Computing (2023) 105:1337-1359
https://doi.org/10.1007/s00607-022-01147-5

REGULAR PAPER

®

Check for
updates

Task scheduling in edge-fog-cloud architecture: a
multi-objective load balancing approach using
reinforcement learning algorithm

Fatemeh Ramezani Shahidani' - Arezoo Ghasemi' - Abolfazl Toroghi
Haghighat!® - Amin Keshavarzi2

Received: 24 September 2022 / Accepted: 26 December 2022 / Published online: 5 January 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023

Abstract

The rapid development of internet of things (IoT) gadgets and the increase in the rate
of sending requests from these devices to cloud data centers resulted in congestion and
consequently service provisioning delays in the cloud data centers. Accordingly, fog
computing emerged as a new computing model to address this challenge. In fogging,
services are provisioned at the edge of the network using devices with computing and
storage capabilities, which are located through the way to connect IoT devices to cloud
data centers. Fog computing aims to alleviate the computing load in data centers and cut
the delay of requests down, notably real-time and delay-sensitive requests. To achieve
these goals, vitally important challenges such as scheduling requests, balancing the
load, and reducing energy consumption, which affects performance and reliability in
the edge-fog-cloud computing architecture, should be considered into account. In this
paper, a reinforcement learning fog scheduling algorithm is proposed to address these
challenges. The experimental results indicate that the proposed algorithm raises the
load balance and diminishes the response time compared to the existing scheduling
algorithms. Additionally, the proposed algorithm outperforms other approaches in
terms of the number of used devices.

B Abolfazl Toroghi Haghighat
haghighat@qiau.ac.ir

Fatemeh Ramezani Shahidani
Fatemehramezani84 @yahoo.com

Arezoo Ghasemi
arezoo.qasemi2 14 @ gmail.com

Amin Keshavarzi

keshavarzi @miau.ac.ir

Faculty of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad
University, Qazvin, Iran

Department of Computer Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-022-01147-5&domain=pdf
http://orcid.org/0000-0003-4500-274X

1338 F.R. Shahidani et al.

Keywords Scheduling - Edge computing - Fog computing - Cloud computing - Load
balancing - Reinforcement learning

1 Introduction

Pervasive use of Internet of Things (IoT) has led to generation of a huge volume
of data in the IoT networks [1]. In such networks, a wide range of heterogeneous
devices communicate through network facilities. It is anticipated that approximately
40 billion gadget will be interconnected through the Internet by 2025 [2]. Due to
this, traditional computing models such as cloud computing fails to meet [oT systems
requirements such as Quality of Service (QoS) guarantee [3]. Fog computing as a
complement computing paradigm for cloud computing aims to address this challenge,
and provision services in the edge of network and near to the source of data [4, 5].

Fog networking was coined by Cisco to tackle the problems of sending IoT devices
requests to the cloud computing [6]. They defined fog computing as a architecture
allocating resources near the source of data. Fogging as the intermediate between
cloud computing and the edge computing, provides the facilities for end users to
process their data and reduce the latency for end the customers and workload for the
cloud data centers [2, 7].

Fogging provides a powerful computing facility that enables processing at the edge
as well as interacting with the cloud. Recently, fogging achieves breakthroughs in
health care, industry, agriculture, smart cities, environmental, transportation, and cli-
mate change control. Fog nodes characteristics such as heterogeneity and distribution
of resources and their limitations in processing, storage and memory capacities make
task scheduling a challenging problem [2, 8].

Scheduling in cloud-fog framework has rarely received considerable attention. The
main goal of task scheduling algorithms is to diminish task running time and enhance
performance. Cloud providers should utilize efficient scheduling methods to address
the requirements of their customers and raise resource efficiency, which can lead to
the development of green information technology. Tasks scheduling algorithms have
been proposed with different goals such as reducing energy consumption, resource
wastage, cost, delay, response time, but one of the vitally important goals is the load
balancing. Load balancing distributes requests or tasks of a computing environment
among resources with the aim of increasing performance and reliability. Based on our
knowledge a few researchers have paid attention to the task scheduling with the goal
of balancing the load in fog networking [2].

In this paper, a reinforcement learning based task scheduling algorithm with the
aim of balancing the load, diminishing the average of response time, and reducing
energy consumption is proposed which is called RLFS (Reinforcement Learning Fog
Scheduling). In the proposed algorithm, the learning agent has a table of action qualities
(Q-Table) and at the end of each learning episode, the values of this quality of action
table are updated according to the degree of desirability of the performed action. In each
episode, the agent-learner uses the value table of his actions and the action selection
policy defined for it and based on the state of the environment, selects an action from
among the actions allowed in that state and executes it on the environment. The learning

@ Springer

Task scheduling in edge-fog-cloud architecture: a... 1339

agent performs the action, and after that the state changes. Then, the environment
returns a feedback signal (reward signal) and a new state of the environment to the
learning agent according to the degree of desirability of the performed action (the
degree of desirability is determined according to the learning goal). The learning
agent updates the value table of its actions according to the feedback signal received
from the environment. This work makes the learning agent able to choose the action
that has the most feedback in the future episodes [9].

This paper is structured as follows. A brief overview of related works is given in
section. In the third section the proposed architecture is presented. We propose the
proposed algorithm in Sect. 4. In the fifth part, the proposed algorithm is evaluated
and we explain the experiments settings and compare the results. Our conclusions are
drawn in the sixth section, and the areas for further research are determined in final
section.

2 Related work

Inrecent years, a large and growing body of algorithms have been proposed to address
scheduling problem in fog computing. Table 1 demonstrates a comparison of related
works in terms of pros. and cons., and an analytical overview of related works and pro-
posed approach have been provided in Table 2. As these tables depict, a few researchers
have paid attention to the task scheduling with the aim of balancing the load in fog
networking.

In [10], a task scheduling algorithm called IEGA was proposed to diminish the
response time in the fog environment. In this research, authors applied an improved
genetic algorithm to raise the quality of provided services. The IEGA method com-
prises two general steps. In the first step, Mutation rate and Cross over are modified
to search more of the problem space (possible combinations of permutations). In the
second step, some of solutions are mutated based on a defined probability to avoid
getting stuck in the local optimum. The proposed algorithm was compared with other
algorithms in terms of carbon emissions, energy consumption, and performance of the
fitness function. The simulation demonstrates that the proposed method outperform
other methods in all criteria.

Felliretal. [11] proposed a multi-agent task scheduling algorithm in fog computing.
They consider task priority, waiting time, and resource status that serve the most
important tasks in their proposed method. Regarding to this, in the scheduling process,
they first update the task priority value and then allocate resources based on this priority
(priority of tasks, waiting time, status). Also, the priority of the tasks is updated based
on the priorities of the dependent tasks that exist. In the proposed model, high priority
tasks are processed first, until a higher priority task is queued. Regarding the results
of the ifogsim simulator, the proposed method demonstrates good performance.

