Computing (2024) 106:1051-1080
https://doi.org/10.1007/s00607-022-01141-x

SPECIAL ISSUE ARTICLE

®

Check for
updates

An intelligent resource management method in SDN based
fog computing using reinforcement learning

Milad Anoushee'® - Mehdi Fartash' - Javad Akbari Torkestani’

Received: 27 October 2021/ Accepted: 19 December 2022 / Published online: 3 January 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023

Abstract

Nowadays, cloud computing faces growing challenges, furthermore, responding to
time-sensitive requests in the traditional cloud computing model is one of the major
challenges, considering the growth of the Internet of Things. Recently, the powerful
fog computing paradigm has been considered for answering these challenges. But
a major challenge in fog computing is managing limited FN resources for correctly
responding to [oT requests in environments with heterogeneous latency requirements.
This study presented a new resource management framework utilizing a software
defined network (SDN) architecture and enhanced reinforcement learning methods.
This new framework aims to make optimal use of limited FN resources while satisfying
the low-latency requirements of IoT applications. Since SDN is the proper choice to
support this intelligent distributed structure, an SDN-based fog architecture was pro-
posed. Moreover, FN must allocate its limited and valuable resources intelligently in
a heterogeneous IoT environment with different latency requirements. Consequently,
this study formulated the problem of resource allocation in fog computing in the form
of a Markov decision process (MDP). The study used different reinforcement learn-
ing (RL) techniques to solve the MDP problem. Simulation results in different IoT
environments with heterogeneous latency requirements corroborate that RL methods
achieve the best possible performance regardless of the IoT environment.

Keywords Fog computing - Resource allocation - Delay-sensitive - IoT -
Reinforcement learning - Software defined network

Mathematics Subject Classification 90C40

B Milad Anoushee
m.anooshee @BSL.ir

Department of Computer Engineering, Islamic Azad University, Arak Branch, 3rd km of Khomein
road, Imam Khomeini Square, Arak, Markazi Province 38361-1-9131, Iran

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-022-01141-x&domain=pdf
http://orcid.org/0000-0001-9176-5129

1052 M. Anoushee et al.

1 Introduction

Over the past few decades, cloud computing has been developed as an important trend
for transferring computing resources, controlling and storing information in geograph-
ically distributed data centers. However, cloud computing is facing growing challenges
such as high unpredictable communication latency, privacy gaps, network load con-
nected to the end devices, and costs related to head-on connections [1, 2]. Most of
these problems are due to the high physical distance between cloud service provider’s
data centers and the end-users. This geographical distant results in high latency and
reduced quality of service (QoS) problems. These problems act as barriers for time-
sensitive system requests, creating challenges in supporting real-time processing and
providing fast response times for end-users [1].

Using middleware between end nodes and the cloud can help solve some of these
challenges. Consequently, different studies proposed and studied middlewares such
as Cloudlets,! MEC,% Micro Data Centers,> and other similar solutions such as Nano-
data centers, which can be under the umbrella of fog computing or edge computing
[4-6].4

Cisco introduced fog computing in 2014 to expand cloud computing to the network
edge. It is an entirely virtual platform that presents computing, storage, and network
services between end IoT users and traditional cloud computing data centers [5]. Fog
computing hopes to decentralize computing and integrate cloud data centers and het-
erogeneous edge devices to perform ubiquitous distributed computing [7]. Moreover,
light-weight or time-sensitive IoT environment tasks can be processed in the fog base
station. In contrast, heavyweight tasks or any other thing that is not possible in the fog
layer for any reason is performed in cloud computing platforms.

Although fog computing is a promising method for solving the problems of cloud
computing and current networks, some problems remain unsolved. Most importantly,
there is a need for an intelligent distributed platform at the edge to manage the com-
putational, network, and storage resources at the fog layer. Currently, uncertainties
caused by the relation between future requests and limited fog node resources cause
multiple obstacles to proper decision-making in resource allocation.

Moreover, if all requests are forwarded from the IoT layer to the cloud, the pos-
sibility of responding to requests with low latency requirements will be challenged.
On the other hand, as an alternative solution, fog computing faces resource scarcity
problems in responding to all requests. Therefore, intelligent resource management at
the fog layer can be a solution to this problem.

! The concept of cloudlet, initiated by Carnegie Mellon University (CMU) is similar to MDC, since both
are a small scaled virtualized data center to serve users near the edge in a distributed fashion [3].

2 Mobile Edge Computing.
3 MDCs, initiated by Microsoft are small scaled versions of data centers to extend the hyperspace cloud

data centers. MDCs aim to provide small size data centers extending the offered services of the cloud near
to the end users.

4 The term Edge computing and Fog computing seem interchangeable, and for a fact, they do share some
key similarities. Both Edge and Fog computing systems shift processing of data closer to the source of data
generation. The main focus of this shift is to reduce the amount of data sent to the cloud. This shift helps
in decreasing latency and thereby improving system response time, especially in remote mission-critical
applications.

@ Springer

An intelligent resource management method... 1053

Resolving the problem is critical for IoT applications that cannot tolerate such
latencies. There are tasks with different latency requirements in IoT applications,
some of which are more sensitive to latency while others can handle more [8, 9].
Therefore, FN must allocate its limited and valuable resources in heterogeneous IoT
environments with different latency requirements intelligently.

1.1 Contributions

The current study presented a new framework for resource allocation in SDN-based fog
using reinforcement learning methods. The framework aimed to effectively use lim-
ited FN resources while providing the low-latency requirements of IoT applications.
Moreover, an SDN-based architecture was used to turn the resource allocation prob-
lem into a decision-making process based on reinforcement learning. Consequently,
this decision-making could increase the total usefulness of serviced requests at the fog
layer. In addition, the proposed algorithm formulated the resource allocation problem
as a Markov decision process, which allows the controller to make the best decision
in uncertain situations. Since dynamic changes happen in input requests and resource
situations, the system cannot precisely predict the transition probabilities and rewards.
Therefore, the model-less RL methods such as SARS, Q-Learning, and Monte Carlo
were used to learn optimal policies and make correct decision-making.
The key contributions of this paper are listed as follows:

1. Provide the possibility of using all fog layer resources to respond to time-sensitive
requests in the shortest possible time.

2. A special multi-layered architecture was presented (Fig. 1) based on SDN using
reinforcement learning algorithms.

3. Using reinforcement learning enabled responsible controller to act as an intelligent
agent and choose the optimal method for responing to a request without a required
prior knowledge of the environment.

The rest of this paper is organized as follows. The next section considers the related
studies. After that, architecture and system modeling method are introduced. The
problem formulation proposed for solving the resource allocation problem is presented
in the third section, along with introducing the reinforcement learning method and
related algorithms. Then the simulation results are presented in the fourth section, and
the conclusion is in the fifth section. In addition, a list of notation and abbreviations
used throughout the paper is provided in Table 1.

1.2 Fog computing and SDN-based architecture

SDN technology was used in the proposed model of this study to increase fog com-
puting efficiency, network scalability, and programmability. The effects of SDN on
fog computing were examined in different studies. For example, Bakhtir et al. [10]
survey presented a complete description of how fog computing can use SDN to solve
its challenges. Their study thoroughly investigated the problems of fog computing
in different environments and analyzed them in a categorized fashion. Bakhtir et al.

@ Springer

1054 M. Anoushee et al.

p Cloud Layer

Gloud
Controller:

Control Layer

(SDN)
FOG Layer
------- R R R
- =]
UQ.[:] oy, M »*“U;IIIE% a(:ﬁo @,&Ué; . : IOT Layer
TRB L ‘e TaB ki C mE CgEa gE
) — —) —)

= Data Link <> Control link

Fig. 1 Multi-Controller Flat SDN-based Fog Architecture: According to the figure, this environment
includes multiple controllers. The controller that receives the service requests from one of its FBSs at
the moment t is named the responsible controller, which becomes responsible for deciding how to provide
the requested resources

[10] found SDN a newfound method of facing these challenges. Moreover, they pre-
sented a transparent cooperation model for SDN-based fog computing using practical
architecture. In addition, they showed the usage of SDN-related mechanisms in fog
computing infrastructure.

In another study, Gupta et al. [11] presented an SDN-based fog computing system
named SD-Fog. The proposed system performed the intelligent QoS by managing and
controlling the flow between services and orchestration. They implemented network
function virtualization (NFV) and SDN technologies to show the effectiveness of this
proposed system in their case study on smart homes.

In addition, Sun et al. [12] presented edge IoT with a hierarchical fog and cloud
computing structure to effectively manage IoT device data at the network edge. In this
structure, the SDN-based cellular core was located above the fog servers to transfer
information between these servers. The cooperation between fog computing and SDN
created efficiency in IoT data stream collection, categorization, and analysis.

