study can be divided into Machine Learning (ML) and Deep
Learning (DL) techniques and lastly, an ensemble method, key part of this work’s
contribution.

Data quality is one of the most common concerns when performing accurate pre-
dictions. Data should be complete, up to date and accessible in its entirety. Its quantity,
on the other hand, while it also depends on the type of algorithm used, might con-
stitute a balancing challenge. In other words, although large data sets can be rather
beneficial when it comes to model training, sometimes time and space complexity can
pose as a significant constraint. Other related difficulties concern model over-fitting
and handling outliers. According to the literature, highest granularity on data may be
used to make more accurate energy load projections [1].

Practical implications yield the cooperation of energy stakeholders, such as DSOs
and Aggregators resulting in the development of more efficient DR strategies [2]. Also,
financial planning, tariff design, power system operation and electrical grid mainte-
nance, load switching, and infrastructure construction are all important applications
of EGF.

The remainder of this article is structured as follows: Sect.2 reviews the state of
the art and provides the necessary context. Section3 analyzes the developed con-
cepts/methodology of the proposed approach for time-series EGF. Section 4 presents
the results of experiments conducted on pilots. The paper concludes with Sect.S5,
discussing final thoughts, implications and future prospects.

2 Background

This section discusses the state of the art in time-series EGF. It also reports on the
algorithms, ensemble methods and evaluation metrics utilized for experimentation.
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2.1 State of the art

This sub-section discusses the state of the art regarding EGF focusing on Photovoltaic
(PV) use cases utilizing ML, DL algorithms and ensemble methods.

2.1.1 PV use cases

PV power forecasting has received a lot of attention. The efforts to improve the accu-
racy of Electrical Energy Generation (EED) forecasts, include the utilization of various
computational and statistical techniques [3]. Forecasting models are broadly classified
into two categories: indirect and direct forecasting models. Indirect models predict the
solar irradiance of the area that the PVs are installed. Various methods were utilized
to predict the production of the PVs on different time scales, including numerical
weather prediction, image, statistical and hybrid Artificial Neural Networks (ANNs)
[4]. In direct forecasting models, power generation of the PVs is forecasted directly
using historical data samples, such as PV power output and associated meteorological
data. Thus, [5] implemented direct and indirect methods to predict power generation
of a PV system, and concluded that the direct method is superior.

2.1.2 Energy generation forecasting types

Furthermore, EGF was classified similarly with the common categorization of Energy
Load Forecasting (ELF) [6-8]. In this paper we customize and employ ELF notation
and terminology to fit the EGF domain.

Therefore, four main groups were distinguished: Very Short-Term Generation
Forecasting (VSTGF), Short-Term Generation Forecasting (STGF), Medium-Term
Generation Forecasting (MTGF) and Long-Term Generation Forecasting (LTGF) [9,
10]. In real-time control, the VSTGF is appropriate, since its predicting period ranges
between a few minutes and one hour ahead. The STGF is utilized for forecasting within
one hour to one week or month ahead [11].

Authors in [9] compared 45 academic papers on Energy Efficiency Directive (EED1i)
forecasting based on time frame, inputs, outputs, the scale of the project, and value.
This study revealed that despite the simplicity of regression models, they are mostly
useful for long-term load forecasting compared with Al-based models such as ANN,
Fuzzy logic, and SVM, which are appropriate for STGF.