Binh et al. [12] proposed a task scheduling algorithm in the fog computing envi-
ronment called TCaS which aims to make a balance between execution time and
operational costs. In addition, the proposed algorithm can be flexibly adapted to vari-
ous users with different demand where some want to prioritize the execution time and
others want to complete their tasks with limited resources. The results of simulation

@ Springer

F.R. Shahidani et al.

1340

SYSB) JO UOTINOIXS J[qRI[AI) SAINSUD
31 ‘vondwnsuod AJouo pue own

[¥1] Joured ejeweyy asuodsar oy) Surzrwndo yim Juopy P2IopISUO Jou SI yIpimpuey e 1202
yipimpueg e
KOUQIOYJo 90INOSAY ©
syse) ssoIoe uon
[e1] Surured| Juowediojuray doog 1y 20Inos-nnjN Aoudje] MO 2AYOY -dwnsuod A310ud SulIOPISUOD JON e 610C
uondwns
-U0d ASIoUD IOPISUOD 0} A[NI[SSOT @
[z1] Rpjikliely) uedsoyew pue OQ) oAdIyoE Ioyog WIPHOS[e YIg UBY) 910U SO0 [RI0L, ® |T0T
Junoode
oIl ypimpueq 3Jurye} Jo Joe] e
Kouaro
[11] 1500 pue uondwnsuod A310U0 90NPay -UJO 90INOSAI JIPISUOD 0) A[I[U) ® (Z0T
wyILs
-03[e yOH uey) IoSuo| own uny e
Kouaro
-1JJO 92IN0SAI FULIOPISUOD JO YOorT] ®
ouiny asuodsar paaoxdur juaur
[o1] sonouon) pue uondwnsuod tomod posoidw] -UOIIAUQ PNO[O) IIPISUOD O} [1e] 1202
SOOUAINJY POUIRIN 's0Id 'Suo) Teox

suod pue ‘soid Jo suLe) ur yIom pajefal pue yoeoidde pesodord Sutredwo) | ajqel

pringer

as

1341

Task scheduling in edge-fog-cloud architecture: a...

uondunsuod £3ous

WIYILIOS[E PIseq QOUEISIP

[12] SWSAS Azzn] SuIONPaY UONOBJSHES IASN ISBAIOU] AU) UBY) JOSUO[ST AW} UONINIAXA YL e 60T
YIpIMpURq puB ‘AJUSIONJO 9IINOSAT
[oz] SoTjoURD) SY[SE) PISSIW JO JoqUINU oY} 20Npy ‘uonezrnn AS1oud Sulopisuod J0N ® [20T
12)39q pauriojrad
Sey Qoue)SIp U} SUIUIULINIR(‘BLId) JUAWIUOI
-0 JO SWIQ) Ul pue QW) JOJSUBI], -IAUD PNO[O pue ‘AOUdIoyjd 90IN0Sal
[61] QWERP-YION ‘OWI) uopnodxe uedsoyewr oonpay — ‘uonezinn AS1ouo Suropisuod JoN ® G10T
Juow
-UOITAUD PNO[O A} FULIOPISUOD JON ®
SUOISIOAP JUINPaYds
Ul JS09 pue AJLINJIS ‘QOUBULIOJIQ]‘SOLI
-ow Sumuiquiod Aq swylLoS[e Sun{ew UoISIOAp Ul UoI)
[811 SISdOL ‘dHV Joyjo uey ooueunoyiod 1opeg -dwinsuoo AS1oua Suriopisuod JON e 1202
SOLI0JOR] UI SN 0) PAIWIT ©
1509 Teuoneindwod pue
Ke[op UOISSIWSUEI) JO UOTIONPIY SALI0)
-0®J U1 51001 Suowe peof [} Suroueeq
pue ‘Surzrundo uondwinsuod AS1ous KOURIOLJd 90IN0SAT
[L1] Surwrems oponied poaordwy ‘oouewiojrod 001A9p oy Juraoidwi] pue ypimpueq oy SULIOPISUOd JON © 80T
JUSWIUOI
-IAUQ PNO[D pue AJULIOLJO 90IN0SY
[91] uondwinsuod A31ouo Suronpay I ‘Yipimpueq) SuLIOpIsuod JON ® (0Z0T
JUSWUOIIAUD PNO[D pue
ASUQIOLJO 90INOSAI IOPISUOD 0] [1B,] @
Aiqe)s eoueuriograd [[eI0A0 uon
[s1] sonouan paaordw—Adu)e] 901A10s paonpay — -dwnsuod ASioue SuLopIsuod JON © 8107
JUSWIUOIIAUD PNO[d pue
KOUQIOYJO 90IN0SAI JOPISUOD 0) [1e,] @
SOOUAIJOY POUIRIN 's0I1d 'Suo) Jedx
ponunuod | ajqel

pringer

as

F.R. Shahidani et al.

1342

uondwnsuod
A310Uu0 IUIONPIY* SOOINOSAI AL JO
oqunu dy) Suonpey ¢ S90IN0SaI

yoeoxdde pasodoig SuruIed JUOWdIOJUIRY Suowe odue[eq peo[Sunear) JWI) UOTINOJXD Ul ASBAIOUI dMII] ® 70T
uedsoyew Suroueeq peo| pue

[62] Surpeog Aouanbarg osimdals pue uondwnsuod ASIOUQ QONPIY ‘UONBZI[NN A0INOSAI FULIPISUOI JON] @ 1202
UoNeZI[IN 90IN0SAI

[82] Suusny) uondwinsuod AS1ouo Suiseardd(q pue Juroue[eq peo| SULIDPISUOD JON @ 1202
own uoneZIIN 90IN0SAI PueE Uor)

[L2] TIA 9OIAIdS pue el Injrej Suisearddq -dwnsuodo ASIouo Julopisuod JON ® 70T
oy asuodsor Suroueleq peo[pue uon

[92] VSpue OSd Suisearodp pue Ajunods Juisearou] -dwnsuod AS1oud Sunopisuod 0N e 810T
SPeO[Udam}aq doue[eq e owm osuodsar

[sz] INVEd LIS puB UONEZIIN 90IN0SAIAseaIou] pue Aoudje] Suwopisuod JoN © 8107
Sur
-oue[eq peo[Pue ‘UOHEZI[IN 9JIN0SAT

[yl wyjLIo3[e d1ouaD) Kouoje[[2J0) 90NPY ‘uonezinn A3IouUd SULIOPISUOD JON ® (0Z0T
Sur sopou
-oue[eq peoj ‘AoUdIoyo 90IN0sSay‘pasn SO IOYI0 WOIJ SOOINOSAI JOI[AS UAYM

(] SO0INOSAI JO IOqUINU QU) QONPAY SUOISIOOP UONI[AS 9IIN0SAI 100 ® [70T
wyose §Tvd
QY3 uey) JoYS1Y ST UOISSIWS U0QIRd pue

[¢2] SILIRH-UIyeyS 1500 oonpay‘uedsoyewr oonpey uondwnsuod A3I10U0 Jo JUnowe YL e (70T

QUIT) UOTINDAXA NPT Aoudje|
Qonpay‘syse) Suruuiograd ur 9jer ss99

[z2] swsAS Azzng -ons y Sursearou]‘ uedsayew 9onpay K)1[Iqeress jo yoe| e 1202

SOOUAIJOY POUIRIN 's0I1d 'Suo) Jedx

ponunuod | ajqel

pringer

as

1343

Task scheduling in edge-fog-cloud architecture: a...