As one of the earliest studies, Truong et al. [13] presented an integrated fog com-
puting and SDN architecture for vehicular ad hoc networks. In their studty, the SDN
controller was placed between the fog and cloud layers for fog orchestration and

@ Springer

An intelligent resource management method... 1055

Table 1 A Summary of notation and abbreviations

Notation Description

ToT Internet of Things

SDN Software Defined Network

MDP Markov Decision Process

RL Reinforcement Learning

FN Fog Node

MEC Mobile Edge Computing

QL Q-learning

MC Monte Carlo

DDQL Double Deep Q-Learning

FBS Fog-based Base Station

RB Resource Block

SDNC Software Defined Network Controller

EN End Node

QoS Quality of Service

ur User utility at time t

8, 8,0 Parameters for utility computation

ar Action taken at time t

d Action from successor state

a* Optimal action

St State at time t

S,L ocal Successor state when service is provided with FBSs controlled by the
responsible SDNC

S; 0g Successor state when service is provided with FBSs controlled by
neighboring SDNCs

S,C loud Successor state when service is provided with cloud resource

R; Reward received at time t

Riocal Reward received in case of receiving service in the fog with local sources

RFog Reward received in case of receiving service in the fog with non-local
sources

Rcioud Reward received in case of receiving service in the cloud

FRBJ ocal The total number of Free RBs associated with FBSs controlled by the
responsible SDNC at time t

FRBFog The total number of Free RBs associated with FBSs controlled by
neighboring SDNCs at time t

NRBocal The total number of RBs associated with FBSs controlled by the
responsible SDNC

NRBpog The total number of RBs associated with FBSs controlled by neighboring
SDNCs

NLocal Occupied RBs associated with FBSs controlled by the responsible SDNC

NFog Occupied RBs associated with FBSs controlled by neighboring SDNCs

A Set of actions

@ Springer

1056 M. Anoushee et al.

Table 1 continued

Notation Description

R Set of rewards

uj, Threshold for defining high utility

uy Threshold for defining low utility

vy (s) State value function of state s following policy

N; Total number of neighbor controls

qr (s, a) Action value function of state s with action a following policy &
Vs () Optimal state value function

g« (s, a) Optimal action value function

G Cumulative reward from time t to terminal state

y Discount rate

b4 Policy for taking actions

Ey, Expectation with respect to the utilities u in the IoT environment
€ Probability of random action

o Learning rate

0 Penalty of idle time

resource management. They also showed the benefits of this integrated system by
presenting two scenarios.

In addition, Yong et al. [14] employed SDN technology to operationalize the con-
nection between the fog and the cloud, and improve service quality. Lin et al. [15]
introduced a distributed network architecture in another study. They benefited SDN
in vehicular networks with scalable network management and support of intelligent
data computing policies in fog computing. Besides, Liang et al. [16] presented an inte-
grated architecture for software defined and virtualized radio access networks with fog
computing. They suggestinged using a software as a Service service (SaaS) named
Open Pipe, which enables network layer virtualization.

1.3 Resource management at the fog

Task offloading and resource management is another subject in fog computing that has
received significant attention. For example, resource allocation was studied based on
cooperative edge computing to achieve ultra-low latency in fog radio access networks
(FRAN) [17-19]. Sahni et al. [17] proposed a meshing algorithm for edge computing
to distribute decision-making tasks among the edge devices instead of the cloud server.

In another study, heterogeneous F-RAN structures such as small cells and macro
base stations were considered to present an F-RAN node selection algorithm for proper
heterogeneous resource allocation [18, 19]. Moreover, Mukherjee et al. [20] stud-
ied computational offloading for multiple tasks with different latency needs related
to users. In the scenario of this paper, the end-user offloaded the task data onto its
responsible fog node.

@ Springer

An intelligent resource management method... 1057

Zhou et al. [21] proposed a solution for coping with different challenges of com-
putational task offloading onto resources related to surrounding vehicles, including
the lack of effective motivations and assignment mechanisms. Besides, Zhang et al.
[22] considered a particular fog computing network consisting of a set of data service
operators (DSO). Each DSO controlled a set of fog nodes in their study for presenting
the required data services to its subscribers.

In another study, Gu et al. [23] analyzed the radio and computational resource dis-
tribution problem for optimizing system performance and improving user satisfaction.
Their proposed method aimed to show a distributed approach to the shared resource
allocation problem while using the effective SPA- (S, P) algorithm to find a stable solu-
tion to the SPA problem. Their method used a matching game framework, especially a
student project allocation (SPA) game, instead of continuous centralized optimization
for this aim.

1.4 Fog computing and reinforcement learning

Reinforcement learning methods have been widely used in fog computing due to their
benefits in solving resource management and load balancing problems. Other machine
learning methods, such as deep learning, are also used to solve the challenges of
fog computing [24-26]. However, reinforcement learning techniques generally have
broader applications in the literature in this field. This wider use is model-free rein-
forcement learning doesn’t need environmental cognition.

For example, Dutreilh et al. [27] were one of the first attempts to use reinforcement
learning algorithms. They used the reinforcement learning technique for automatic
resource allocation in the cloud, shaping a proper and dynamic model for resource
allocation, which is essential in cloud computing. Furthermore, Le and Tham [28]
proposed an offloading application based on deep reinforcement learning for ad-hoc
mobile cloud users.

In addition, Gao et al. [29] considered a multi-user mobile edge computing (MEC)
system. This system allowed users to perform their computational offloading using
wireless channels to a MEC server. Moreover, the total costs of latency and energy
consumption for all users were considered the optimization objective. Additionally, the
two decisions, including offloading and computing resource allocation, were optimized
to minimize the overall system cost. For this purpose, an optimization framework
based on reinforcement learning (Q-learning and deep reinforcement learning) was
proposed for resource allocation in wireless MEC. The simulation results showed
that the proposed method significantly reduced the total cost compared to other base
methods.

In another study, Parent et al. [30] suggested reinforcement learning for distributed
static load balancing in data-centered applications in a heterogeneous fog computing
environment. Moreover, Gazori et al. [31] focused on the timing of fog-based IoT
application tasks to minimize long-term service delay, computational costs with lim-
ited resources, and execution time. The reinforcement learning method and the double
deep Q-learning (DDQL) algorithm were also used to solve these problems. Their eval-
uation showed that the proposed method performed better than other base algorithms

@ Springer

1058 M. Anoushee et al.

in service latency, computational cost, energy consumption, and task performance
while managing the single breaking point and load management challenges.

Besides, Liu et al. [32] presented a trade-off between consumed energy and service
latency in mobile vehicular networks considering network traffic and the computa-
tional load caused by this traffic. Their study created a cost-minimization problem
using the Markov decision process (MDP). In addition, they proposed dynamic rein-
forcement learning and deep dynamic programming algorithms to solve the offloading
decision problem.

In the current study, Table 2 compares some reviewed methods from the point of
view of using or not using SDN, the use of artificial intelligence methods and the
algorithm used, and their goals. This study intended to present a novel resource man-
agement method to improve service quality by introducing SDN-based fog computing
architecture with multiple flat-shaped controllers. Furthermore, this study used rein-
forcement learning algorithms for optimized decision-making regarding precious and
limited fog layer resources.

2 Architecture and system model

This study presented SDN-based fog computing architecture (as shown in Fig. 1)
to solve the previously mentioned problems. In this architecture, which is a multi-
controller flat architecture,® the environment is divided into multiple partitions. Each
partition includes at least one local Fog-based Base Station (FBS) managed and con-
trolled by the responsible SDN controller.

Each IoT device in a singular partition with different access points (Wi-Fi, WIMAX,
Cellular) can direct connection and service requests to the partition’s local FBS. The
service request information is sent using the local FBS to the responsible controller of
that partition for analysis and determines the serving method. Therefore, end-nodes
indirectly connect to the controller.

Moreover, the leaving and joining of [oT devices in environments involving mobile
IoT devices that move to different partitions over time are recorded by their local FBS
at the responsible controller to show the user density. Therefore, every controller has
a partition view of their local network situation [37].

In addition, the partition views include the request traffic, the local resource sta-
tus, and available resources of the neighboring controllers that can be updated and
shared between neighbor controllers in certain periods based on network traffic. Fog
base stations, in addition to network facilities, are equipped with caching, comput-
ing, and signal processing capabilities. This equipping is to optimize communication
bandwidth consumption between FBS and the cloud and overcome the challenge of
increasing IoT devices and low latency requirements. However, their resources are
limited, so efficient use is essential.

5 The main point in using multiple controllers is the multi-controller architecture. After reviewing the
literature, we came to the conclusion that fundamental multi-controller architecture can be categorized into
flat designs and hierarchical designs. In flat designs, the network is organized into multiple domains that
are controlled by controllers situated in their own local view. The controllers connect with each other using
their east-west bound interfaces to gain a global view [38].

@ Springer

1059

An intelligent resource management method...