Achieving STGF accuracy is challenging. Solar radiation/PV power forecasting
is a non-linear problem, which depends on several weather parameters. As a result,
finding the proper parameter estimation method for an nonlinear problem is difficult.
Several methods have been proposed for forecasting in the literature, as the choice of
forecasting model depends on forecasting horizon and selected location. Data-driven
models are based on the extraction of useful information from the input training data,
and based on this information, these models predict the output. The performance of
these methods is susceptible to the quality of the training data. ML techniques need
some historical data for the training of the model, so, for direct PV power forecasting,
the availability of such historical PV power data is an essential requirement.
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ANN and Support Vector Machine (SVM) [12—-14] are the two most often used
ML algorithms in the field of PV forecasting. Several studies exist in the area of
ANN that validate the better non-linear fitting ability of neural networks compared to
time-series models. Wide research in neural networks, from an early simple architec-
ture to a late deep configuration, results to performance of these networks. Authors in
[15] presented a new DL model Bi-directional Long Short-Term Memory (Bi-LSTM),
for PV power forecasting. After comparing the results of various structures of Neu-
ral Networks (NNs), and time-series models (ARMA, ARIMA, and SARIMA), the
prediction accuracy of NNs was reported to be higher with less computational time.
Unlike classic Recurrent Neural Network (RNN), LSTM contains a memory unit that
helps to keep the long spans data and can also solve the gradient descent problem. This,
enables LSTM to extract temporal information from the time-series data. Similarly,
a Deep Belief Network (DBN) was presented in [16] to learn the non-linear features
from the previous PV power time-series data. Additionally, authors in [17] provided
a broad overview on optimization based hybrid models developed on ANN models.

The selection of the suitable hyperparameters values are pivotal for ML algorithms
and have a major impact on forecasting accuracy. For example, C and gamma are
the two important parameters of SVM, whose inappropriate values are responsible
for overfitting and underfitting issues. As a result, many researchers adopt intelligent
optimisers for hyperparameter tuning of ML algorithms. The research of [18] reported
the improvement in R? score (coefficient of determination) from 0.991 to 0.997 by
utilising an improved ACO to optimise SVM parameters. Similarly, [19] adopted a
genetic algorithm, while an improved chicken swarm optimisation was adopted from
[20] to tune the hyperparameters of Extreme Learning Machine (ELM), and both
reported a better forecast accuracy with the incorporation of optimisation algorithms.
Additionally, [21] and [22] presented DL based models for PV power forecasting by
optimising the parameters with Particle Swarm Optimization (PSO) and Randomly
Occurring Distributedly Delayed PSO (RODDPSO) techniques, respectively.

The work of [23] developed 12 data driven models of shallow ML and DL. The
findings are that Extreme Gradient Boosting (XGBoost) and Long Short-Term Mem-
ory (LSTM) are the most accurate shallow and DL model, respectively. Thus, they
concluded that LSTM performs well for short-term prediction (1-hour ahead), but not
for long term prediction (24 h ahead), because the sequential information becomes
less relevant and useful when the prediction horizon is long. Secondly, the presence
of weather forecast uncertainty deteriorates XGBoost’s accuracy and favors LSTM,
because the sequential information makes the model more robust to input uncertainty.
Gaussian Processes (GPs) appear to be one of the promising methods for providing
probabilistic forecasts. In this paper, the Log-normal Process (LP) is newly introduced
and compared to the conventional GP. The LP is especially designed for positive
data like residential load forecasting and little regard was taken to address this issue
previously [24].

2.1.3 Time-series forecasting techniques

There are several techniques to utilize time-series forecasting with ML and DL mod-
els. In most cases, the sliding window approach, a commonly used technique for
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time-series forecasting, is utilized [25]. This technique along with several ML or DL
algorithms is being used in many fields [26-28].

For multiple steps ahead forecasting, there are three popular strategies, direct,
rolling (or recursive) [29] and sequence to sequence [30].

2.1.4 Ensemble methods

The intention is to utilize, tune and combine the best algorithms. A comparison between
the three best algorithms has been made, in order to identify how each model behaves
on specific parts of the target parameter. Our investigation is focused on regression and
averaging models. Therefore, we utilize ensemble models which are hybrid compo-
nent combination based models. They improve the accuracy and reduce the variance.
Recently, different ensemble models have been proposed and used widely in numer-
ous practical fields [31-33]. For instance, [34] presented an ensemble framework
composed of three models, including Random Forest (RF), Decision Tree (DT), and
Gradient Boosted Trees (GBT) for big data time-series. Also, it is worth mentioning
that some ensemble models could help to reduce overfitting [35-38].