SO S S

2
2

yoeoidde pesodoig

» » » [v]
» lozl

[zl

s Va [Le]

» » [9z]

N N (sl
» [vel

» [zl

» » [ce]

» [zl

» lozl

» l61]

» [81]

» » [L1]

[91]

[s1]

» [¥1]

A [erl
» » [c1]

(1l

» [o1]

A31oug

Apqeroy

Keroq

o) uny

150D

Q0IN0SAY osuodsoy Ajunoos uedsesewr §od) Sumuefeq peo] yIpimpueq BEX|

Surnpayos ur s1ojowered paropisuod urpesar poylow pasodoid pue syiom pajefar Sutredwo)) g ajqel

pringer

as

1344 F.R. Shahidani et al.

depict that the this method achieves better QoS than other methods, and outperforms
others in striking a balance between efficiency and cost.

In[13], authors put forward an online task scheduling approach in the fog computing
environment which was called FairTS. They applied Deep-Reinforcement Learning
algorithm for online task scheduling. The concept of online task scheduling refers to
making resource assignment decisions for tasks that are continuously generated from
end users. This is a challenging problem due to the various uncertainties that appear in
fog computing systems. Their proposed approach can learns directly from experience
to shorten the task slowness while make sure multi-resource fairness.

Ghanavati et al. [14] offered a task scheduling algorithm using the Learning automa-
ton technique, called DFTLA. The aim of this algorithm is to tolerate errors and
optimize QoS and energy consumption. Itis vitally important to provide a task schedul-
ing approach, which guarantees the reliablity of tasks execution while optimizing the
response time in the fog computing environment. Therefore, they proposed a new
DFTLA dynamic fault tolerant task scheduling method. DFTLA specifies an efficient
allocation of tasks to fog nodes using an automaton that is capable of making backup
decisions for high-priority tasks. Using this method, tasks are run on fog proces-
sor nodes based on an efficient estimate of runtime. This approach models the task
execution time using two main criteria including static execution time and variable
execution time in the form of normal probability distribution. To optimize consump-
tion of energy, they introduced an energy-aware decision-making method that is used
by the proposed task scheduling approach. This method enables the scheduling algo-
rithm to consider the remaining energy of the fog node before assigning a new task
to other fog nodes. This algorithm guarantees the reliable execution of the tasks, and
optimize energy consumption and response time.

Sun et al. [15] applied NSGAII improved genetic algorithm to schedule resources
in fog computing environment. First, they proposed a new fog computing architecture
comprises three layers, terminal, core and edge. The composition and performance
of fogging accurately are described by this architecture. Then, a two-level scheduling
model is proposed including two components, inter resource scheduling and intra
resource scheduling. Finally, to deal with multi-objective optimization problems, a new
resource scheduling approach has been proposed, which effectively cuts the service
delay. The MATLAB simulation approves that the proposed method reduces the delay
and enhances the stability of execution of tasks.

In [16], an energy-aware scheduling algorithm in fog networking environment
called PTOM was proposed by authors. They investigated an integer linear program-
ming approach and to find the optimal solution they proposed a critical path (CP)
based method. They divide the problem into several states and show that the problem
can be solved in multinomial time complexity. The results demonstrates that although
this method has a large workload, it can perform better than the existing methods and
also consumes less energy.

Wan et al. [17] put forward an energy-aware scheduling and load balancing algo-
rithm in smart factory. They proposed an intelligent scheduling and load balancing
method called ELBS. In order to balance the load of the production cluster, the work-
load of the fog device is modeled as an energy consumption schema. To determine
the priority of tasks on the production cluster side, they use the improved particle

@ Springer

Task scheduling in edge-fog-cloud architecture: a... 1345

swarm optimization (PSO) method. Finally, to schedule production clusters in a dis-
tributed manner, they use a multi-agent framework. The results show that the proposed
scheduling and load balancing method provides optimal task for robots.

Subbaraj et al. [18] tried to address the problem of scheduling using decision-
making methods such as AHP and TOPSIS. Their goal was to provide a resource-based
model of tasks in a fog computing environment. They considered some performance
criteria for resource task mapping such as MIPS, RAM, Storage, Up link, Down
link, Uplink bandwidth, Downlink bandwidth, Reliability, MIPS cost, Memory cost,
Storage cost and Bandwidth cost into account. To evaluate the performance of fog
devices, they utilized two different multi-attribute decision-making methods. In the
first method, they used the AHP hierarchical analysis process to calculate the weight
and ranking of fog devices. In the second method, AHP was used to calculate the
weight, and based on the weights obtained by AHP, the TOPSIS algorithm was imple-
mented in order to rank fog machines. Then, fog devices were assigned to tasks based
on their rank. The simulation results depict that their technique has superior per-
formance over other scheduling algorithms in the fog environment by combining
performance, security, and cost criteria in scheduling decisions.

The Moth-flame optimization algorithm is another approach which was argued
for task scheduling algorithm [19]. Researchers aim to minimize the execution time
of tasks and satisfy the quality of service requirements of Cyber-Physical System
applications in this research. Minimization of task execution and transfer time are
considered as target functions in the proposed algorithm. The weights of the criteria
that should be minimized in the scheduling process were considered equal in the
algorithms presented in the past. To approve the degree of importance of the criteria
in the scheduling, the corresponding weight coefficients should be considered for
them. They used weighting coefficients to indicate the degree of importance in the
scheduling. Allocation of weights to the criteria provides the possibility of finding a
better optimal solution. They simulated their proposed algorithm using the iFogsim
simulator and compared it with the state of the art in terms of execution time, transfer
time and distance determination criteria.

To minimize deadline constraints in a hybrid fog-cloud computing environment,
Aburukba et al. [20] developed a genetic algorithm-based optimization algorithm for
scheduling computing requests from fixed IoT devices. Depending on the nature of the
request, these requests have different deadlines. The fog layer receives requests from
IoT devices and assigns them to the fog-cloud according to the scheduling model in
an attempt to minimize communication delays. In this method, they take into account
delays such as transmission delays, queuing delays in different network devices, and
task execution delays in cloud and fog layers. The proposed model is customized with
the aim of minimizing the missed deadline. A well-designed crossover operator and
a convenient representation of a solution (chromosome) are provided in this research.
Also, a penalization procedure is included in the genetic algorithm in order to penalize
possible solutions that are not compliant with the constraints. This makes impossible
solutions to generate new chromosomes less likely to be chosen.