[¢€] suoneornddy [emsnpuy
10} Sunndwo)) S04 ur Sururea|

Ke[op 991AIAS Sururea| JUWIADIOJUINY M SUIPROYIO-0D
pue uondwnsuod AS1oua 2onpay dog(q ‘SuruIea JUSWIAOIOJUINY/SAA SR ON uonendwo)) pue dyjery, S
[97] uononparx Aouaje|
Kouare| pue £319u2 2a21yoe 03 Sunndwod
pue uondwnsuod A31ous 2onpay SUTUIBYT QUIYIBIA/SOA ON SOX Soj ur eouaI[[oul Surjqeuy L
SYIOMIOU T[NOTYAA Ul suonedrjdde [ST] syIomIoN Je[noTyoA
QAT}ISUQS-AB[IP 9[IqOW Ay} paiqeumg-Nds ut suoneodrddy
Surnpayos 10j awayos Junndwod QATISUAS-AR[I(] 9[IQOA] 10J QWAYOS
Soj o1qow paynqLusip e pasodoig ON SOX SOX Sunndwo) 304 9[1qON pAINqIISIq V 9
[rel
yoeoidde Surured| juawad1ojuIdx
SJUTBI)SUOD QUI[PEIP PUB 9DINOSAI doop Sursn suoneorjdde
9y} 19pun Js0d uoneindwod pue (Sururea1-0) deo(21qnoQ) 10 paseq-30J jJo Surnpayos
A®Jop 99IAIIS ULIR)-SUO] SUIZIWITUTIA SUILIBYT JUSUIOOIOJUTY /SOX ON ON 9} UO 1509 pue dwn FuIARS S
(Surure-Q [62] DHIA 10J UOTIBOO[[Y 0INOSIY
uonedo[e ‘UILILYT JUSWADIOJUIRY pue SurpeogjO uoneindwo))
9oosar uonendwod HA doo() Surureo JUOWIOOIOFUTIY/SOX ON ON paseq SururedT juewaoiojury doog ¥
sjuouwraainbax
Aouo)e| snoduagoIdey (o[1e)) 9UOIN pue VSYVS [1¥] NVY S04
UM SIIIAIS JO] 10 NV Y ‘VSUVS paroadxy ‘Surured-0)) Ul UOIJBOO[[Y 22In0sY 2Andepy
304 ur wapqoid uonedso[[e 90I0saY SUIUIBO[JUSWAIIOJUINY /SOX ON SOX 10} SUIUIBY T JUSWIAIIOJUISY ¢
Sunndwos 3oy ynm sNVY [91] Sunndwos S0 YPim syIomou
PZI[en)IIA PUB PAULIP AILMIJOS 0] $S900E OIpeI PIZI[BN}IIA PUE PAUYIP
QImoaryore pajeIsajur ue pasodoig ON SOX. SOX QIEM1JOS JOJ QINJOIYOIEe PAJeISAUT z
Apiqeqoid Surpeofroao [z] w3y Surouereg peo|
[[e10A0 oy} pue awn Surssaoold (wuo3e Surures[-Q) paseq SurIeY T JUSWIIIOJUIY
) ozrwirurw s Suroueeg peo| SUIUIRS[JUSWIDIOJUIY /SIK ON SOX Sursn syromioN 5o SurSeury I
soAnoalqO wWyILI0[/SPOYIAW [V 9S() pajuesard axmpoAyory NdS 2SN WU NIy MOy

Sunndwos 3oy ur pajuesaid suonnjos awos usamlaq uostedwo) g d|qe]

pringer

As

M. Anoushee et al.

1060

$Q0INOSAI SIY) JO JUSWeURW
) ur AJ[IQIXQ pue J9Ke[

(018D ANUOIA PUB YSYVS
‘VSUVS paroadxy Surures|-0)

(sronue siyy) Sururea|
JuowddIojuIdy Sursn Sunndwo)
50 paseq-NdS Ut poyoN

So3 oy ur seo1nosar Jo osn wnwndo SUTUIEd T JUSWIOOIOFUIY /SOX SOX SOX JuoweSeueA 90IN0SoYy JUSSI[eI] Uy i
Liiqeqoxd
sso[yse) pue juowked parnbax
‘Kefop 3urssaooid ‘wondwnsuod
ASI10U9 Ay} SUTZITUTUTW
S[IYM PIZIWIXEW ST UOTINOIXD
3sel) Aq paureiqo Kinn ay) ey [9€] spno[D 910N 20Y-py
[ons 9Je)s WISAS OB I UOISIOAP Ul QWAYOS JUIpeOPIO Paseq
uonoe Jurpeopyjo rewndo ue Sunyejy SuruIed T JuowadIoJuIdy dod(/sex ON ON Surured| Juowediojuray doog v 11
[S€] sx10MmIaN pauyaQ
QIEMIJOS UI JUWAIR[J IOTAIOS
SIISN PUD JOJ SIS0 AJTAIS (Sururea1-0) Paseg-SuIiIea -1 USWAdIOJUIY
pare[nuNOdE 9SeIoAR o) SUIZIWITUTA SUTUIES T JUSWIOOIOJUTY /SOX ON SOxX Juaweded-Q) o1
(3509 Teuonerado [#¢] Sunndwo) 23pH 9[1qON
pue Ae[op 991AIdS)oq Jurpnjour) Sunsoarey A31oug ur Sureosony
1500 WISAS ULId) -3UO[O} SZIWTUTIA (SAd) Surured| JUSWIIOIOFUIY/SOX SOX ON pue SurpeopjQ 10j Sururea| auIuQ 6
saAnoalqO unuos[e/spoyiow [y 9s) payudsard armoayory NJS 2SN weu J[onIy Moy
penunuod g ajqel

pringer

as

An intelligent resource management method... 1061

To simplify the modeling, the current study assumed that FBS caching, computing,
and processing capacity were quantitatively comprehensive indicators presented as
resource blocks (RBs) limited to N [2]. Furthermore, all FBSs were presumed to have
constant resources; thus, their RBs would not change over time.

Additionally, we supposed that the end node could not supply its own needs over
time, which is why it was trying to access the network resources by sending requests
to the local FBS in its domain. Each EN must calculate its latency requirements
(maximum acceptable delay), computational cost, and amount of data that must be
transferred from the EN before sending the request [2]. FBS can calculate some or all
of the intended parameters based on the intended IoT environment. After receiving the
request from the IoT environment, FBS calculated the request utility by the method
presented later, then forwarded the request to the responsible controller.

The method of calculating the request utility was based on the maximum acceptable
delay for requesting EN, the amount of data that must be transferred from EN, and the
computational cost required by EN. Moreover, the responsible controller must decide
how to respond to the received request based on the status of the resources in the fog
layer and the request utility. Thus, the decision included one of the following:

1. Sending the request to one of its own FBSs,

2. Sending the request to the neighbor controller (to receive service on one of the
FBSs under its control),

3. Sending the request to the cloud.

The SDN-based architecture (introduced in Fig. 1) allowed the controller to use the
resources of other neighbors, in addition to the cloud resources and own resources, for
responding to requests. In other words, the controller must make the optimized decision
between these three options, which increases the necessity of optimized decision-
making.

The SDN controller implements computing and network traffic-related policies
using south-bound API (such as Open Flow [38]) and West-East API (such as BGP and
OSPF[39]). As mentioned, the FN’s computing and processing capacity were limited
to N resource blocks (RBs). Furthermore, when user requests arrived sequentially and
decisions were taken quickly, no queuing occurred [2].

IoT applications have different levels of latency requirements. Therefore, SDNC
gives higher priorities to the servicing low-latency applications. Besides, compu-
tational costs and data transfer are taken into account in determining utility to
differentiate between requests with similar latency requirements and considering neg-
ative points for requests with higher computing costs and data transfers.

Thus, we considered the utility of an IoT end-node request proportional to the
reverse of acceptable delay D (in milliseconds), the reverse of process time P (in
milliseconds), and the reverse of data transfer time T (in milliseconds). Consequently,
we would have: U ~ (DXITT) Considering the equal data transfer times: 7 = %;
where T is the transfer time, A the amount of data that must be transferred from
EN (data size of a task), and S the speed or rate of transfer. Then, we would have:
U~ ﬁ. Notably, the items involved in determining the utility of any request
(other than the latency requirements) are highly dependent on the environment. In
addition, the priority of each item can be changed based on the environment. Therefore,

@ Springer

1062 M. Anoushee et al.

more flexibility can be provided for calculating the utility by using coefficients or power

for each item.
U=34¢ Ly’ S 0 1
-5((3) = (72) o

where §, 8 and o > 0 are mapping parameters.