Several works on weighted ensembles can be found in the literature. The proposed
techniques are classified as either constant or dynamic weighting, with [39] being
the first to mention using different models for one method, introducing the ensemble
learning concept. In the neural network field, Perrone and Cooper [38] introduced two
ensemble strategies. By averaging the estimates of numerous regression base learners,
the Basic Ensemble Method (BEM) integrates them. They show that BEM can lower
the squared error of forecasts by a factor of N (estimators’ quantity). Furthermore,
the Generalized Ensemble Technique (GEM) was introduced as a linear combination
of regression base learners, with the premise that this ensemble method will avoid
overfitting the data. The researchers employed cross-validation to build the ensemble
estimation methods using all of the training data. Their methodology was utilized for
image character classification (NIST OCR).

Since then, many techniques have been proposed, such as Bagging and Boosting
[40] or Stacking and Voting methods that rely on weights for each model [41, 42].
Whilst Bagging and Boosting are primarily concerned with minimizing standard devi-
ation/variance and bias, Stacking techniques are concerned by determining the best
strategy to mix basic learners. These ensembles are built by stacking the weighted
average using the weighted average result of different basic learners. In the research
of [36], an optimization-based nesting method that discovers the optimum weights to
merge basic learners. This was accomplished by employing Bayesian search to pro-
duce basic learners and a heuristic model to construct such learners with a specific
amount of variety and performance.

Regarding dynamic weighted average time-series ensembles for energy forecast,
there are also several researchers utilizing variations of these techniques. An ensemble
method based on LSTMs, Support Vector Regression Machine (SVRM), and Extremal
Optimization (EO) algorithm is studied by [43], with LSTM forecasts aggregated
into a nonlinear-learning regression top-layer composed of SVRM, and the EO is
introduced to optimize the top-layer parameters. Finally, fine-tuning the top-layer
provides the final ensemble forecast for wind speed. Two case studies are used to test
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the proposed EnsemLSTM. In the work of [44], the authors rely on dynamic weighted
average on seasonality parameters for day-ahead PV power generation prediction using
time-series ensemble models.

2.2 Algorithms
This section reports on ML and DL algorithms used.

2.2.1 Machine learning

Decision Tree Regression (DTR) Starting simple, a Decision Tree model was used.
This is a supervised learning method that can be used for classification and regression
problems in which a decision tree structure is formulated through the repetitive seg-
mentation of the data set. The features of the said data lead to a set of binary decision
rules to be followed towards mapping and eventually predicting the value of the target
variable. Although, decision trees generally perform more poorly compared to neural
networks for nonlinear data, they are easier to understand, interpret and even visu-
alise, and require no normalization of data. For its implementation the Python library
scikit-learn was used.

Random Forest (RF) RFs, also known as random decision forests, are an ensemble
learning approach for classification, regression, and other applications that operates
by training a large number of decision trees. Regarding classification, the RF output
is the class determined by the majority of trees. The mean or average forecast of the
individual trees is returned for regression tasks [45]. Random decision forests address
the issue of decision trees overfitting their training set [46].

Extreme Gradient Boosting (XGBoost) Both capable for regression and classification
Extreme Gradient Boosting is a scalable end-to-end tree boosting system (also called
XGBoost), which is used widely by data scientists to achieve state of the art results on
many ML challenges [47]. It is a novel sparsity-aware algorithm for sparse data and
weighted quantile sketch for approximate tree learning. More importantly, its creators
provided insights on cache access patterns, data compression and sharding to build a
scalable tree boosting system. By combining these insights, XGBoost scales beyond
billions of examples using far fewer resources than existing systems.

2.2.2 Deep learning

Simple multi-layer perceptron (MLP) An ANN is composed from a network of linked
units or nodes known as artificial neurons, which are generally modeled after the
neurons in the human brain. Each link, like synapses in a human brain, has the ability
to send a signal to other neurons. An artificial neuron receives a signal, analyses it,
and can signal neurons to which it is linked [48-50].

Long short-term memory recurrent neural network (RNN-LSTM) LSTM is an artificial
RNN architecture [51] used in the field of DL. Unlike standard feed-forward neural
networks, LSTM has feedback connections. It cannot only process single data points
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(such as images), but also entire sequences of data (such as time-series, speech or
video).