Benblidia et al. [21] proposed a task scheduling approach using fuzzy system
in fog computing environment. Performing tasks in the fog computing environment
requires an efficient scheduling mechanism that takes into account preferences of user

@ Springer

1346 F.R. Shahidani et al.

orders and fog cloud requirements. They utilized two parameters called the highest
satisfactory proportion (GSP) and the lowest satisfactory proportion (LSP) to detect
similarities. According to experimental findings, the proposed approach balances aver-
age user satisfaction with execution delay and energy consumption while satisfying
user preferences.

In [22], a task scheduling approach called FLRTS was proposed by authors. They
used the fuzzy logic method to split the tasks between cloud and fog. It exploits the
task requirements such as storage, computation, and bandwidth, and their constraints
such as size of data and deadline to select the appropriate node to execute the tasks
submitted in the fog layer with heterogeneous resources. This algorithm has been
simulated with the iFogsim simulator and compared with other algorithms in terms of
task success, lifetime, average circulation time and delay.

Abdel-Basset et al. [23] proposed a task scheduling algorithm in the fog environ-
ment, using Shahin Harris meta-heuristic algorithm called HHOLS. Their proposed
algorithm is an energy-aware approach based on Shaheen Harris algorithm with the
aim of improving the quality of service provided to users. Mutation improves the qual-
ity of solutions due to its ability to balance the workload between all VMs. For further
improvement, a local search approach is integrated with HOLS. They simulated their
proposed algorithm with Java programming language and compared it with numerous
meta-heuristic methods in terms of cost, energy consumption, flow time, and carbon
flow rate.

In [4], a task scheduling algorithm called LBSSA was proposed with the aim of
reliability in the cloud-fog architecture. First, using a classifier module, they classified
the tasks into three categories: real-time, important, and non-real time tasks. Then,
based on the type of task that entered the fog node, a decision is made for scheduling.
Based on this, when a task is real-time or important, itis tried to use the resources inside
the fog node for allocation in the first step. If the fog node does not have the necessary
resources for that task, other fog nodes are used. Also, to reduce the workload, non-real
time tasks are entrusted to the cloud.

Aburukba et al. [24] modeled request scheduling problem in fog computing using
integer programming and applied Genetic Algorithm (GA) to address this problem with
the aim of cutting total delay of requests down. They customized GA to minimize the
delay in a reasonable time, and compared their work with three different approaches.
The simulation demonstrated that the proposed method diminish the total latency
compared the related work.

Yasmeen et al. [25] proposed a provisioning algorithm for fogging. This method
considered security of resource communication and aimed to reduce the response time.
They utilized PSO algorithm and combined it with Simulated Annealing (SA) to avert
getting stuck in local optima and rapid convergence. Their approach outperformed the
related work in simulation experiments.

A Dynamic Resource Allocation Method for fog computing environment, called
DRAM, was proposed by Xu et al. [26]. This algorithm aimed to make a balance
between resources in fog layer. In this regard, resources was classified based on type
of resources and start time of services. Also, during resource allocation process, if
the utilization of selected resource was less than predefined threshold, the task was
migrated to another resource. Authors compared their approach to the related work in

@ Springer

Task scheduling in edge-fog-cloud architecture: a... 1347

terms of the variance of load balancing, the mean of resource utilization, and the num-
ber of used resources. The simulation results depicted that this approach outperform
the related work.

In [27], a task scheduling approach was proposed using deep reinforcement learning
(DRL) for the Edge environment. The authors applied DRL to the task scheduling prob-
lem with the aim of declining failure rate and service time. The proposed approach
can learn from previous action and can find the optimum solution in the absence
of a concrete mathematical model of the environment. Also, they utilized Deep-
Q-Network(DQN) to address the curse of dimensionality issue of task scheduling.
The simulation results of EdgeCloudSim simulator demonstrated that the proposed
approach depicted the better performance in terms of service time, failure rate and
VM utilization in comparison of the state of the art.

A study by Hao et al. [28] examined applying clustering algorithm in task scheduling
problem in the edge computing environment. They supposed that each node reaches
green energy using some devices and the energy of each node can transmit using Energy
Internet (EI) technology. The authors clustered nodes with the aim of declining intra
cluster distance. The contribution of this research is the definition of distance which
was defined as a combination of green energy cost during transmitting files and the
time of transmitting files.

In [29] a scheduling approach was proposed to diminish energy consumption and
makespan. The proposed algorithm schedule delay-sensitive tasks with low computa-
tional need in fog layer and the tasks with high computational need and less sensitivity
to the delay in cloud layer. Also, they utilized Stepwise Frequency Scaling approach,
which is a deadline-aware approach, to reduce energy consumption. The simulation
results depicts that this method plunge energy consumption by 50 percent but fails to
affect makespan.

3 Edge-cloud-fog architecture

Figure 1 depicts edge-cloud-fog architecture. This architecture comprises three layers:
Edge, fog, and cloud. Each device of the edge layer is bind to a fog node and sends
the request to that fog node. Also, each cloud node provides resources in the response
of requests sent to it from the edge layer. Each fog node contains a manager node that
receives requests from the edge layer and put them in the queue. Requests are entered
to the classifier module in order, and the type of requests are determined. The requests
types include Real Time, Non-real time, and Important. Real time requests are very
sensitive to delay and have deadlines. Important requests are sensitive to delay, but
there is no deadline for them. Non-real time requests are hardly sensitive to delay.
When the type of request was determined, the request is entered into the scheduler
module for scheduling. Indeed, scheduler provisions appropriate resource to respond
to the request. Due to limitation of available resources in the fog layer, it fails to meet
the resources requirements of all requests. So, non-real time requests are forwarded
to the cloud layer so that there exist enough resources in the fog layer to provision for
the remaining requests which are sensitive to delay. By this, it is tried to avert sending
real time and important requests to the cloud layer as mush as possible. Also, if the fog

@ Springer

1348 F.R. Shahidani et al.

0 —78M—> I
A i t
| Waiting in queue
=] Vi
tl:/\l:?‘:l Cloud tier o
DC scheduler
Receive request
from edge device
=0
a5 <
)

Manager node

%) W B K

.i_l!m L

$921N0S31 JO JaqUINU 3Yy3 3seadu|

Increase the computing power of resources

\

Edge tire

Fig. 1 Edge-cloud-fog architecture

node fails to provide enough resources to respond to a request, it will seek help from
the resources available in other fog nodes. The request is sent to the cloud If other fog
nodes refuse to provide resources for that request [4, 30].

4 Reinforcement learning fog scheduling (RLFS) algorithm

As it was stated in the previous section, requests of IoT devices are classified into
three categories: Real time, Important, and Non-real time. In the RLFS algorithm,
all non-real time requests are sent to the cloud because they are rarely sensitive to
time, but other categories, Real time and Important, should be answered in the fog
layer due to the limitation of response time. To scheduling Real time and Important
requests, Reinforcement learning method is applied. Reinforcement learning technique
is utilized in RLFS algorithm in two levels. In the first, all Real time and Important
requests are tried to be answered in the fog nodes in which the request has been
received. A level of reinforcement learning is used to select an appropriate resource
to send the request to that resource, and if the fog node that received the request fails
to provide the resources to run that request, it borrows the resources from other fog
nodes. Selecting a fog node to borrow its resources is carried out using another level
of reinforcement learning. The process of reinforcement learning and the details of
the RLFS algorithm are described in the following.

