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Abstract
In the early days of social networking, a community was typically viewed as a collec-
tion of user pro-files sharing common interests and likes. This community continued to
grow by searching for, pro-posing, and adding newmembers who shared similar char-
acteristics but were unlikely to cause conflict with existing members. Today, things
have shifted dramatically. Social networking platforms are not limited to creating iden-
tical user profiles: the enormous amounts of data acquired each day have enabled the
prediction and recommendation of relationships, habits, and everyday activities such
as shopping, dining, and holiday destinations. A long time ago, the topic of community
detection drew considerable attention, and communities are shown as clusters within a
more extensive network. Community detection has also become a broader problem as
graph databases have grown in popularity, as has the diversity of personal information
and dynamic behavior. Community detection is a beneficial method for maintaining
graph data sets effectively. Community detection has become critical as online com-
munication has grown in popularity, personalization drifts have varied, and internet
users’ activities have gotten more unpredictable. This article examined all community
detection techniques and the parametric data needed to evaluate them.
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1 Introduction

A community is a natural phenomenon in biological networks, chemical bonds, neu-
ral networks, social sites, marketing, etc. Identifying a community is a crucial task
and can help in various essential decision-making processes, including which network
structure they follow, how they interact with other nodes and their interactions. There
are multiple algorithms for the same thing. Still, none of them is the best, guaranteeing
the best community detection on various metrics, like the similarity index, inter and
intra-cluster density, Modularity, embeddedness, connectedness, etc. Any algorithm
must satisfy all the criteria, leading to a highly cohesive group of nodes and having
minimal coupling with other nodes or clusters. In this paper, we discussed the com-
munity detection algorithm and techniques. Agglomerative and differential methods
are the two main types of community detection methods. Edges are added one by one
to a network that only comprises nodes using agglomeration methods. From the more
potent edge to the weaker edge, edges are added. In differential methods, edges of
the whole graph are eliminated one by one. Community discovery is a process that
identifies clusters of interacting vertices (i.e., nodes) in a network based on their struc-
tural qualities [1, 2]. Numerous community identification methods have been created,
including approaches and tools from diverse fields like biology, physics, social sci-
ences, applied mathematics, and computer sciences [3]. However, a single community
recognition method would fail to recognize all types of networks [4, 5] due to the
enormous diversity of complex networks formed by various activities. Algorithmic
biases enhance performance on one kind of network while reducing performance on
another network, a natural trade-off. Because networks may be static or dynamic in
nature, community identification techniques are highly dependent on their topology.
Community finding is much easier in a fixed network than in a dynamic network.

There are several approaches to community detection in static networks [6–9], the
majority of which are optimization-based algorithms that seek the optimal solution
for the defined objective function [10–13]. In addition to optimization-based tech-
niques, a bottom-up ap-proach based on clustering utilizing correlation coefficients
and random walk similarity exist [14–16]. Modularity maximization [17] and spectral
clustering [18] are the workhorses for community identification in static networks,
respectively. However, the majority of real-world networks are dynamic in nature, and
several research has been conducted to get a better understanding of their evolutionary
behavior [19–22]. A recent study has also concentrated on the analysis of dynamic
communities’ time-varying features [23, 24]. Historically, spectral clustering, modu-
larity maximization, and other statistical techniques were employed to detect distinct
communities in networks. However, real-world networks, such as social and biolog-
ical networks, are characterized by multiple community memberships, in which a
node is connected to numerous distinct groups concurrently [25, 26]. Considering the
constraint of a node belonging to innumerable communities, overlapping community
identification techniques are the answer to this issue [27]. Additionally, many meth-
ods have been suggested for detecting disjoint and overlapping communities inside
a network [27]. Various researchers also worked on community detection with deep
learning techniques In order to address experimentation settings, Su et al. [28] sum-
marised the well-known benchmark data sets, evaluation measures, and open-source
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implementations. Additionally, they point to implementation possibilities in their work
and explore the practical applications of community detection in diverse areas. Finally,
they provide an overviewof future prospects by posing difficult questions in the quickly
expanding deep learning field. To describe the state-of-the-art in the area of community
detection, Jin et al. [29] built and presented a unified architecture of network com-
munity identification techniques. We specifically provide a thorough analysis of the
available community identification techniques and propose a novel taxonomy that clas-
sifies the techniques into two groups: probabilistic graphicalmodels and deep learning.
Huang et al. [30] provided a thorough grasp of community discovery techniques in
multilayer networks by comparing earlier research and examining a number of typical
approaches. The use of parallel computing, shared memory, and distributed memory
on the current community identification approaches was comprehensively covered by
Naik et al. [31]. More particularly, the systematic literature review that was done to
compile pertinent papers from various digital libraries and grey literature is the main
contribution of their study. A community discovery approach based on a deep sparse
autoencoder was suggested by Li et al. [32] Prior to obtaining the route weight matrix
for the node’s second-order neighbours, they first determined the nodes’ second-order
neighbours. Then, based on the unsupervised deep learning approach, a deep sparse
autoencoder may be built to extract the feature matrix that has a higher capacity to
describe the network’s features. The low-dimensional feature matrix was clustered in
order to generate the community structure, and the K-means technique was used.