Gated recurrent unit recurrent neural network (RNN-GRUs) Gated recurrent units
(GRUs) are a gating method in recurrent neural networks first proposed by Kyunghyun
Cho et al. in 2014 [52]. The GRU behaves similarly to a LSTM with a forget gate,
[53], but with fewer parameters, because it lacks an output gate. GRU outperformed
LSTM on specific tasks, such as polyphonic music modeling, speech signal modeling,
and natural language processing. GRUs have been demonstrated to perform better on
smaller data sets [54].

2.3 Evaluation metrics

In order to compare the aforementioned algorithms and techniques, their results
were evaluated using a series of metrics. Their mathematical formulations and brief
descriptions follow.

2.3.1 R-squared (R?)

The coefficient of determination (R?) constitutes the comparison of the variance of the
errors to the variance of the data which is to be modeled. In other words, it describes
the proportion of variance ’explained’ by the forecasting model and, therefore, unlike
the following error-based metrics, the higher its value, the better the fit. It can be
calculated as follows (Eq. 1):

SSres -1 Z()’i - fl)2

R*=1- =1- -
SStor Z()’i - y)2

ey

where S S is the sum of squares of residuals (errors) and SS;.; is the total sum of
squares (proportional to the variance of the data), y; is the actual power load value, y
is the mean of the actual values and f; is the forecasted value for the power load.

2.3.2 Mean absolute error (MAE)
The calculation of MAE is relatively simple (Eq. 2), since it only involves summing
the absolute values of the errors (which is the difference between the actual and the

predicted value) and then dividing the total error by the amount of observations. Unlike
other statistic methods, the MAE considers the same weight for all errors.

N
1
MAE=N§|yI-—f,-| ()

where y; is the actual and f; is the forecasted value for the power load and N is the
amount of values.
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2.3.3 Mean squared error (MSE)

The MSE indicates how good a fit is by calculating the squared difference between
the i’" observed value and the corresponding model prediction and then finding the
average of the set of errors (Eq. 3). The squaring, apart from removing any negative
signs, also gives more weight to larger differences. It is clear that the lower the MSE,
the better the forecast.

1 Y )
MSE = ;()’i —f) ©)

where y; is the actual and f; is the forecasted value for the power load and N is the
amount of values.

2.3.4 Root mean squared error (RMSE)

The RMSE is defined as the square root of the average squared difference of actual
value and prediction value—in other words, the square root of MSE. While these
two metrics have very similar formulas (Eqs. 3 and 4), the RMSE is more widely
used, since it is measured in the same units as the variable in question. According
to its mathematical definition, the RMSE applies more weight on larger errors, given
that the impact of a single error to the total is proportional to its square and not its
magnitude.

RMSE = (i — fi)? )

where y; is the actual and f; is the forecasted value for the power load and N is the
amount of values.

3 Research design

The goal of this study was to address EGF issues. Our approach was to create ML and
DL techniques utilizing and comparing several algorithms. Our final goal was to tune
the three best algorithms and use an ensemble method for predictions. There are many
examples of tree based models’ behaviour near zero values [55, 56] while other cases
demonstrate their differences with ANN based models in energy data sets [57]. The
implementation was utilized with Python programming language, and libraries such
as Pandas [58], Numpy [59], Matplotlib [60], Sklearn [61] and Tensorflow [62].
According to our novel ensemble approach, while each of the three best models
has their strengths and weaknesses the best option would be to exploit the advantages
and create an ensemble method employing all of them. Analyzing each part of the
target data set, the best algorithm or a combination of weighed averages predictions
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was used for creating an ensemble method to boost the performance. For this reason
we measured MAE, Standard Deviation (STD) and average values for the predictions
of each algorithm for specific ranges of the target parameter and compared them with

the real values.

The proposed methodology comprises three phases: (i) Data collection and engi-
neering, (ii) Data pre-processing and (iii) Time-series regression for EGF (Fig. 1

).