4.1 The first level of reinforcement learning (provisioning resources for
scheduling the received request at the fog node)

At this level of learning, the received requests of Real time and Important types in
the fog node are scheduled. At the first, it is tried to select appropriate resources to

@ Springer

Task scheduling in edge-fog-cloud architecture: a... 1349

meet the requirements of request inside the fog node. In the following, the process of
selecting appropriate resources inside the fog node is described.

e Environment modes Similarly to the types of requests received in the fog node,
there are two general modes for the environment, Real time and Important.

e Authorized actions Each learning agent includes a series of actions in each state
of the environment, which in each learning episode chooses one of those actions
based on the defined action selection policy and performs it on the environment.
In this algorithm, in each state of the environment, the allowed actions include all
the resources that are available in the fog node and have the ability to meet the
requirements of request. If the fog node receiving the request does not have any
resources available to respond to the request, the agent enters the second level of
reinforcement learning to select an appropriate fog node to send the request.

e Action Selection Policy Here we utilize the e—greedy policy to select an action in
each state of the environment. Based on this policy, the action that has the highest
action quality in the current state in the quality of action table (Q-Table) is selected
with a very high probability (95%) and other actions with a probability of € (5%)
as actions in that episode. The value of an action is higher if its value is less than
the rest of the actions since this is a minimization problem.

e Rewards After the action is selected using the action selection policy and applied
to the environment, the amount of reward (feedback signal) of the performed action
should be returned to the agent. In this weighted sum algorithm, the amount of
internal load imbalance of the selected resource, the amount of load imbalance
between the resources from the processor side and the resource waste from the
processor and memory side are calculated and returned to the agent as a reward
signal. Resource wastage is calculated by Egs. 1, load imbalance among resources
is calculated by 2, and internal load imbalance is calculated by Eq. 3.

g _ k=t (IR —min(RD]) + ¢

l > k=1 ”?

ey

where Rl’? =1- uf‘ is the remaining resource k in the i-th device. min(Rf)
It represents the lowest amount of remaining resources (among processor and
memory resources) in the i-th device. Also, uf‘ indicates the efficiency of resource
k in the i-th device. Normalized values are used in this equation.

| Mo 2

— | J

unevenness(cpu) = M'Zl(LEP“ 1) 2)
j=

where M depicts the number of resources, lj pu represents the processor load in the

j-th source, and (L") represents the average processor load among all resources.
It is important to balance the amount of remaining resources in each unique
resource and in each dimension, which is referred to as internal load imbalance.
Figure 2 shows two scheduling schemes of six requests on two resources 1 and 2.

@ Springer

1350 F.R. Shahidani et al.

The cube marked as Ti represents the amount of processor memory allocated to
the i-th request. The orange cube shows the remaining amount of processor and
memory. Figure 2a shows a scheduling scheme. It can be seen that there are more
memory resources in resource 1, but the remaining processor is not enough. Hence,
resource 1 cannot answer every request instance that requires a normal amount
of CPU and memory. Unlike resource 1, resource 2 has a lot of remaining CPU,
but not enough memory. Thus, resource 2 also cannot answer every request that
requires a normal amount of memory and processor. In another scheme shown in
Fig. 2b, the remaining capacity of both resources 1 and 2 is more balanced than in
Fig. 2a. This balance helps a resource to respond to more requests simultaneously.
This leads to answer most of the requests inside the fog node and to send requests
to other fog nodes or the cloud less often. We used Eq. 3 to measure internal load
imbalance in multiple resource usage [9].

R r ~\ 2
. S) 1 L —Lj
disequilibrium(j) = EZ (— 3)

r=1
Here, R = 2 is considered as the number of Elimensions, where we consider the
two dimensions of processor and memory. L; and L] demonstrate the average
load of all resources and resource load of r respectively. Therefore, the reward is
calculated according to the Eq. 4.

1 1 1
Rewardg = (—.unevenness(cpu)) + (—.disequilibrium(j)) + (—.R}“)
a a a

where a=3 and equal to the number of parameters.

e Update the value table of actions (Q-Table) After receiving the reward signal
from the environment, the learning agent updates the quality of action table in
each episode. In this algorithm, after receiving the reward signal, the agent should
update the quality of action table related to this level of learning, which we call
QR. For this purpose, we utilize Eq. 5 to update the QR table.

QRs,a =(1- a)QRs,a +of[R + VQRS’,LI’] (5)

4.2 The second level of reinforcement learning (selecting appropriate fog node to
send a request to another fog node)

As we stated, when the fog node receives a request from IoT devices and does not
have the appropriate resources to respond to that request, it uses other fog nodes to
respond to that request. To select the appropriate fog node to send the request to that
fog node, the manager node utilizes the second level of reinforcement learning.

¢ Environment modes At this level, the environment modes are the same as the
types of requests, i.e., two modes, Real time and Important.

@ Springer

Task scheduling in edge-fog-cloud architecture: a... 1351

ask6
(a) ask3 e
Task2
Task1 askd
1 2
ask3
(b) aské
asks Task2
[askd
RAM Task1 1 2

CPU

Fig.2 Two scheduling schemes. a Without considering internal load balancing. b Considering internal load
balancing

Authorized actions At this level of learning, the virtual actions of agent include
fog nodes that have available resources to respond to the desired request.
Action Selection Policy To select an action among the allowed actions in each
state of the environment, we apply the e—greedy policy.
Rewards We calculate the available bandwidth as bonus signal Reward, because
the request transmission time between fog nodes is vitally important, and the
determining parameter in this measure is the amount of link bandwidth,
Update the value tableAs before, after the agent receives the reward signal, the
quality of action table should be updated. Here, the quality of action table corre-
sponding to the second level of reinforcement learning called QF is updated using
Eq. 6.

OF;a=(0—-a)0Fsq+a[R+yQFy] (6)

Algorithm 1 shows the pseudo code of RLFS algorithm. In the pseudo-code, the
input and output parameters are provided in the first to sixth lines. Then, in the
8th and 9th lines, the value of the actions in both levels of reinforcement learning
are initialized with zero. In the 10th to 36th lines, the process of checking requests
and scheduling is carried out inside a loop for each request. Based on this, if the
request type is non-real time, the 11th line is run first, then the request is sent to
the cloud in the 12th line. Otherwise, the process of selecting the resource for the
request should be conducted. In the 14th line, the type of request is specified first,
and the type of request determines the state of the environment.