We obtained the desired range of U and importance level for latency, computational
cost, and data transfer time by selecting the &, 8 and o. Usually, latency can get
higher levels of importance by selecting larger B values. Considering the choices
that SDNCs have (three options), the responsible controllers must act intelligently
to make the correct decision for each 10T request. Their intelligent decision helps to
achieve the conflicting objectives of maximizing the average total utility of EN requests
that responded at the fog layer over time and minimizing their resource idle time.
Therefore, the system objective can be described as a limited optimization problem as
follows:

T
Max Z(u, | ar = Local Service Or Servicein Fog)
t=0
And 2)
T
Min Z(FRBLowl + FRBFog | a; = Servicein Cloud)
t=0

where a; is the action performed at time t and T is the end time when all RBs at the
fog layer, including the local responsible SDNC resource blocks and neighbor SDNC
resource blocks, are occupied. In addition, F RBF,g is the number of unoccupied
RBs related to FBSs under the management of neighbor SDNCs, and F R By ocq1 18
the number of unoccupied RBs related to the FBSs under the management of the
responsible SDNC.

3 Problem formulation

Reinforcement learning can be applied as a mathematical framework for autonomous
learning through interacting with the environment. In the standard reinforcement learn-
ing model, an independent learner agent interacts with the environment through a
sequence of observations, actions, and rewards. At each time step t, the agent initially
observes a state, s;, from its environment. Then, performs an action a; and receives a
number r; as the reward feedback. After conducting the action a; in the environment,
the environment is transformed to a new state s; 4 (Fig. 2). The process continues, and
the agent aims to learn the policy, which is an action selection strategy for maximizing
the desired reward in the long run. Moreover reinforcement learning primarily focuses
on learning without being aware of the environmental model [4]. Accordingly, this

@ Springer

An intelligent resource management method... 1063

state reward action
S R, A

Rkl]
5., | Environment
\

Fig.2 Agent environment interaction in a MD [40]

is appropriate for use in our desired fog computing, given what was addressed in the
previous section.

Formally, reinforcement learning can be described as a Markov decision-making
process (MDP), an ideal mathematical form of the reinforcement learning problem.
That is because a detailed theoretical description can be expressed in which the envi-
ronment’s response to the subsequent state S;4; only depends on the state S; where
the action A, is taken. Furthermore, MDP and agent create a sequence that starts in
the following order: So, Ao, R1, S1, A1, R2, S2, A2, R3, In a finite MDP, the set
of states, actions, and rewards (S, A, and R) all have a limited number of factors. In
addition, the the resource allocation problem in the fog layer can be defined as a finite
quadruple MDP as follows.

3.1 Set of states

S is a set of feasible states,for example, s; € S. In addition, the utility values are
quantized to model the environment; therefore, we have u;, € 0,1,2,3,...,U.
Accordingly, the state S; in any time t is defined as follows:

S, = (10™*" x FRBF,g) + (10" x FRBLocal) + Urt1 (3)

which allows representing any state simply by a single number. Here, F' R By ¢ is the
total number of free RBs associated with FBSs controlled by the responsible SDNC
at time t. F'RBF,g is the total number of free RBs associated with FBSs controlled
by neighboring SDNCs at time t. Besides, m and n are positive integers defined as
follows: m is the smallest integer such that U < 10”; and n is the smallest integer
such that RBj,cq1 < 10™. Regarding this description, Eq. (2), and assuming that in
case of reference to fog, the request is always referred to a neighboring SDN with the
largest number of free resources:® the number of feasible states is:

Numberofstates = (NRBLocai +1) X (NRBpog +1) x U 4

6 It is certainly possible to use other methods, such as choosing the controller that has received the least
requests so far; but this will make the model more complex.

@ Springer

1064 M. Anoushee et al.

3.2 Set of actions

A set of possible actions was defined in our model as follows. For a user request with
utility U; at time t, the controller must select the optimal action from the following
three actions (assuming not all resources are occupied in the fog layer):

— Local Service:” One of the SDNC FBSs will be assigned to respond to the request.
As a result, one RB of resources managed by SDNC will be occupied, and the
immediate reward rt is received. (a; = Local Service).

— Service in Fog Layer: The request is forwarded to one of the neighbor controllers.
For action a; = Fog Layer Service, one RB of resources under the control of the
neighbor SDNC is occupied , RBs of local FBS are retained, and reward, r; is
received.

— Service in Cloud Layer: The request is forwarded to the cloud (a; = Cloud Layer
Service), all existing resources blocks of FBS in fog layer are retained, and a
reward r; is received.

Based on the descriptions mentioned above, the set of actions can be defined as follows:

A = {ServiceinFogLayer, ServiceinCloudLayer, LocalService}

3.3 Probability function

P;’S/ is the transition probability from state S to s by choosing the action a, which

means P;S, = P(S/ | s,a), where s represents the successor state. This function
is unknown concerning the lack of information from the IoT environment and how
requests are sent from it. In addition, and some methods are presented in the following
sections to overcome this problem.

3.4 Set of rewards

In reinforcement learning, the purpose or goal is recognized as a specific signal, named
reward, and transferred from the environment to the agent. In each time step, a reward
is a real number and r; € R. Rgs, is the immediate reward received when the action

a is adopted at state S and ends at state S ". The reward mechanism of R‘;S, is usually
selected based on the goal of the system designer concerning the system’s unknown
nature.

In our model, rewards were determined in a way that led to our intended policies.
Moreover in our environment, the goal was to give priority to requests with higher U;
at the fog layer. In addition, the goal was to use the local resources of the responsible
SDNC. If the responsible SDNC was some unoccupied resources more than the average
number of resources in the fog layer, it used its resources. To achieve the stated goal
(Eq. 2), r, was defined based on the received utility U; and system state S; as shown

7 This name is negligently selected because service is provided at the fog layer while using the local
resources of the responsible controller.

@ Springer

An intelligent resource management method... 1065

in Table 3. According to the following table:

re €{Rru1, RLm2, Rupt, Rora, Rumi, Rumz, Rrat, Rra2, RrEHL, REH2, REMi,
Rrm2, Rcui, Rcu2, Repis Rera, Remis Reme}

U}, and U of a request are among the design parameters and depend on the utility
distribution in the IoT environment. For example, U, and U; can be a certain percentile
of utilities in the environment.

Example: Consider a hypothetical environment with two controllers. Each one has
a FBS with four resource blocks (N RBjocat = NRBFog = 4). Nine levels of request
utility are considered in the environment (U = 9), and upper and lower thresholds
of utility are U, = 7 and U; = 3, respectively. The hypothetical scenario of IoT
requests with u#; and random actions can be observed in Table 4. Furthermore, the
state changing graph is expressed as follows:

4491 — 3461 — 3321 — 3221 — 3241 — 2271 — 2231
— 1251 — 0281 — 0211 — 0181 — 061

3.5 Cumulative reward

According to the definition presented for the reward, the agent’s goal can be considered
the maximization of the total received reward. Thus, the optimal action in each state
is defined as an action that maximizes the cumulative reward as follows [40]:

Gi=Rit1+Ri2+Riy3+---+ Ry &)

where T is the terminal state. The terminal state is reached in this problem when all
local and fog layer resource blocks are occupied. To discriminate between immediate
and future rewards, y € [0, 1] is defined as the discount rate, which “determines the
present value of future rewards”[40]. Moreover y = 0% means no significance for
the future rewards and y = 1 means the similar significance of future and immediate
rewards. Therefore, the MDP problems aim to maximize the cumulative discounted
rewards from the start point (Go), which can be expressed as follows [40]:

oo
Gi=Rip+yRp2+ v Ruys+--=> v R Q)
k=0

8 1f y = 0, the agent is myopic in being concerned only with maximizing immediate rewards [40].

@ Springer

M. Anoushee et al.

1066

oy T/ gymior < 0Adgy g + 170Tgy g ‘n>'n=>1In
WOy /gy mior > 30dgy g + 1"0Tgy g ‘n>'n=>In
3ody 10y /guivior < 0dgy g + 170Tgy 4 Insn
10y /gy mior > 30dgy g + 1"0Tgy g In>'n
CHOy /gyivior < P0Adgy g + 170Tgy n<’n
THOy T/gymior > 304dgy g + 1"0Tgy g n<'n PRO[D Ul IIAIOG
Ay INJBOAgy g 2 1720 gy g “n=>n=>In
INdy INJBoAgy g > 170Tgy g ‘n>'n=>1In
Body Tldy INJBoAgy g 2 1720 gy In=1n
VTdy IN/Fodgy > 170Tgy g In>'n
THAYy INJBoAgy g 2 1720Tgy g in<n
THAy IN/BOdgy g > 70T gy g ‘n<’n 30 ur 14108
Ty INJBoAgy g = 17T gy g in>'n>Iin
Ty IN/Bodgy g < 170Tgy g 'n>'n=>1In
20Ty 11y INJBoAgy g = 1720 gy g In>'n
I'TTy IN/Bodgy g < 170Tgy In>"'n
CHTy IN/BoAgy g = 1720 gy g n<'n
IHTy INJBOAgy g < 170Tgy g4 n<'n QOIAIRS [BD0]
in smels sy n