There can be any number of communities in a particular network, and they can
be of various sizes. These qualities make community detection incredibly challeng-
ing. However, in the domain of com-munity detection, numerous distinct strategies
have been proposed. They can differ in two ways: the procedure that leads to com-
munity structure estimation and the estimated communities. This creates a dilemma
about how various algorithms should be compared theoretically and practically. The
rest of this paper is organized as follows. Section 2 gives the overview of various
Metrics used in community detection like Intra and Inter cluster density, Embedded-
ness, Community size etc. Section 3 presents a technical overview of formal concept
analysis for communities. Section 4 overviews the preliminaries and categorization of
existing community detection approaches, Sect. 5 discusses application of community
detection in recommender system and conclude in Sect. 6.

Systems that provide recommendations to users are crucial in providing them with
pertinent information. Social interactions within the community provide a new depth
to suggestions. Utilizing communities discovered by analysis of extensive social net-
works is a difficult procedure that involvesmany processing phases. The tie recognition
step uses this data to formalise the links between individuals and items after gather-
ing enough information to indicate social relationships, interests, preferences, and
actions of the users. This concept examines these relationships to find user groups
with comparable preferences. This approach is conceptually and practically hard since
combining community identificationmethods in the recommendation process requires
many phases. For community-based recommender systems to advance, a number of
pressing situations and research issues must be resolved, such as:
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• It is advantageous for recommender systems to include more data from supple-
mentary sources or even from inside the social network. For instance, if there is
a link between the two domains, an e-commerce firm may use ratings from the
book shop to enhance the accuracy of suggestion in the movie store. By comparing
user behaviours and input from two or more communities, this method of cross-
domain recommendation may be strengthened in order to deduce patterns that are
beneficial for the suggestion [33].

• The accuracy of the recommendations is impacted by potential interest shifts,
changes in peer dynamics, and the cyclical popularity of things that are shared.
For instance, Nepal et al. [34, 35] and Yin et al. [36] weight each contribution in
accordancewith the premise thatmore recent interactions are significant than those
that happened in the distant past. Dynamic community recognition methods [37]
or evolving social graph clustering methods that take into consideration these
temporal aspects have largely gone unnoticed up to this point.

• Due to the dearth of substantial datasets including explicit and implicit social
signals, it is challenging to acquire realistic and accurate lab-based assessments
for evaluating suggestion accuracy. As a result, there is no comparison analysis for
determining the accuracy of various community-based RS using the same input
information.

• Recent developments in deep learning systems provide new methods for assign-
ing concise representation of structured data from complicated graphs (e.g.,
graph2vec [38]). Additionally, session-based recommendations and, more gener-
ally, taking into consideration the temporal elements of user preferences, are now
often achieved using recurrent neural networks [39]. Future community-based rec-
ommender systems should logically make use of these technologies to increase
the accuracy and comprehension of the data gathered.