Then, in the 15th line, we get a list of all the resources in the fog node that can
respond to the request using the AvailableR function. Then in the 16th line, if
the retrieved list is not empty, there is a resource to assign the request, the list is

@ Springer

1352 F.R. Shahidani et al.

investigated, and in the 17th line, an action (a resource from the list of resources)
is selected using the ChoiceAction function and the € — —greedy action selection
policy. Then, in the 18th line, the desired request is sent to the selected resource for
processing. Then, in the 19th line, the reward for the performed action is calculated,
this reward includes the weighted sum of the internal load imbalance regarding the
processor and memory, the amount of load imbalance among the resources inside
the fog node regarding the processor, and the resource wastage.

After calculating the reward in the 20th and 21st lines, two variables s’, a’ are
quantified to update the value table. Then, in the 22nd line, based on equation 35,
the value table is updated. Then, in the 23th line, the state of the environment is
updated. If the fog node receiving the request does not have available resources
to assign, we enter the second level of reinforcement learning. Regarding this, in
the 25th line, a list containing all the fog nodes that have available resources to
respond to the desired request is constituted. Then it is controlled in the 26 line, if
this list is empty, the request is sent to the cloud layer in the 27th line. Otherwise, a
fog node is selected based on the e—greedy action selection policy in the 29 line. In
line 30, the request is sent to the selected node. Then, in the 31 line, according to
the first level of reinforcement learning, a resource in the new fog node is selected
to send a request to that resource. In the 32nd line, the reward for the performed
action is calculated that this reward is the amount of available bandwidth. Finally,
in line 33 and 34, s/, a’ is set to update the value of the table.

In the 35th line, the quality of action table is updated using equation 6, and finally,
in the 36th line, the environment state is updated. Also, if there is a need to transfer
the request to another fog node or cloud level, and the waiting time for the release
of the resource at the same level is less than the time of transferring the request to
another level, that request will not be transferred to another level and the request
waits at the same level until the required resource is released.

5 Experimental environment and results

The proposed approach is compared with the LBSSA algorithm, which was reviewed
in the related works section and is one of the most recent algorithms in the field of
task scheduling in the fog networking. In the experiments, the proposed algorithm was
evaluated regarding various criteria such as the amount of load balancing, the average
of response time, the number of used devices, the average efficiency and the execution
time. To implement these algorithms, we ran CloudSim simulator on a laptop with 4
GB of RAM, a maximum frequency of 2.13 GHz , and a 64-bit Windows 11 operating
system.

5.1 Simulation setup
The network environment was a three-layer network consisting of cloud , fog , and edge

layers. The cloud layer had three data centers in each data center ten virtual machines
were running. Also, the fog layer contained a hundred nodes (Fog nodes), each node

@ Springer

Task scheduling in edge-fog-cloud architecture: a... 1353

Algorithm 1: RLFS Algorithm

Input :

RequestList \\List of received requests from IoT devices
ResourceList \\List of available resources

FogList \\\List of fog nodes

Resource \\Selected Resource
Initialization :
OR =0; \\Action value table for resource

1
2
3
4
5 Output :
6
7
8
9

QF =0; \\Action value table for fog nodes
10 for inti = 0;i < RequestList.size();i + + do

11 if The request is non-RealTime then

12 L The request is transferred to the cloud

13 else

14 State = Classifire(Request) \\ Classification type of request

15 AvalList = AvailableR(ResourceList) \\ resource in fog that can service
16 if AvaList.size! =0 then

17 a = ChoiceAction(State, AvailableList); \\ Selects resource (e-greedy)
18 Assigne request to resource

19 Reward = 1/a(RW(a)) + (1/a)(inter — LB(a)) + (1/a)(intra — LB(a));
20 S’ =Next requst type ;

21 a’' = ChoiceAction(S’, ResourceList);

22 ORs.a = (1 —a)Qs,a +a[Reward +y Qg y1;

23 S=5;

24 if AvaList.size == 0 then

25 FList = AvailableF (FogList)

26 if FList.size==0 then

27 L The request is transferred to the cloud

28 else

29 a = ChoiceAction(State, FList); \\ Selects fog node (e-greedy)
30 Assigne request to resource of fog node(a)

31 Select the source using the first level of reinforcement learning

32 Reward = AvailableBW;

33 S” =Next requst type ;

34 a’ = ChoiceAction(S', ResourceList);

35 OFsq=0—-a)0sq+a[Reward +yQy ,1;

36 S=15"

contained a number of resources to respond to the requests of the IoT devices. The fog
nodes were connected via a network with one gigabyte bandwidth. Also, fog nodes
were connected with the cloud layer via communication links with a bandwidth of ten
gigabytes.

5.2 Data set

In the experiments, LCG (Large Hadron Collider Computing Grid) dataset' was used
to simulate the requests of the IoT devices. The simulation results were analyzed in

I Available at https://www.cs.huji.ac.il/labs/parallel/workload/]_lcg/.

@ Springer

https://www.cs.huji.ac.il/labs/parallel/workload/l_lcg/

1354 F.R. Shahidani et al.

500

1000 1500 2000

N w
o ow s

Load balance variance
o =
o wv - v N

Number of requests

B RLFS ®LBSSA = DRAM GA EPSO-SA
Fig.3 Load balance variance for different number of requests (500, 1000, 1500, 2000)

four different scenarios consisting of 500, 1000, 1500 and 2000 requests from the IoT
devices.

5.3 Comparison and review of results

We provide the results of comparing the proposed algorithm (RLFS) with LBSSA,
DRAM, GA, and PSO-SA algorithms in terms of load balance, the number of used
devices, the average of response time, and execution time in this section.

5.3.1 Load balance

Figure 3 demonstrates the load balance variance comparison of proposed RLFS algo-
rithm with LBSSA, DRAM, GA, and PSO-SA algorithms in the case of designed
scenarios with various requests from IoT devices. According to this chart, even though
algorithms which considers load balancing as an objective, including the proposed
RLFS algorithm, LBSSA and DRAM, demonstrates better load balance in all four
scenarios, our proposed algorithm outperforms others. In comparison to the LBSSA
algorithm, the RLFS algorithm enhances the load balance by 42%, 41%, 36% and
34% for the first to forth scenarios respectively, since the load balancing parameter
was considered as one of the parameters in calculating the amount of reward for the
action performed by the agent. In the LBSSA algorithm for allocating tasks to fog
devices, in the first, all devices are sorted regarding the failure rate, and then the first
task is assigned to the first device that has the ability to respond to it. As a result, task
scheduling is merely carried out based on the resource failure rate. Also, in the DRAM
method, tasks are classified based on the type of resource and start time of service. In
this approach, if the performance of selected resource be less than a threshold during
the resource allocation process, task is migrated to the another resource.