3.1 Data collection and engineering

We used three different sources for data collection, in order to upgrade our problem

from uni-variable to multi-variable.
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Table 1 Missing values for

weather parameters Feature Status
Date time False
Maximum temperature True
Minimum temperature True
Temperature False
Wind chill True
Heat index True
Precipitation False
Snow True
Snow depth True
Wind speed False
Wind direction True
Wind gust True
Visibility True
Cloud cover False
Relative humidity False
Conditions True

e PV data set: The original forecast target of this research is the power production
from a PV Park. The data represent a two-year period, from the beginning of 2019
until the end of 2020. The PV Park is located in the premises of the University of
Cyprus (UCY), in Nicosia, Cyprus, which constitutes one of the pilot sites of the
project DRIMPAC (see Acknowledgements). The power capacity of the park is
around 21 KWp.

e Weather condition data: Weather condition data.! The data were gathered for the
same period as PV data and represent the relative humidity, temperature, wind
speed, cloud cover, precipitation and timestamp per 1 h gap (among other values
that were not used).

e Seasonality data. Information produced by the timestamp were utilized, like day
of the week, month of the year, day of year, hour of day etc.

3.2 Data pre-processing

The first part of pre-processing was to combine the three data sets to one, by joining
them on the timestamp. After, a process has been made for each parameter (specially
for the weather data set) for filling the missing values. For the parameters with low
percentage of missing values (below 5%) and not more than eight continuous missing
timestamps, a forward linear interpolation process was made to fill the gaps. This
procedure filled several parameters, while others remained at the same state. Table 1
shows the variables with missing values having ’True’, while the filled having *False’.
At this point, the data set was slightly altered, replacing outlier values outside 1-99%

1 www.visualcrossing.com.
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for the total data set with the similar minimum and maximum values that were within
this range.

For the forecasting part, the filled parameters (relative humidity, temperature, wind
speed, cloud cover, precipitation) were used, while the remaining ones were excluded
from the data set. After filling the missing values and before diving to time-series
regression techniques, there was a slightly different approach between the tree based
and not tree based models, i.e. that the former do not require normalization according
to their definition. For the normalization of the latter, the MinMaxScaler function of
Python’s sklearn module [61] was used, ranging the data set to [0, 1].

The populated parameters (relative humidity, temperature, wind speed, cloud cover,
precipitation) were utilized for forecasting, whereas the other ones were dropped from
the dataset.

3.3 Time-series regression for EGF

For the implementation of the time-series regression, the Sliding Window technique
was utilized, involving a 24-step ahead shifting of data, and its outcome constitutes the
final data set. For the RNN based models (LSTM, GRU) a three dimensional sliding
window (parameters, rows, time-steps) was utilized. Finally for the other tree based
and ANN models, a two-dimensional sliding window (parameters + time-steps, rows)
was used.

This was then split into training and testing parts (mostly 80-20% respectively—i.e.
19 months for training and 5 months for testing) and the training part was used as an
input to all models that were presented in Sect. 2.2. Each of these models was optimized
during the training phase by hyperparameter tuning via existing methods, such as grid
search and random search, as well as single runs with variations of each model’s
parameters and/or additions to its structure (for the case of neural network models).
The prediction that came from the implementation of each model, was compared with
the testing part of the data set and evaluated under the same metrics, also described in
Sect. 2.3. The detailed results of the said comparison are presented in the following
Section. The analysis continues with the selection of the three best models according
to the metrics, and most importantly MAE, R? and RMSE, and the determination of
the target range when each shows the most accurate results. In this way, the best model
for each range was utilized for a rolling forecast that uses the last 24 h and predicts
the production for one hour ahead.

Figure 2 shows the utilized regression models including implementations machine
and DL approaches. The output of the forecast is used as an input for the next hour,
while the next 24 h’ weather parameters (relative humidity, temperature, wind speed,
cloud cover, precipitation) are predicted by meteorological stations and seasonality
parameters (day of the week, month of the year, day of year, hour of day) were easily
extracted by analyzing the timestamp.
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Fig.2 Ensemble approach

3.4 Algorithmic tuning

This sub-section contains the detailed architecture of each model used for the EGF
in the case of PV Park. The best version of each algorithm is presented in Table 2
including the model’s configuration and parameters, as well as whether the data have
been normalized with Min-Max Normalization prior to each model’s implementation.