• Although session-based recommender systems are a developing research area in
the field of recommendations [40], none of the community-based recommender
systems surveyed explicitly mention short-term transactional patterns or sessions,
identifying significant patterns and the user preference shift from one transaction
to the next.

• Users’ aggregate activity is taken advantage of by recommenders to offer sugges-
tions that are very tailored. Statistical biases, such as those caused by the sampling
procedure, validity, completeness, noise, or spam, are not taken into account in
empirical assessments, which often base their conclusions on samples of the whole
population. In certain circumstances, recommenders may magnify these biases,
resulting in the phenomenon known as bias disparity. While there have recently
been a number of attempts to lessen this problem, research on community-based
recommender systems built with societal principles like justice, accountability,
and openness in mind is still lacking.
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2 Ontological characteristics for communities

2.1 Intra-cluster density

Intra-cluster density is defined as the number of points in the clusters’ representation
points’ nearby [28]. For well-separated clusters, the intra-cluster density is much
higher. The intra-cluster density can be defined as follows:

intraden(c) = 1/c
c∑

i=1

ri∑

j=1

densi ty(vi j )where, c > 1 (1)

The term density (vi j ) is defined as
∑ni

l=1 f (xl , vi j )where xi belongs to ith cluster,
and f (xl , vi j ) is defined by

f (xl , vi j ) = 1 i f ||xl − vi j || ≤ stdev else 0 (2)

2.2 Inter-cluster density

The term “inter-cluster density” refers to the thickness in the areas between clusters.
The density in the space between clusters is meant to be extremely low. The following
is a definition:

interden (c) =
c∑

i=1

c∑

j=1

||closer ep (i) − closer ep ( j)||
||stddev (i)|| + ||stddev ( j)|| ∗ densi ty

(
ui j

)
(3)

Where close rep(i) and close rep( j) are the nearest pair of representations of the ith
and jth clusters, ui j is the middle point between the pair points close rep(i) and close
rep( j).

2.3 Embeddedness

The embeddedness metric quantifies how many of a node’s near neighbours are its
community members. It is defined as the ratio of the targeted node’s internal degree
kint to its overall degree k [29, 30]. The following equation defines the embeddedness
metric:

Embeddedness = kint
k

(4)

The highest value of embeddedness is 1 when a node and all of its neighbors are
members of the same community (k = kint ) (the core node), and 0 when all of a node’s
neighbors are members of separate communities (kint = 0).
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2.4 Community size

An essential feature of community structure is the community size distribution. It has
been extensively researched in real-world networks and appears to follow a power
law with an exponent β of between 1 and 2. This results in a diverse distribution
of community sizes, with many small communities and just a few massive ones.
The smallest community size in real-world networks is two, while the maximum
community size varies significantly depending on the class and granularity of the
simulated system [31, 32].

2.5 Fraction of correctly classified nodes (FCC)

It is adequately categorized when at least half of the nodes in a node’s reference com-
munity are also present in the same estimated community, according to this criterion.
Furthermore, if the estimated community is a fusion of multiple reference communi-
ties, all of the affected nodes are deemed to have been misclassified by the algorithm.
The total number of adequately categorized nodes is divided by n to normalize the
measure, resulting in an expected value between 0 and 1.

2.6 Rand index (RI)

The Rand index (RI) measures the percentage of node pairings for which both the esti-
mated and reference community topologies are consistentwith one another.Agreement
exists for a given pair of nodes when both nodes belong to the same community or
belong to separate communities for both community topologies. The result is that
there is a dispute when the nodes belong to the same community in one community
structure but belong to two distinct communities in another. The Rand index ranges
between 0 and 1, indicating whether the algorithm successfully calculates the com-
munity structure. The adjusted Rand index (ARI) is a chance-corrected variant of the
Rand index that ranges from -1 (less than chance agreement) to 1 (perfect Agreement)
(complete Agreement). A pure random consensus is represented by the number zero.