@ Springer

Task scheduling in edge-fog-cloud architecture: a... 1355

0.9
— 0.8

0.7
0.5
500

1000 1500 2000
Number of requests

o
o

Average response time (S
o
sy

o o
=N

o

B RLFS ®LBSSA m=DRAM GA mPSO-SA
Fig.4 Average response time for different number of requests (500, 1000, 1500, 2000)

In contrast, in the proposed method, the agent selects a device for task scheduling
according to the value of each action in the Q table and regarding the e—greedy action
selection policy. The value table of actions is updated at the end of each episode based
on the amount of reward received. The amount of reward consists of three parameters:
the amount of internal load imbalance of the device selected to respond to the task,
the amount of load imbalance among devices and the amount of resource wastage in
terms of processor and memory. Calculating the amount of load imbalance among fog
resources leads to outperforming the other algorithms in terms of the load balance
parameter.

5.3.2 Average response time

Figure 4 shows the average response time for different scenarios. As it has been
depicted in the figure, the proposed algorithm outperform other algorithms in all
scenarios. In comparison with LBSSA, our proposed method was able to achieve better
results by 14%, 15%, 14%, and 13% than the LBSSA algorithm in all scenarios. As
discussed in the previous chapter, considering the amount of internal load imbalance
in the reward calculation makes nodes able to respond to more tasks. This causes more
tasks to be answered within fog nodes and fewer tasks to be transferred to other fog
or cloud nodes for processing, and consequently reduces the response time.

Also, if there is a need to transfer requests to other fog nodes, considering that in
the second level of reinforcement learning, the bandwidth of the fog node is taken into
consideration and the request is transferred to a fog node which has more bandwidth.
This scales down the time of transferring the request to another node happens, and
consequently reduces the response time. So, by considering the amount of internal
load imbalance in the first level of reinforcement learning and considering the amount
of bandwidth in the second level of reinforcement learning, the average response time
in the proposed algorithm is diminished in comparison with other algorithms.

@ Springer

1356 F.R. Shahidani et al.

180
160
©
3 140
>
$ 120
S
3 100
©
% 80
o
2 60
£
) II I
20
0
500 1000 1500 2000

Number of requests

B RLFS ®LBSSA = DRAM GA EPSO-SA
Fig.5 Number of used devices for different number of requests (500, 1000, 1500, 2000)

In addition, by forwarding non-real time requests to the cloud layer in RLFS and
LBSSA algorithms, more resources are available for important and real time requests
that leads to declining average response time in these algorithms. From the other
side, in GA, decreasing delay is considered as the single objective. Due to this, GA
outperforms DRAM and PSO-SA in terms of average response time.

5.3.3 Number of used devices

Figure 5 depicts the number of used devices in different scenarios. As shown in
the figure, the proposed algorithm was able to use fewer devices and after that the
LBSSA achieve the second rank. Thus, in different scenarios, the proposed algorithm
has been able to use less number of devices by 7 to 9 percent compared to the LBSSA
algorithm. As discussed in the previous sections, one of the parameters considered in
calculating the reward of the action performed by the agent is the amount of inter-
nal load imbalance. The amount of internal load imbalance means that a resource is
balanced in all aspects of the processor and memory resources.

For example, there is no case with 95% efficiency in terms of processor but 10%
efficiency in terms of memory. When this state occurs, even though the resource is
90% free in terms of memory, it cannot be used due to the high efficiency of the
processor. Considering this, it becomes possible to assign more tasks to one resource.
This makes the proposed algorithm able to use fewer devices when it tries schedule
the same number of tasks in comparison with the LBSSA algorithm. Thanks to the
continuous considering of scheduling tasks on appropriate resources LBSSA achieves
better results compared with other algorithms. Also, DRAM attains the third rank
since it consider migrating tasks to other nodes when the performance is less than the
threshold.

@ Springer

Task scheduling in edge-fog-cloud architecture: a... 1357

45
40
35

Run time (S)
= = N N w
o un o u»n o

wv

500 1000 1500 2000

o

Number of requests

B RLFS ®LBSSA m=DRAM GA EPSO-SA
Fig.6 Execution time for different number of requests (500, 1000, 1500, 2000)

5.3.4 Execution time

The results of execution time of all algorithms are summarized in Fig. 6. From
this figure we can observe that the LBSSA has minimum run time and the GA the
maximum one. Also, the proposed algorithm has more execution time than the LBSSA
algorithm except the first scenario which the execution time of both algorithms is the
same. In terms of execution time, the proposed algorithm has performed weaker than
the LBSSA algorithm. The proposed algorithm has more processing than the LBSSA
algorithm due to the update of the value of action table, the selection of the action
based on the Q table, and the implementation of the reinforcement learning algorithm
in two levels. Indeed, in the other parameters such as load balance and the number
of used devices, the proposed algorithm outperforms the LBSSA algorithm, and the
slight increase in execution time can be neglected.

From the other side, GA has the maximum run time since it is a population base
algorithm. Indeed, it generates a set of solutions and evaluates them to find the best,
and these operations are time consuming.

6 Conclusion and future works

The growing popularity of IoT has led to sharp rise of smart devices that request
cloud services. Transferring this large volume of data to the cloud caused network
congestion and increased latency. Fogging addresses mentioned problems by provid-
ing fast answers for real time requests, but due to limitation of resources, there is a
need for effective scheduling of requests for these resources, which guarantees their
efficient utilization. This paper has designed an approach for task scheduling in the
edge-fog-cloud architecture using reinforcement learning. We implemented our pro-
posed method using Cloudsim simulator and compared it with LBSSA, DRAM, GA,
and PSO-SA algorithms in terms of load balance, number of used devices, resource

@ Springer

1358 F.R. Shahidani et al.

efficiency and execution time. The simulation results have demonstrated that in the
edge-fog-cloud setting, the proposed method has outperformed other algorithms in
terms of load balance and average response time. Also, in terms of the number of
used devices, it has presented better results. However, in terms of execution time,
the LBSSA algorithm has had less execution time than the proposed algorithm, but
due to the significant improvement of the proposed algorithm in terms of number of
devices and load balance, the small increase in execution time can be ignored. This is
because our proposed algorithm considers the amount of load imbalance in calculating
the reward, and results in responding more tasks by fog nodes. Also, updating action
table, selection the appropriate action, and overload of implementing RL in two levels
leads to weaker performance of our algorithm in term of execution time.

Utilizing the fuzzy logic to calculate the reward is proposed as the future work. All
three criteria of internal load imbalance, load imbalance among devices and resource
efficiency can be considered as three inputs of the fuzzy system and the fuzzy system
output can be returned as areward to the learning agent. Also, synchronization between
cloud and fog layers can be considered into account in the future studies. Mobility of
IoT devices is another issue which can be taken into consideration as the future work.

Funding The authors declare that no funds, grants, or other support were received during the preparation
of this manuscript.

Declarations

Conflict of interest The authors have no relevant financial or non-financial conflict of interests to disclose.

Ethical approval This article does not contain any studies with human participants or animals performed
by any of the authors.