10 pue 47} sproysexy) pue (A7) S[0NU0d J0qUSIoU JO 1qUINU [210) (Y [2101) JUSWUOIIAUS 3y UI S90IN0SAI SUNSIX JO Jaquunu [2101 oy (20 gy 1) 10ke]
303 oy ur sj00[q 931J “(17291g 37 .7) $Y00[q 921) [00] SuIpnyoul (*g) UONIPUOD AeIS pue (/7)) ATMNN JsonbaT POAISOAI ‘UOTIOL PAJOI[AS UO Paseq PoYIow SuIpIemay YL, € d|qel

pringer

As

An intelligent resource management method... 1067

Table 4 Actions and states for the hypothetical environment

t U FRBLocal FRBrp,g S A R Sit1
0 9 4 4 449 Local Rimn 346
1 6 3 4 346 Fog REmi 332
2 2 3 3 332 Fog Rpro 322
3 4 3 2 322 Cloud Remn 324
4 7 3 2 324 Local Rim2 227
5 3 2 2 227 Cloud Remn 223
6 5 2 2 223 Local Riyo 125
7 8 1 2 125 Local Rim 028
8 1 0 2 028 Cloud Rer 021
9 8 0 2 021 Fog RrH 018
10 6 0 1 018 Fog Remi 006
11 2 0 02 006 Cloud Rern -

The received reward at k time step in the future is y*~! times as much as the reward
received immediately. For episodic tasks,” Eq. (5) can be defined as follows:

T
G, = Z yk—t—le)
k=t+1

Returns are interrelated at consecutive time steps, which is more critical for RL theory
and algorithms and can be expressed as follows:

Gi=Rip1 +yRg2+ ¥ Rz + v Riga + -
=Rip1 + Y (Reg2 + YRz + y*Rea +) (®)
= Riy1 +yGi

3.6 Policies and value functions

Almost all RL algorithms involve estimating the state value function V (s) and action
value function Q(s, a), which are estimations of how good the agent is in a certain
state (how good a given action is in a certain state) [40]. The concept “how good” is
specified regarding the expected future rewards and the expected return, based on Eq.
(6) stated above.

The expected rewards the agent receives in the future depend on the actions it
will do. To this end, the state value function is defined concerning specific practical
methods, named policies. The policy of mapping states to probabilities of selecting an
action is formally feasible.

9 Episodic tasks are the tasks that have a terminal state.

@ Springer

1068 M. Anoushee et al.

The state value function of state S following policy m (v (s)) is the expected
return at the beginning of state S and following policy 7 after that. For MDPs, v, can
be formally defined as:

o0
b2 () = Ex[Gy | § = 5] = Ex [Z V¥Riiar | 8= s] forall ses (©)
k=0

where E is the expected value of arandom variable given that the agent follows policy
7, and t is the time step. It should be noted that the expected value of the terminal
state, if it exists, is always zero. The present study named function v, as the state value
function for policy 7. Similarly, This study determined the value of choosing action
in state S, following policy 7, shown as g, (s, a), as the expected return which starts
from S, performs action a, and then follows policy 7:

o0
Gr(s,0) =B [G, | S; =5, A, =al = By [Z V'R | S =5, A = a}
k=0
(10)

This study named g, as the action value function following policy 7.

The fundamental feature of state value function used during reinforcement learning
is that they satisfy recursive relationships similar to that created for return (Eq. 8). For
each policy and any state S, the following consistency condition holds between the
value of s and the value of its possible successor states [40]:

vr(s) = Eq[G, | § = 5]
=E;[Rt1+yGir1 |1 Si=s5] By 8:G,=Ri11+vGiy1)

=Y w@|)Y. > pS.r|s.a)r+yE[Gii1 | Sipr = S1]
a S r
= Zn(a | s)Zp(S/, r|s,a)lr+ yvn(S/)] forall seS§ (11

/
S,

where action ais taken from A, successor state S " from S, andrewardsr fromR. Eq. (11)
is the Bellman equation for v, [40]. It is a widely-used and crucial formula indicating
a relationship between a state’s value and its successor states’ values. Moreover a
reinforcement learning task means finding a policy that leads to the maximum reward
in the long term, which is named optimal policy. For limited MDPs, an optimal policy
can precisely be defined as follows:

Vi (s) = maxvy(s) forall seS (12)

@ Springer

An intelligent resource management method... 1069

) ¢ @)

max

A ﬁ\ﬁ\

OO OO OO

Fig.3 Backup diagrams for vy and g4 [40]

Optimal policies also have an optimal action value function, which is represented by
g+« and defined as follows:

q«(s) = maxqyr(s) forall seS (13)
We can rewrite g, in terms of v,:
gx(8) = E[Riq1 + yve(Se41) | st = 5, Ay = a (14
Since vy is the state value function of an optimal policy, we have:

V4 ($) = maxae Aqn+(S, @) (15)
=max E[Riy1 + yva(si+1) | S =5, Ay = a] (Byl4)
Equation (15) is the Bellman optimality equation for v,. In addition, the Bellman
optimality equation for g, is expressed as follows:

q+(s.a) = E[Ri41 + ymax q.(Si+1.a) | S; =5, A, = al (16)

The Bellman optimality equation states that the value of a state under an optimal policy
should be equal to the expected return for the best action in this state. In other words,
the optimal policy results from choosing the best actions in every state. The expression
0. (s, a) is even more convenient for choosing the optimal actions because the best
action in each state is selected based on the maximum value of this expression. Based
on Eq. (14), the following equation can be applied to determine the optimal actions:

ay = maxaeAqx (s, a) = maxge AE[Ri1 + yvu(Se41) | St =5, Ay =a] (17)

The following backup diagrams show the domain of future states and actions consid-
ered in Bellman optimality equations for v, and ¢, (Fig. 3).

Explicitly solving the Bellman optimality equation provides one route to finding an
optimal policy, and thus to solving the reinforcement learning problem. However, this
solution is rarely directly useful. It is akin to an exhaustive search, looking ahead at
all possibilities, computing their probabilities of occurrence and desirabilities in terms
of expected rewards. This solution relies on at least three assumptions that are rarely
true in practice: (1) we accurately know the dynamics of the environment, (2) we have

@ Springer

1070 M. Anoushee et al.

enough computational resources to complete the computation of the solution and (3)
the Markov property [40].

A technique for solving Bellman equations and calculating optimal policies is
dynamic programming (DP). DP algorithms update the state values based on esti-
mating the successor state values; that is, other estimations update estimations. This
idea is named bootstrapping. Many reinforcement learning techniques conduct boot-
strapping.

The present study assumed the lack of precise information being from the IoT
environment where the agent is located in this problem. Thus, considering the limited
number of states, this study applied model-free RL techniques, known as approximate
DP techniques, to solve the problem. This study resorted to model-free RL techniques
instead of exact DP and estimated the optimal value functions. The related algorithms
are presented in the following sections.

In this study’s problem, the request was first sent from the IoT layer to FBS, and
FBS passed it for decision-making about execution to the responsible SDNC. Then,
SDNC decided to choose the optimal action among the allowable ones based on the
current state and utility of the received request. Therefore, according to Eq. (17), the
optimal action in the MDP problem is defined as follows:

ay = max{Rpocal + V]Eu[v*(S/L(,w[)a RFog]
+YElV* (Spo)): Retoud + VELV* (S¢ioua))} (18)

According to Eq. (3), successor states are defined as follows:

Stocar = (10" 5 FRBrog) + (10" X FRBLocal — 1) + tty41
Spog = (10" X FRBpgg — 1) + (10" x FRBLocar) + ttr41
Sctond = 10" 5 FRBrog) + (10" X FRBLocar) + 41

’

’ .
where S is the successor state

Loca
when a=Service in Fog Layer, and S’C 1ouq 1S the successor when that a=Service in Cloud
Layer and EE,, is the expectation concerning the utilities u in the IoT environment.

; is the successor state when a= Local Service, S, o

3.7 Monte Carlo method

This section presents the first learning method for estimating value functions and dis-
covering optimal policies. This method helps to solve the resource allocation problem
of fog computation. As mentioned, the lack of thorough environmental cognition is
one of the assumptions here.

A popular method to compute the optimal state values is the value iteration by
Monte Carlo (MC) calculations, as presented in Eq. (13). MC methods only require
the experiences, which is the sequence of samples of states, actions, and received
reward resulting from the actual or simulated interaction with an environment. These
methods are used for reinforcement learning based on averaging sample returns.

@ Springer

An intelligent resource management method... 1071

The value of a state is the expected return, which is the cuamulative discounted future
rewards beginning from that state. Therefore, a straightforward method for estimating
the state value is to use experiences. The experiences are used by calculating the mean
value of averaging returns after each state visit and observing many returns. It is worth
noting that the average must converge to the expected value. This idea is the basis of
all MC methods.