2.7 The normalisedmutual information (NMI)

The Normalised Mutual Information (NMI) was introduced in the context of classical
clustering [41] and is used to compare two independent partitions of a same data set by
calculating how much information they share. It was developed by Danon et al. [42]
for the purpose of evaluating the effectiveness of community identification methods,
and has subsequently been adopted by a number of additional writers [43]. The score
is 1 if the projected communities perfectly match the reference communities, and 0 if
they are fully independent.
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2.8 Internal transitivity

The internal transitivity is computed by averaging the traditional local transitivity
across its nodes. The connectedness of a node’s immediate neighbors dictates its local
transitivity. It is defined as the number of connections between neighbors divided by
the total number of relationships that would exist if all ties were connected. In other
words, it indicates the ratio of existing to potential connections in the neighborhood
of a node. Internal transitivity is officially defined as

T (c) = 1

nc

∑

iεc

2 ∗ l(i)

kint i[kint i − 1] (5)

Here, i denotes a node, nc denotes the number of nodes in community c, l(i) is the
number of connections between node i’s neighbors who are also members of the same
community and denotes the internal degree of a node i (as defined previously for the
embeddedness). Internal transitivity distributions vary significantly with community
size in real-world networks. It grows with the use of the Internet and other commu-
nication networks. It grows until it reaches a maximum value in biological and social
networks, at which point it begins to decrease.

2.9 Scaled density

The density of a community c is defined as the ratio of the number of connections
it has, represented by mC , to the number of links it might have if all its nodes were
linked. In the case of an undirected network, the latter is nc(nc − 1)/2, where nc
is the community’s node count, yielding ρ = 2mc/nc (nc − 1). In comparison to
the network’s general density, the community density provides an assessment of the
community’s cohesion: a community should, by definition, be denser than the network
to which it belongs. Scaled density is a variation produced by multiplying the density
by the size of the community.

ρ̃ (c) = ρ(c)nc = 2m/ (nc − 1) (6)

If the community under consideration is a tree with mc = nC − 1 linkages and
ρ̃ (c) = 2. If it is a clique (a fully linked sub-network), thenmc = nC (nC − 1) /2 and
ρ̃ (c) = nC . As a result of the scaled density, it is possible to describe the community’s
structure. Specific real-world networks, such as the Internet or communication net-
works, contain fundamentally tree-like communities. On the other hand, for different
kinds of networks, such as social and information networks, the scaled density rises
in proportion to the size of the community. Finally, biological networks show a hybrid
behavior, with small communities being tree-like and larger communities being denser
and more like cliques.
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2.10 Average density

Between two nodes, the distance is equal to the length of their shortest path. When
averaged over all node pairings in a community, it enables evaluating the community’s
cohesiveness. Small communities (allegedly small-world in real-world networks)
imply that the average distance between communities should rise logarithmically with
community size. Formore prominent communities, the average length grows gradually
or even stabilizes for some real-world networks, such as communication networks. A
short average distance can be explained by a high density (social), the availability of
hubs (communication, Internet), or a combination of the two (biological, information).

2.11 Hub dominance

In terms of community structure, a hub is a node linked to a large number of other
nodes within the same community. The hub dominance ratio may be used to assess
the existence of a central hub in a community C, which equals:

h (c) = max
c

(kint )/(nc − 1) (7)

The numerator represents the highest internal degree discovered in C, whereas the
denominator represents the highest degree theoretically conceivable given the com-
munity size. When at least one node is linked to all other nodes in the community,
the hub dominance value equals one. It can be zero only if no nodes are connected,
which is improbable in a community. This property’s behavior in real-world networks
is context-dependent. It is nearly the maximum for all community sizes in commu-
nication networks, implying that hubs exist in all communities. Other classes have
fewer hubs in their significant communities, which explains why their hub dominance
usually declines as community size increases [44].

2.12 Edge betweenness centrality (EBC)

When it comes to networks, the edge betweenness centrality (EBC) may be defined
as the number of shortest routes that travel through a particular edge in the network.
Each edge is assigned an EBC score based on the fastest ways of connecting all of
the graph’s nodes. In graphs and networks, the shortest route is the one that covers
the least amount of distance between any two nodes. As an example, consider this
situation to learn how EBC scores are computed. Take a look at the graph below:

We will now attempt to get the EBC scores for all of the edges in this graph. As
this is an iterative process, we have provided an overview of it here: Lists are easy to
create:

• One node at a time, we will display the shortest routes between it and the other
nodes until we cover every node of the graph.