References

1. Doryanizadeh V, Keshavarzi A, Derikvand T, Bohlouli M (2021) Energy efficient cluster head selection
in internet of things using minimum spanning tree (eemst). Appl Artif Intell 35(15):1777-1802

2. Sarrafzade N, Entezari-Maleki R, Sousa L (2022) A genetic-based approach for service placement in
fog computing. J Supercomput 78(8):10854—10875

3. Keshavarzi A, Haghighat AT, Bohlouli M (2021) Clustering of large scale qos time series data in
federated clouds using improved variable chromosome length genetic algorithm (cqga). Expert Syst
Appl 164:113840

4. Algahtani F, Amoon M, Nasr AA (2021) Reliable scheduling and load balancing for requests in cloud-
fog computing. Peer-to-Peer Netw Appl 14(4):1905-1916

5. Madhura R, Elizabeth BL, Uthariaraj VR (2021) An improved list-based task scheduling algorithm
for fog computing environment. Computing 103(7):1353-1389

6. Azizi S, Shojafar M, Abawajy J, Buyya R (2022) Deadline-aware and energy-efficient iot task schedul-
ing in fog computing systems: a semi-greedy approach. J Netw Comput Appl 201:103333

7. Khan T, Tian W, Zhou G, Ilager S, Gong M, Buyya R (2022) Machine learning (ml)-centric resource
management in cloud computing: a review and future directions. J Netw Comput Appl 66:103405

8. Hosseinioun P, Kheirabadi M, Tabbakh SRK, Ghaemi R (2020) A new energy-aware tasks scheduling
approach in fog computing using hybrid meta-heuristic algorithm. J Parallel Distrib Comput 143:88-96

9. Ghasemi A, Toroghi Haghighat A (2020) A multi-objective load balancing algorithm for virtual
machine placement in cloud data centers based on machine learning. Computing 102(9):2049-2072

10. Abdel-Basset M, Mohamed R, Chakrabortty RK, Ryan MJ (2021) Iega: an improved elitism-based

genetic algorithm for task scheduling problem in fog computing. Int J Intell Syst 36(9):4592—4631

@ Springer

Task scheduling in edge-fog-cloud architecture: a... 1359

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Fellir F, El Attar A, Nafil K, Chung L (2020) A multi-agent based model for task scheduling in cloud-
fog computing platform. In: 2020 IEEE international conference on informatics, IoT, and enabling
technologies (ICIoT). IEEE, pp 377-382

Binh HTT, Anh TT, Son DB, Duc PA, Nguyen BM (2018) An evolutionary algorithm for solving task
scheduling problem in cloud-fog computing environment. In: Proceedings of the ninth international
symposium on information and communication technology, pp 397-404

Bian S, Huang X, Shao Z (2019) Online task scheduling for fog computing with multi-resource fairness.
In: 2019 IEEE 90th vehicular technology conference (VTC2019-Fall). IEEE, pp 1-5

Ghanavati S, Abawajy J, Izadi D (2020) Automata-based dynamic fault tolerant task scheduling
approach in fog computing. IEEE Trans Emerg Top Comput 6:66

Sun Y, Lin F, Xu H (2018) Multi-objective optimization of resource scheduling in fog computing using
an improved nsga-ii. Wirel Pers Commun 102(2):1369-1385

Tan H, Chen W, Qin L, Zhu J, Huang H (2020) Energy-aware and deadline-constrained task scheduling
in fog computing systems. In: 2020 15th International conference on computer science & education
(ICCSE). IEEE, pp 663-668

Wan J, Chen B, Wang S, Xia M, Li D, Liu C (2018) Fog computing for energy-aware load balancing
and scheduling in smart factory. IEEE Trans Ind Inform 14(10):4548-4556

Subbaraj S, Thiyagarajan R (2021) Performance oriented task-resource mapping and scheduling in fog
computing environment. Cognit Syst Res 70:40-50

Ghobaei-Arani M, Souri A, Safara F, Norouzi M (2020) An efficient task scheduling approach using
moth-flame optimization algorithm for cyber-physical system applications in fog computing. Trans
Emerg Telecommun Technol 31(2):e3770

Aburukba RO, Landolsi T, Omer D (2021) A heuristic scheduling approach for fog-cloud computing
environment with stationary iot devices.] Netw Comput Appl 180:102994

Benblidia MA, Brik B, Merghem-Boulahia L, Esseghir M (2019) Ranking fog nodes for tasks
scheduling in fog-cloud environments: A fuzzy logic approach. In: 2019 15th international wireless
communications & mobile computing conference IWCMC). IEEE, pp 1451-1457

Ali HS, Rout RR, Parimi P, Das SK (2021) Real-time task scheduling in fog-cloud computing
framework for iot applications: a fuzzy logic based approach. In: 2021 International Conference on
COMmunication Systems & NETworkS (COMSNETS). IEEE, pp 556-564

Abdel-Basset M, El-Shahat D, Elhoseny M, Song H (2020) Energy-aware metaheuristic algorithm for
industrial-internet-of-things task scheduling problems in fog computing applications. IEEE Internet
Things J 8(16):12638-12649

Aburukba RO, AliKarrar M, Landolsi T, El-Fakih K (2020) Scheduling internet of things requests to
minimize latency in hybrid fog-cloud computing. Future Gener Comput Syst 111:539-551

Yasmeen A, Javaid N, Rehman OU, Iftikhar H, Malik MF, Muhammad FJ (2018) Efficient resource
provisioning for smart buildings utilizing fog and cloud based environment. In: 2018 14th International
wireless communications & mobile computing conference (IWCMC). IEEE, pp 811-816

Xu X, Fu S, Cai Q, Tian W, Liu W, Dou W, Sun X, Liu AX (2018) Dynamic resource allocation for
load balancing in fog environment. Wirel Commun Mob Comput 6:66

Zheng T, Wan J, Zhang J, Jiang C (2022) Deep reinforcement learning-based workload scheduling for
edge computing. J Cloud Comput 11(1):1-13

Hao Y, Cao J, Wang Q, Du J (2021) Energy-aware scheduling in edge computing with a clustering
method. Future Gener Comput Syst 117:259-272

Tjaz S, Munir EU, Ahmad SG, Rafique MM, Rana OF (2021) Energy-makespan optimization of
workflow scheduling in fog-cloud computing. Computing 103(9):2033-2059

Guevara JC, da Fonseca NL (2021) Task scheduling in cloud-fog computing systems. Peer-to-Peer
Netw Appl 14(2):962-977

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable

law.

@ Springer

	Task scheduling in edge-fog-cloud architecture: a multi-objective load balancing approach using reinforcement learning algorithm
	Abstract
	1 Introduction
	2 Related work
	3 Edge-cloud-fog architecture
	4 Reinforcement learning fog scheduling (RLFS) algorithm
	4.1 The first level of reinforcement learning (provisioning resources for scheduling the received request at the fog node)
	4.2 The second level of reinforcement learning (selecting appropriate fog node to send a request to another fog node)

	5 Experimental environment and results
	5.1 Simulation setup
	5.2 Data set
	5.3 Comparison and review of results
	5.3.1 Load balance
	5.3.2 Average response time
	5.3.3 Number of used devices
	5.3.4 Execution time

	6 Conclusion and future works
	References