For example, assuming that we want to estimate the value of V; (s), based on the
MC method, we would have: V,(S) = E,[G; | S; = s]. Figure 4A indicates the
backup diagram for the MC method. Moreover, Algorithm1 presents how to learn the
optimal policy for the MDP problem based on the MC method. Each occurrence of
state S in an episode is named the visit of S. In an episode, S may be visited many
times. The first-visit MC method estimates v(s) as the average of the returns after
the first visit of state S. However, the every-visit MC estimates the average of returns
after all visits of state S. These two MC methods are so similar to each other, with
only some differences in the theoretical properties. We considered the first-visit MC
method in this study.

Algorithm 1 Learning optimum policy using Monte Carlo
Require: {e, y} € [0; 11, {U;, Up} € R, {NRBpocal, NRBFog, U} € N,
{RLm1, RLm2, RoLt, -, Reiz, Remt, Rema) € R
V(s) < 0 (foralls e S);
Returns(s, iteration) < anempty list (a Two-dimensional array to save states’ returns in all iterations);
Temporary(s) < an empty list ;
for iteration=0;1;2;... do
NLocal < 0;
Npog < 0;
Generate an episode (Generate random sequences of Uy in the range of 1 to U as received requests);
while all the Fog resource blocks (N RBpycq1 and N RB g are occupied do
Choosing the optimal action a; based on Formula (24) and 7 (e.g., e-greedy);
end while
Temporary(s) <— sum of discounted rewards from s till terminal state for all states appearing in the episode;
Append Temporary(s) to Returns(s, iteration);
V(s) < average(Returns(s,iteration));
if V (s) converges for all s then
V*(S) < V(S),Vs;
break;
end if
end for

3.8 Temporal difference learning methods

Temporal difference (TD) learning combines MC and DP ideas. TD methods combine
the sampling of MC with bootstrapping of DP. While Monte Carlo methods must
wait until the end of the episode to determine the increment to V (S;) (only then is Gt
known) [40], TD methods need to wait only until the next time step. In addition, TD
methods immediately perform an update at time t+1 using observed reward Rt+1 and

@ Springer

1072 M. Anoushee et al.

estimating V (S;41). The simplest TD method leads to the following update:
V(S) < V(S)+alRiy1 +yV(Sit1) — V(S)] (19)

The aim of updating in the MC method is Gt, while in the TD method, itis R, +
¥V (S¢+1). This is named TD(0) or the one-step TD methods. Since TD(0), like DP,
builds its updating based on existing estimates, it is called a bootstrapping method.
Figure 4B shows the backup diagram for the TD(0) method. Furthermore, TD methods
have an advantage over DP methods as they do not require knowledge of the next case’s
environment model, reward, and probability distribution. Moreover, the most sensible
advantage of TD methods over MC methods is that they are implemented online,
fully incremental, and only wait for one time-step. Similar to the MC methods, these
approaches are divided into on-policy and off-policy. The current study presented the
optimal policy learning method from an IoT environment using the on-policy SARSA
and off-policy Q-learning methods.

3.8.1 On-policy temporal difference learning method

In the TD(0) method, the present study considered the transfer from one state to another
and learned about state values. Here, this study considered the transfer from a state-
action pair to another state-action pair and learned about the values of the state-action
pair. To this end, Eq. (19) can be rewritten based on the state-action pair:

O(St, Ap) < O(S;, Ap) +a[Ry + ¥ O(Si1, A1) — O(S:, Ap)] (20)

This update was carried out after each transfer from a non-terminal state. If S, is
the terminal state, Q(S;, A;) would be defined as zero.

This formula uses all five elements of events (S;, A;, Ri+1, St+1, S;+1) that form
the transfer from a state-action pair to another. These five elements are the reason
for naming this algorithm SARSA. The backup diagram for SARSA is presented in
Fig. 4C.

3.8.2 Q-learning (off-policy temporal difference learning method)

One of the successful reinforcements of the learning methods is the off-policy TD
control algorithm, also known as Q-learning, which is defined as:

Q(Si, Ar) < Q(St, Ap) +a[Ri1 + ymaxa Q(Siv1,a) — Q(Si, Al (2D

In this case, the action value function Q estimates the optimal action value function
directly and independently of the following policy. This estimation significantly sim-
plifies the algorithm’s analysis and makes it possible to prove the initial convergence.
The backup diagram can be seen in Fig. 4D.

In addition, the integrated application of SARSA and Q-learning methods for solv-
ing the optimal resource allocation problem are indicated in Algorithm 2.

@ Springer

An intelligent resource management method... 1073

1]
A7

—0O+—e—0

!

D
Q-learning Sarsa TD(0) ,
Monte Carlo

Fig.4 Backup diagrams for TD, SARSA, Q-learning, and Monte Carlo methods

Algorithm 2 Learning optimum policy using QL and SARSA
Require: {e,y} € [0;1]l,a0 € (0;1] {U, Uy} € R, {NRBpocals NRBFog, U,n} € N,

{RLH1, RLE2 Repy, -, Reiz, Remt, Remzd € R
Q(s,a) < 0forall (s,a) ;

for iteration=0;1;2;... do

NLocal < 0;

NFog < 0;

Generate an episode (Generate random sequences of Uy in the range of 1 to U as received requests);
while all the Fog resource blocks (N RB[ycq1 and N RB g are occupied do
t <0
Choosing the optimal action a; based on Formula (24) and 7 (e.g., e-greedy) and store ry and S;41;.
if t > n — 1 then
T« t+1—n;

t+1
QL:G < Y yYU™r; 4y maxQ(si41, a);
Jj=t
+1
SARSA:G «) YO8 + 9" Q541 1) ;
Jj=t
Q(st,ar) < Q(st,ar) +a[G — Q(st,a0)l;
end if
t=t+1;
end while

if Q (s,a) converges for all (s,a) then
0*(s,a) < Q(s,a),Y(s, a);
break;

end if
end for

4 Evaluation and simulation

The goal of providing a solution is to maximize the total utility of the service requests
and minimize the unoccupied time of local resources and fog layer resources (Eq. 2).
Therefore, a performance metric named R was defined to evaluate the performance
of the proposed algorithms and compare them with the performance of a constant
threshold algorithm.

@ Springer

1074 M. Anoushee et al.

The total utility of requests serviced in fog is the essential factor in increasing
the metric. However, it is defined in a way that the larger utility of served requests
in the cloud and the greater number of unoccupied resource blocks available for the
responsible controller when servicing the request in the cloud leads to the reduction
in the R-value.

T
R=FE |:Z(Ml | a; = Local Or FogService)
=0 22)

T
—0 Z(u, + (NRBpocal + NRBpog/AllResource) | a; = Cloud):|
t=0

where u; is the utility of requests and N RBf,, is the number of unoccupied RBs
related to FBSs under the management of neighboring SDNCs. Moreover, N R B pcal
is the number of unoccupied RBs related to FBSs under the management of responsible
SDNC, T is the time period of the episode, and 6 is the discount factor as a penalty
for idle time (0 € [0, 1]).

In the next step, the simulation results were presented to evaluate the performance
of the SDN controller during the execution of RL methods. The methods were SARSA,
Q-learning, and MC (as presented in Algorithms 1 and 2) and in the introduced archi-
tecture frame. Then, the performance of the RL-based SDN controller was compared
with that of the SDN controller with a network slicing approach with various slicing
thresholds (2-8 slices) in different IoT environments with different compositions of
IoT latency requirements.

In this simulation, consider 10 utility levels with different latency requirements
to exemplify a variety of IoT applications. It is assumed that utilities are calculated
according to Eq. (1). In the first level of utility (u = 1), the requests were placed with the
least importance, similarly, in the last level (u = 10), the requests ware with the most
importance. In this way, by changing the combination of utility classes, we produce 10
scenarios of [oT environments, which are presented in Table 5. As it is clear in Table 5,
in the first environment, most of the requests are with high utility and have a special
sensitivity (this environment is similar to a hospital or military IoT environment) and
respectively, in the following environments, the number of requests with high utility
decreases and the E10 environment has the lowest number of requests with high utility.
(This environment is similar to an IoT entertainment or smart home environment)

The simulation parameters demonstrated in Table 6 were used in this section. Fur-
thermore, the rewards defined in Table 3 were valued by Table 7. The greedy policy
was selected as the optimal policy to facilitate and accelerate the learning process.