• We will calculate the EBC scores for each edge based on the shortest routes taken
by the edges.
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Fig. 1 Example graph for calculating Edge betweenness

• This procedure must be repeated for every node in the graph. As you can see in
the graph above, there are six nodes in all. As a result, there will be six iterations
of this procedure in all.

• This implies that every edgewill get six points. These scoreswill be tallied together
edge-by-edge.

• At the end of the process, the total score of each edge will be divided by two to
get the EBC score.

3 Formal concept analysis for community detection

Let G = (N,E) be a graph representing a network where N would be a set of nodes and
E is the set of social links between nodes

A clique in an undirected graph G = (V,E) is a subset of the vertex set c V , such
that for every two vertices in c, there exists an edge that connects the two. A maximal
clique (MC) would be an unextendable one including one more adjacent vertex, that
is to say, a clique which does not exist exclusively within the vertex set of a larger
clique.

let F = now (V, C, I), the formal context connecting any actor V who is a member
of the set C of maximum cliques. I is the binary connection that connects V and C. To
locate communities in social networks, formal concept assessment methods are using
the Galois lattice based on the context F = (V, C, I).

To locate communities in social networks, formal concept assessment methods are
using the Galois lattice based on the context F = (V, C, I).

Let’s look at a network with 15 nodes and 32 edges in G(N,E), which produces 4
maximum cliques as an example (a,b,c,d). Calculations based on the formal context
K=(G, M, I), where G is a collection of objects, M is a set of characteristics, and I is
a binary relation between sets G and M, I G M, may be made. Two subsets A M and
B G are defined as sets of qualities shared by the objects in A and B, respectively, for
the two sets A G and B M.
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The derivation is defined as ’ and can can formally calculated as:

A′ := aεM |oIa∀oεA(intension) (8)

B ′ := oεG|oIa∀aεB(extension) (9)

All the subsets of G and all the subsets of M are defined as having a pair of
correspondence (’,’), which is a clique that only meets when they do not overlap, by
Ali et al. [45]. The overlap is transitive, symmetric, and reflexive. Thus, the overlap
represents an equivalence connection. If we concentrate on the diagram, we can see
that two nodes of level k overlap if they cross at level k + 1.

4 Community detection algorithms

4.1 For disjoint communities

Identifying communities is a fundamental need to understand the structure and func-
tionality of a social network. The prevalent method of community discovery is to
divide the network into discrete groups of members who communicate extensively
inside. This is called disjoint community detection, and this method disregards the
notion that a person can belong to more than one group.

4.1.1 Traditional methods

Graph partitioning
The graph partitioning problem involves dividing the vertices into g groups of a specific
size in order to reduce the number of connections between the groups. The cut size
refers to the number of edges that link two clusters. The most well-known method for
this kind of graph partitioning is METIS, and there is a decent Python wrapper for the
optimized C version (which must be built/installed separate-ly). It accepts input in the
formof networkXgraphs or essential adjacency lists.Graph partitioning, finite element
mesh partitioning, and the creation of fill reduction orderings for sparsematrices are all
performed using the serial programmes inMETIS. The multilevel recursive-bisection,
multilevel k-way, and multi-constraint partitioning schemes created in our lab served
as the foundation for the algorithms used in METIS. The three steps of the METIS
multilevel method each have a number of algorithms:

• By creating a series of graphs G0, G1,..., GN, where G0 is the original graph and
Gi has more vertices than Gj for each value of 0 to N, you may coarsen the graph.