Furthermore, several attempts to avoid overfitting were utilized, besides the utiliza-
tion of an ensemble method, that could alleviate this issue (as already mentioned). As
far as LSTM and GRU are concerned, an increased 30% Dropout layer was used, while
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Table 3 PV Park results Model R2 MAE MSE RMSE

Implemented models and results of each metric

DT 0.8689 0.9471 4.7987 2.1906
RF 0.8955 0.8660 3.8205 1.9546
XGBoost 0.8735 1.043 4.6318 2.1522
DNN 0.8710 1.0491 4.6564 2.1872
RNN-LSTM 0.8894 0.9419 4.0653 2.0163
RNN-GRUs 0.8798 1.0617 4.4192 2.1022

Ensemble Method 0.8913 0.8306 3.9972 1.9993

several numbers of neurons were tested for both high performance and reduced chance
for overfitting. Moreover, the comparison of Training Loss versus Validation Loss was
almost equal, strengthening the low overfitting argument Fig. 3. For XGBoost, RF and
DT, several hyperparameters were tested and utilized like max_depth and n_estimators.

4 Results

This section reports on the EGF results. It presents and elaborates on values of common
evaluation metrics R2, MAE, MSE, RMSE to evaluate the predictive performance
of each implemented model. Table 3 reports on metric values for the all fine-tuned
forecasting models along with their final parameter tuning.

Table 4 reports on MAE, Standard Deviation (STD) and Average (AVG) values
for the all fine-tuned forecasting models along with their final parameter tuning for
six different range parts of the data set. Based on the STD PV Park power target
parameter range (Fig. 4), a statistical analysis was conducted, separating range of
the parameter into six segments. Besides the upper bound (Very High—values near
zero and higher than —1) and the lower bound (Very Low—yvalues lower than — 18),
the other segments were High [—1, —5), Medium High [—5, —10), Medium Low
[—10, —15), Low [—15, —18].
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Fig.4 PV Park Power histogram

As far as Very High segment is concerned, the MAE of RF was by far the lower,
followed by XGBoost and LSTM respectively. For High segment, RF was the best
algorithm again, but the LSTM was close, leaving the XGBoost behind. On the other,
Medium High segment’s MAE showed that XGBoost was the best in this part of the
data set, followed by RF and LSTM. Regarding the Medium Low and Low parts, RF
and LSTM were the best as they scored almost the same MAE. Finally, for the Very
Low segment, LSTM was the best algorithm by far, followed by RF and XGBoost.

Based on these results (Table 4), for each part of the data set the best algorithm or a
combination of weighed average predictions are used for creating an ensemble method
to boost the performance. Furthermore, comparing the real vs predicted average’s and
standard deviation’s values, several assumptions can be highlighted. More specifically,
the goal was not only to choose the best MAE for each segment, but also to understand
each algorithm’s behaviour by average and STD, while identifying the closest to real
average and lowest standard deviation on each segment.

Furthermore, utilizing a trial and error approach on each segment, the goal was to
identify the best combinations and weights for the multiple weighed average method.
Finally, Table 5 and Fig. 5 present the final results of our approach using ensemble
with rolling forecast.

5 Conclusion

This paper investigates time-series data analysis in the context of EGF. It examines
a sequence of variables with distinct timestamps for improving the performance of
EGF. Also, itincorporates R 2 ,MAE, MSE and RMSE metrics to evaluate each model’s
predicting capabilities. The conceived forecasting approach includes the integration
of multiple ML, DL algorithms and an ensemble method.

The results showed that the most accurate models for our data set were Random
Forest, LSTM and XGBoost. However, after investigating each model’s individual
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Table 5 Ensemble method’s - .
results for 24 h ahead with Time-steps Metrics
Ro]hng Forecast Ahead R2 MAE MSE RMSE
1 0.894 0.819 3.920 1.977
2 0.849 1.020 5.555 2.350
3 0.814 1.153 6.839 2.606
4 0.795 1.209 7.545 2.737
5 0.781 1.248 8.057 2.827
6 0.773 1.272 8.358 2.880
7 0.769 1.287 8.511 2.907
8 0.768 1.288 8.554 2913
9 0.768 1.290 8.571 2915
10 0.767 1.295 8.607 2.920
11 0.765 1.306 8.677 2.933
12 0.763 1.313 8.732 2.943
13 0.761 1.322 8.804 2.956
14 0.760 1.329 8.845 2.963
15 0.760 1.332 8.862 2.966
16 0.760 1.335 8.895 2971
17 0.759 1.338 8.929 2.977
18 0.759 1.340 8.943 2.979
19 0.758 1.340 8.975 2.984
20 0.757 1.339 9.015 2.990
21 0.756 1.337 9.037 2.994
22 0.754 1.345 9.141 3.012
23 0.751 1.352 9.239 3.030
24 0.750 1.358 9.261 3.035
Fig.5 Rolling forecast 24-h o]
ahead energy production
example
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behaviour, we identified that each performed better for specific ranges of the target
parameter. This observation led us to create a dynamic weighted average ensemble
model that in detailed comparison, was more accurate than every other standalone
utilized model.