Alocal SDN controller equipped with computational, signal processing, and storage
resources, including 5 RBs, was employed, meaning that: N R B ,¢q1=5. Besides, our
intended environment included three neighboring SDN controllers with a total of nine
resources: N R Br,,=9. The locally serving threshold (Uj) and serving threshold in
the cloud layer (U;) were expressed by the utility levels and the ration of local and fog
layer resources to the total resources as:

@ Springer

An intelligent resource management method... 1075
Table 5 Utility distribution for different IoT environments with various latency requirements
Eq Ey E3 Ey Es Eg E7 Eg Eg Eq
Pu=1) 0/008 0/035 0/065 0/063 0/1 0/123 0/109 0/133 0/114 0/216
P(u=2) 0/009 0/067 0/048 0/093 0/1 0/127 0/146 0/139 0/185 0/209
P(u=3) 0/011 0/072 0/107 0/125 0/1 0/063 0/121 0/167 0/094 0/185
Pu=4) 0/016 0/029 0/073 0/116 0/1 0/092 0/126 0/174 0/208 0/175
P(u=5) 0/006 ~ 0/047 0/107 0/103 0/1 0/095 0/098 0/137 0/199 0/165
P(u=06) 0/265 0/097 0/098 0/087 0/1 0/107 0/107 0/047 0/031 0/006
Pu=7) 0/175 0/073 0/126 0/107 0/1 0/079 0/073 0/029 0/035 0/016
P(u=28) 0/075 0/129 0/121 0/086 0/1 0/115 0/107 0/072 0/054 0/011
Pu=9) 0/219 0/277 0/146 0/096 0/1 0/102 0/048 0/067 0/043 0/009
Pu=10) 0216 0/174 0/109 0/124 0/1 0/097 0/065 0/035 0/037 0/008
P(u > 5) %95 %75 %60 %50 %50 %50 %40 %25 %20 %5
Table 6 A summary of simulation parameters and their value
Parameter Description Value
y Discount factor 0.7
o Learning rate 0.01
€ Probability of random action 0
0 Penalty of idle time 0.5
n Batch/step size 1
NRBJocqi The total number of RBs associated with FBSs controlled by the responsible SDNC = 5
NRBF,g The total number of RBs associated with FBSs controlled by neighboring SDNCs 9
Tablg 7 Re.wards considered in Riocal Rrog Relod
the simulations
Rra1 =9 Rrg1 =38 Rcpi =4
Rrpr =17 RpHa =6 Repo = —4
Rppr=-10 Rppy=-2 Repi =8
Rppo=-8 Rppy =—4 Rcra =6
Rpmi =06 Rpmi =10 Rem1 =6
Rimo =2 Rrm2 =38 Rema = -2
U = Umax + (E(M) _ Unax + Unin)
3 2
< 2 NRBrog) (23)
Up=U + | Upax X = X
3 NRBLocal+NRBFog

To perform simulation, the software was designed and implemented, the simulation
was repeated 300 times for each test environment and the results of each stage of the
tests were stored in the database. After that, the analysis was done based on the data

@ Springer

1076 M. Anoushee et al.

100
90
80
70
60
50
40
30
20
10

El E2 E3 E4 ES E6 E7 ES E9 E10

—— MontCarlo === SARSA 4 Q-Learning
NetworkSlice 2 === NetworkSlice 3 =@ NetworkSlice 4

e Ne tWOTKSlice 5 e NetworkSlice 6 NetworkSlice 7

—4— NetworkSlice 8

Fig.5 Performance of RL method in terms of R metric

obtained from the tests. The following table compares the performance of RL methods
in terms of R with that of utility filtering-based network slicing methods with various
slicing thresholds in 10 different IoT environments. The utility filtering algorithm
uses a constant threshold for network slicing, regardless of the environment. For the
network slicing-based methods, 2, . . ., 8 possible slices are investigated and ten levels
of utility (0-9) were considered in our discretization, as demonstrated in Fig. 5 and
Table 8. Furthermore, SARSA and Q-learning methods outperformed other methods.
In addition, SARSA and Q-learning methods showed the best performance. The results
were based on the average 300 simulations for each environment and each method.
Based on Table 8, the performance of utility filtering algorithms was close to that of
SARSA and Q-learning in some environments. As the table shows, in the E2 environ-
ment, the NetworkSlice5 and NetworkSlice6 methods had similar performance with
Q-learning. The important point here is that determining what threshold should be
used in each environment to achieve maximum performance is not simple, especially
in complex environments where we don’t have precise prior knowledge, and the state
of the environment changes over time. Moreover, RL-based methods provide the best
performance, compared to utility filtering algorithms, in different environments merely
through learning while not requiring background knowledge about the environment.

5 Conclusions

This paper presented a new resource allocation framework using a software-defined
network (SDN) architecture and reinforcement learning techniques. The aim was to

@ Springer

1077

An intelligent resource management method...

C8ELIT — 8EST — 86°8L— 1868 — 8001 — we— L0'8 05°6 18°CL 0€'29 8 9IS HIOMIN
L1°€C9 — €096 — 16°G1 66'€C Y0°LS Sy 9L'0S LL'SS 8¢'16 88°9L L 391S HIoMIN

EVLE — 8Y' Sl — 89°8¢ oLty 80179 9T 9 °soL 18°69 0¥'96 98°L8 9 921§ FIoOMION
cleee— 06'8 vooy 05°€9 v1'9L wvL SY'SL 0C'¢8 £9°96 £8°S6 G 9IS YI0MIN
S09 Sv'IS vS 8y 6879 SO°LL 67'SL rSL 06'C8 69°56 £6'16 ¥ 9IS FI0MIN
£€0°6E 19'v¢ £6°0S 999 9S°LL I18¥L €9°9L 16°¢8 9¢'v6 87°S6 € 9JI[S JI0MION
98°9¢ €8S or'6v €E'Y9 YeSL ¥9°SL 6SCL ¥8°6L 0¢'16 8L'16 T 391S FI0MISN
61°8¢ 86°6S 19°1¢ LTS9 clreL ITLL CLLL (452 €S°L6 €296 Sutured -0
°S'8¢ 0€°ss 12X%S 91°¢9 £8'8L 81°8L LO'8L w8 8€°L6 6£'96 VSAVS
YT 0g EL'IS SI'vy 86'1S 91I'L9 10°S9 81°L9 1TSL 1¢08 £€C'16 O[1eD) AUON

0lg 657 87 Ly 97 S vy €7 % Iz PO

TuautO I 10U

JLIJAW Y JO SULId) UT POYOW T JO 9OURULIOJd] 8 d|qel

pringer

As

1078 M. Anoushee et al.

apply limited resources in the fog layer optimally. In addition, the framework was pre-
sented regarding an accurate architecture based on SDN with multiple controllers using
reinforcement learning algorithms. Thus, the following achievements were reached:

1. The optimum use of resources in the fog layer and flexibility in managing these
resources was employed. It was provided through exploiting the resources of other
SDN controllers and using the resources of the SDN subset of the responsible
controller. This is considered an innovation and a key advantage in efficiently
managing resources.

2. The use of reinforcement learning methods made the responsible SDN controller
behave like an intelligent agent without needing background knowledge of the
environment. It was only through learning in different environments and choosing
the optimal method of serving the received request from the possible options.

This framework was simulated based on three reinforcement learning techniques:
SARSA, Q-learning, and Monte Carlo. The framework was examined in different [oT
environments with heterogeneous latency demands. The simulation results showed the
superiority of Q-learning and SARSA reinforcement learning compared to network
slicing approaches with various slicing thresholds. In addition, the study found that
Q-learning and SARSA reinforcement learning have consistency with the IoT envi-
ronment. Furthermore, RL techniques made an appropriate compromise between two
opposing objectives: maximizing the average utility of served requests and minimiz-
ing the idle time of fog resources. It is worth noting that the maximization indicated
the optimal utilization of resources in the fog layer.

For future works, it is recommended to generalize the proposed resource allocation
framework to susceptible environments with high request density, leading to queue
formation for SDN controllers. In this situation, the subject of priority queues becomes
meaningful, and making decisions for SDN controllers is accompanied by more com-
plexities. Moreover, the shared resource allocation for a request, where the required
resources are provided partly from resources under the control of RSDNC and the
remaining from other SDNs, can be examined as a more complicated approach.

Declarations

Conflict of interest The authors did not receive support from any organization for the submitted work. All
authors certify that they have no affiliations with or involvement in any organization or entity with any
financial or non-financial interest.

References

1. Mukherjee M, Shu L, Wang D (2018) Survey of fog computing: fundamental network applications and
research challenges. IEEE Commun Surv Tutor 20(3):1826—1857. https://doi.org/10.1109/COMST.
2018.2814571

2. Baek J, Kaddoum G, Garg S, Kaur K, Gravel V (2019) Managing fog networks using reinforcement
learning based load balancing algorithm. In: IEEE wireless communications and networking conference
(WCNC), 2019, pp 1-7. https://doi.org/10.1109/WCNC.2019.8885745

@ Springer

https://doi.org/10.1109/COMST.2018.2814571
https://doi.org/10.1109/COMST.2018.2814571
https://doi.org/10.1109/WCNC.2019.8885745

An intelligent resource management method... 1079

10.

12.

13.

15.