• Create a GN division.
• As you refine the partition with regard to each graph, project it back through the
series in the order of GN,..., G0. The refined partition projected onto G0, the last
partition calculated during the third phase, is a partition of the initial graph

METIS agrees with a graph with weighted vertices and edges and produces an array
of partitions up to the specified number while reducing the weight of the edges being
cut. You will still need to decide how many segments to divide your graph. Here in
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Fig. 2 METIS

Fig. 3 Graph partitioning example

this paper, we have taken an example of graph partitioning using METIS which can
be shown in Fig. 2 below:

Hierarchical clustering
In general, no one knows how a graph’s community structure is formed. It is unusual
to find information on the number of clusters into which the network is split and other
information about the vertices’ membership. Clustering techniques, such as graph
partitioning, are ineffective in certain in-stances. To begin, appropriate assumptions
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about the number and size of clusters must be made, often incorrect. On the other
hand, the network may have a hierarchical structure, implying many layers of ver-
tices grouping, with tiny clusters included inside more significant clusters, which are
themselves contained within larger clusters, and so on. For example, social networks
usually show-case hierarchical structures. In such situations, hierarchical clustering
methods [46] may be used, which are clustering approaches that expose the graph’s
multilevel structure. Hierarchical clustering is widely used in various fields, includ-
ing social network research, biology, engineering, and market-ing. The definition of
a similarity measure between vertices is the first step in every hierarchical clustering
method. Following the selection of a measure, the similarity between each pair of
vertices, whether connected or not, is calculated. A new n*n matrix X, the similar-
ity matrix, is produced due to this process. The same can also be applied using link
measures. Specifically, the clustering procedures are ex-plained in the three stages
below:

• Determine the degree of each node in the link network.
• To begin, assign each node to a cluster; then, using the single linkage function,
merge the clusters iteratively according to the degrees of the nodes.

• When all nodes belong to a single cluster, stop merging.

The clustering process is then recorded as a dendrogram, including all the hier-
archical module organ-ization’s information. The similarity value at which the two
clusters merge is referred to as the module’s strength. It is encoded as the height of
the relevant dendrogram branch to offer extra information.

Partitional clustering
Partitional clustering (or partitioning clustering) is a kind of clustering technique that
divides observations within a data set into several groups depending on their similarity.
The algorithms need the analyst to define the desired number of clusters. The following
are some of the most often used partitional clustering algorithms:

• In K-means clustering [27], each cluster is represented by its center or a subset of
its data points. K-means is very sensitive to outliers and abnormal data points.

• Clustering of K-medoids, or PAM (Partitioning Around Medoids, Kaufman et
al. [47, 48]), in which each cluster is represented by one of the cluster’s objects.
When opposed to k-means, PAM is less prone to outliers.

• CLARA (Clustering Big Applications) is an extensive data set adaptation of the
PAM method.

Spectral clustering
Spectral clustering is an exploratory data analysis(EDA) method for partitioning large
multidimensional data sets into clusters of comparable data in lower dimensions. The
overarching goal is to classify all unstructured data pieces into various categories
based on their distinctiveness. “Spectral clustering is a widely used technique for
multivariate statistical analysis.” ’Spectral Clustering employs a connectivity-based
method to clustering,’ which identifies communities of nodes (i.e., data points) that are
linked or directly next to one another in a graph. After that, the nodes are mapped to
a low-dimensional space readily segmented into clusters. Spectral clustering extracts
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Table 1 Comparitive analysis of traditional methods

Algorithm Advantage Disadvantage

Graph partitioning Successful for mesh-based
graphs and excellent control for
communication

More expensive and edge cut model for
communication volume

Hierarchical clustering Easy to implement, good
visualization and no need to
specify clusters in advance

Slower, decision regarding merge and split
points needs to be taken earlier. Also
doesn’t work with noise and outlier

Partitional clustering Simple, scalable and suitable for
clearly defined clusters

Doesn’t perform in high dimensional values
and need to define cluster parameters in
advance

Spectral clustering Good mathematical foundation
and works good in clusters with
relations (similarity)

Cant work with noisy data and expensive for
large datasets

information about the network or data set from specific matrices’ eigenvalues (spec-
trum) (i.e., Affinity Matrix, DegreeMatrix, and LaplacianMatrix). Spectral clustering
techniques are visually appealing, simple to apply, and relatively quick, particularly for
a few thousand rows of sparse data sets. Spectral clustering approaches data clustering
as a graph partitioning issue, making no assumptions about the shape [46].