5.1 Implications

Energy and climate policies around the world, are becoming increasingly ambitious
over the years since the vital need for a sustainable future has driven the countries
worldwide into a series of initiatives to drastically increase energy efficiency and
reduce pollutant emissions. These policies aim to reduce Green House Gas (GHG)
emissions, moving away from fossil fuels towards cleaner energy, and more specif-
ically, to increase the share of the Renewable Energy Resources (RES). Hence, the
penetration of more intermittent distributed generation, would increase both the finan-
cial and technical challenges on the existing electrical networks and markets. Briefly,
these challenges include unacceptable voltage fluctuations, transformer overload-
ing, energy shortages, electric vehicle charging [63] and increased energy losses in
distribution networks.

A very promising solution to overcome these challenges, is the exploitation of the
flexibility that can be obtained from small, distributed loads, such as buildings, that may
offer Demand Response Services (DRSs). These services, offered by Smart Buildings,
enable consumers to monetize their flexibility and use power in a highly efficient and
remunerative way, while decarbonizing. DRSs may be classified into two groups: (i)
Explicit DR i.e. “incentive based”, refers to consumers choosing to receive direct
payments to change their consumption upon request, which is typically triggered by
activation of balancing services [64], differences in electricity prices or a constraint on
the network. (ii) Implicit DR schemes i.e. “price based”, refers to consumers choosing
to be exposed to time-varying electricity prices or/and time-varying network tariffs and
react to those price differences depending on their own possibilities and constraints.

5.2 Limitations-challenges

The first obstacle was locating all the necessary data to perform this study. Even
though the presented data set illustrated several weather and seasonality parameters,
the original set included only the PV Park Power parameter. As a result, the data
collection and pre-processing step of finding and combining other parameters proved
challenging. The objective was to acquire enough data to represent EGF conditions.

Furthermore, as far as the modeling part was concerned, several other issues existed,
like the sliding window timestamp size both for the tree based and the network
based models. In addition, many challenges must be tackled to exploit flexibility.
For instance, when a building is integrated with generation units, such as PVs, micro-
sized Combined Heat and Power (mCHPs) units, or Wind Turbines (WTs) it is critical
to additionally predict the total expected generation for various time-frames ahead
(day ahead, intra-day, near real time) to determine the total amount of flexibility that
the building may offer.
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5.3 Future work

This study could be improved by investigating the following aspects. Initially, as for
the time-series part, an implementation with the same models and the utilization of the
ensemble model with direct forecast strategy and a comprehensive comparison with
the existing rolling (recursive) strategy could provide more insights. Another similar
idea would be to utilize sequence to sequence RNN models, with the same data set.

Besides the time-series strategies, a zero inflated regression strategy could be mod-
eled. The data set’s target parameter (PV Park Power) comprises of high amount of
zeros (we used higher weights for Tree based models on that range), and this strategy
could be quite helpful for these types of data [65, 66].

Moreover, the suggested framework could be improved by automating the process
to the point that it can be used as stand-alone software using only the relevant input
data sets. Also, by examining economical and environmental Key Performance Indi-
cators (KPIs) such as energy bills, water bills, purchase records, emissions to the air,
emissions to the water, emissions to the land, and resource consumption. Finally, the
suggested predictive approach’s commercial viewpoint could be enhanced by address-
ing more practical applications. As an example, financial planning, tariff design, power
system operation and electrical grid maintenance, load switching, and infrastructure
construction.
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