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

. Ali AMM, Ahmad NM, Amin AHM (2014) Cloudlet-based cyber foraging framework for distributed

video surveillance provisioning. In: Proceedings of IEEE 4th world congress on information and
communication technologies (WICT), pp 199-204

. Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in the Internet of Things. In:

Proceedings of the first edition of the MCC workshop on mobile cloud computing (MCC), pp 13-16

. Aazam M, Huh E (2016) Fog computing: the cloud-IoT/IoE middleware paradigm. IEEE Potentials

35(3):40-44

. Vaquero LM, Rodero-Merino L (2014) Finding your way in the fog: towards a comprehensive definition

of fog computing. SIGCOMM Comput Commun Rev 44(5):27-32

. Lin C, Han G, Qi X, Guizani M, Shu L (2020) A distributed mobile fog computing scheme for mobile

delay-sensitive applications in SDN-enabled vehicular networks. IEEE Trans Veh Technol 69(5):5481—
5493

. Baktir AC, Ozgovde A, Ersoy C (2017) How can edge computing benefit from software-defined

networking: a survey, use cases, and future directions. IEEE Commun Surv Tutor 19(4):2359-2391

. Mouradian C et al (2017) A comprehensive survey on fog computing: state-of-the-art and research

challenges. IEEE Commun Surv Tutor 20(1):416-464
Baktir AC, Ozgovde A, Ersoy C (2017) How can edge computing benefit from software-defined
networking: a survey, use cases, and future directions. IEEE Commun Surv Tutor 19(4):2359-2391

. Gupta H, Nath SB, Chakraborty S, Ghosh SK (2017) SDFog: a software defined computing architecture

for QoS aware service orchestration over edge devices. ArXiv Preprint, [online]. arXiv:1609.01190
Sun X, Ansari N (2016) EdgeloT: mobile edge computing for the Internet of Things. IEEE Commun
Mag 54(12):22-29

Truong NB, Lee GM, Ghamri-Doudane Y (2015) Software defined networking-based vehicular adhoc
network with fog computing. In: Proceedings of the IFIP/IEEE international symposium on integrated
network management (IM), pp 1202-1207

. Yang P, Zhang N, Bi Y, Yu L, Shen XS (2017) Catalyzing cloud-fog interoperation in 5G wireless

networks: an SDN approach. IEEE Netw 31(5):14-20

Lin C, Han G, Qi X, Guizani M, Shu L (2020) A distributed mobile fog computing scheme for mobile
delay-sensitive applications in SDN-enabled vehicular networks. IEEE Trans Veh Technol 69(5):5481—
5493

Liang K, Zhao L, Chu X, Chen H (2017) An integrated architecture for software defined and virtualized
radio access networks with fog computing. IEEE Netw 31(1):80-87

Sahni Y, Cao J, Zhang S, Yang L (2017) Edge mesh: a new paradigm to enable distributed intelligence
in Internet of Things. IEEE Access 5:16441-16458

. Pang A-C, Chung W-H, Chiu T-C, Zhang J (2017) Latency-driven cooperative task computing in

multi-user fog-radio access networks. In: Proceedings of the IEEE 37th international conference on
distributed computing systems (ICDCS), June, pp 615-624

Chiu T-C, Chung W-H, Pang A-C, Yu Y-J, Yen P-H (2016) Ultra-low latency service provision in
5G fog-radio access networks. In: Proceedings of the IEEE 27th annual international symposium on
personal, indoor and mobile radio communications (PIMRC), Sept, pp 1-6

Mukherjee M et al (2019) Task data offloading and resource allocation in fog computing with multi-task
delay guarantee. IEEE Access 7:152911-152918

Zhou Z, Liu P, Feng J, Zhang Y, Mumtaz S, Rodriguez J (2019) Computation resource allocation and
task assignment optimization in vehicular fog computing: a contract-matching approach. IEEE Trans
Veh Technol 68(4):3113-3125

Zhang H, Xiao Y, Bu S, Niyato D, Yu FR, Han Z (2017) Computing resource allocation in three-tier
IoT fog networks: a joint optimization approach combining Stackelberg game and matching. IEEE IoT
J4(5):1204-1215

Gu Y, Chang Z, Pan M, Song L, Han Z (2018) Joint radio and computational resource allocation in
IoT fog computing. IEEE Trans Veh Technol 67(8):7475-7484

Li H, Ota K, Dong M (2018) Learning IoT in edge: deep learning for the Internet of Things with edge
computing. IEEE Netw 32(1):96-101

Patel P, Ali MI, Sheth A (2017) On using the intelligent edge for IoT analytics. IEEE Intell Syst
32(5):64-69

La QD, Ngo MV, Dinh TQ, Quek TQS, Shin H (2019) Enabling intelligence in fog computing to
achieve energy and latency reduction. Digit Commun Netw 5(1):3-9

@ Springer

http://arxiv.org/abs/1609.01190

1080 M. Anoushee et al.

27. Dutreilh X, Kirgizov S, Melekhova O, Malenfant J, Rivierre N, Truck I (2011) using reinforcement
learning for autonomic resource allocation in clouds: towards a fully automated workflow. In: Interna-
tional conference on autonomic and autonomous systems (ICAS), May, Venice, Italy, pp 67-74

28. Le DV, Tham CK (2018) A deep reinforcement learning based offloading scheme in ad-hoc mobile
clouds. In: Proceedings under IEEE conference on computer communications workshops INFOCOM
WKSHPS), 15-19, pp 760-765

29. LiJ, Gao H, Lv T, Lu Y (2018) Deep reinforcement learning based computation offloading and
resource allocation for MEC. In: IEEE wireless communications and networking conference (WCNC).
Barcelona 2018, pp 1-6

30. Parent J, Verbeeck K, Lemeire J (2002) Adaptive load balancing of parallel applications with rein-
forcement learning on heterogeneous networks. In: International symposium on distributed computing
and applications to business & engineering science, pp 16-20

31. Gazori P, Rahbari D, Nickray M (2020) Saving time and cost on the scheduling of fog-based IoT
applications using deep reinforcement learning approach, Future Gener. Comput Syst 110:1098-1115

32. LiuY, Cheng S, Hsueh Y (2017) eNB selection for machine type communications using reinforcement
learning based Markov decision process. IEEE Trans Veh Technol 66(12):11330-11338

33. Wang Y, Wang K, Huang H, Miyazaki T, Guo S (2019) Traffic and computation co-offloading with
reinforcement learning in fog computing for industrial applications. IEEE Trans Ind Inform 15(2):976—
986. https://doi.org/10.1109/T11.2018.2883991

34. Xu J, Chen L, Ren S (2017) Online learning for offloading and autoscaling in energy harvesting
mobile edge computing. IEEE Trans Cogn Commun Netw 3(3):361-373. https://doi.org/10.1109/
TCCN.2017.2725277

35. Zhang Z, Ma L, Leung KK, Tassiulas L, Tucker J (2018) Q-placement: reinforcement-learning-based
service placement in software-defined networks. In: 2018 IEEE 38th international conference on dis-
tributed computing systems (ICDCS), pp 1527-1532. https://doi.org/10.1109/ICDCS.2018.00159

36. Van Le D, Tham C (2018) A deep reinforcement learning based offloading scheme in ad-hoc
mobile clouds. In: IEEE INFOCOM 2018—IEEE conference on computer communications work-
shops INFOCOM WKSHPS), pp 760-765. https://doi.org/10.1109/INFCOMW.2018.8406881

37. Wu D et al (2020) Towards distributed SDN: mobility management and flow scheduling in software
defined urban IoT. IEEE Trans Parallel Distrib Syst 31(6):1400-1418

38. HuT, GuoZ, YiP, Baker T, Lan J (2018) Multi-controller based software-defined networking: a survey.
IEEE Access 6:15980-15996

39. Rego A, Sendra S, Jimenez JM, Lloret J (2017) OSPF routing protocol performance in software defined
networks. In: Fourth international conference on software defined systems (SDS), 2017, pp 131-136.
https://doi.org/10.1109/SDS.2017.7939153

40. Sutton RS, Barto AG (2018) Reinforcement learning: an introduction, 2nd edn. The MIT Press, Cam-
bridge, pp 1-157

41. Nassar A, Yilmaz Y (2019) Reinforcement learning for adaptive resource allocation in fog RAN for
IoT with heterogeneous latency requirements. IEEE Access 7:128014—128025

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer

https://doi.org/10.1109/TII.2018.2883991
https://doi.org/10.1109/TCCN.2017.2725277
https://doi.org/10.1109/TCCN.2017.2725277
https://doi.org/10.1109/ICDCS.2018.00159
https://doi.org/10.1109/INFCOMW.2018.8406881
https://doi.org/10.1109/SDS.2017.7939153

	An intelligent resource management method in SDN based fog computing using reinforcement learning
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Fog computing and SDN-based architecture
	1.3 Resource management at the fog
	1.4 Fog computing and reinforcement learning

	2 Architecture and system model
	3 Problem formulation
	3.1 Set of states
	3.2 Set of actions
	3.3 Probability function
	3.4 Set of rewards
	3.5 Cumulative reward
	3.6 Policies and value functions
	3.7 Monte Carlo method
	3.8 Temporal difference learning methods
	3.8.1 On-policy temporal difference learning method
	3.8.2 Q-learning (off-policy temporal difference learning method)

	4 Evaluation and simulation
	5 Conclusions
	References