4.1.2 Modularity based

Extremal optimization
The approach is prompted by recent breakthroughs in our understanding of out-
of-equilibrium occurrences as seen through the lens of self-organized criticality, a
concept designed to account for emergent complexity in physical systems. Extremal
optimization is a strategy that gradually replaces very uncomfortable variables in
an unsatisfactory solution with new, random ones. Due to these dynamics, large,
avalanche-like oscillations in the cost function n self-organize, effectively scaling
barriers and allowing for the investigation of local optima in distant parts of the con-
figuration space without the need for parameter adjustment. Extremal optimization
combines approximation techniques influenced by equilibrium statistical physics, such
as simulated annealing, by usingmodels tomimic the dynamics of granularmedia, evo-
lution, or geology. This is just one instance of systematically bringing new insights into
non-equilibrium processes to complex optimization issues. This technique is broadly
applicable and is comparable with - and even superior to - more sophisticated general-
purpose heuristics on testbeds of restricted optimization problems involving up to 105
variables, including bi-partitioning, coloring, and satisfiability. Analyzing an appro-
priatemodel accurately will only forecast themethod’s only free parameter in linewith
all experimental findings [49–51]. Although extreme optimization is primarily used to
find non-overlapping communities, Jing et al. [52] developed an EO-based technique
for optimizing the modularity function of networks and detecting their overlapping
communities. A modified modularity function is designed to address the issue of res-

123



430 C. Choudhary et al.

olution limits. Secondly, they defined the local fitness functions of nodes, which can
be linearly concatenated to produce the modularity function. Thirdly, a new mutation
operator is developed to efficiently and effectively explore the solution space.

Spectral optimization
Examining the eigenvalues and eigenvectors of a specific matrix may help enhance
Modularity which can be calculated by the formula below:

Bi j = Ai j − ki k j
2m

(10)

Where A is the adjacency matrix, m is the total number of edges in the graph, and
ki , k j represents the degree of vertices. Consider the vector s, which represents any
partitions of the graph that fall into two clustersA and B : si = +1 if vertex i falls in
cluster A , si = −1 if vertex i fall in cluster B. Modularity can be evaluated as:

Q = 1

2m

∑

i j

(
Ai j − ki k j

2m

)
δ
(
ci c j

) = 1

4m

∑

i j

(A

i j

− ki k j
2m

)(si s j + 1) (11)

= 1

4m

∑

i j

Bi j Si S j = 1

4m
sT Bs (12)

Standard matrix products were specified by the final expression. The eigenvectors
of the modularity matrix B may be used to decompose the vector S. So, the final
equation derived is as follows:

Q = 1

4m

∑

i

ai u
T
i B

∑

j

a j u j = 1

4m

n∑

i=1

(uTi . s)
2
βi (13)

Where βi is an eigenvalue of B corresponding to eigenvector ui . This implies that by
substituting the modularity matrix for the Laplacian matrix on bipartitions, one may
maximize modularity [72].

Greedy techniques
Newman’s greedy approach was the first to optimize Modularity [73]. It is a hierarchi-
cal agglomerative clustering technique in which groups of vertices are progressively
merged to create bigger communities, resulting in enhanced modularity. The proce-
dure begins with n clusters, each consisting of a single vertex. The process does not
begin with any edges; they are added one by one as the method proceeds. However,
sincewe are looking for themaximumModularity on the space of the complete graph’s
partitions, the Modularity of the partitions investigated throughout the procedure is
always computed using the graph’s entire topology. The number of groups in the graph
is decreased from n to n−1 by adding the first edge to the collection of disconnected
vertices, resulting in a new network partition. Compared to the previous arrangement,
the edge is chosen such that this partition maximizes (or reduces) Modularity. In the
sameway, the additional edges are added. If the addition of an edge has no effect on the
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partition, and the edge is located inside one of the previously defined clusters, Modu-
larity is unaffected. The technique identifies n divisions, each with a unique number of
clusters ranging from n to 1. In this subgroup of partitions, the most outstanding value
of Modularity comes close to the algorithm’s modularity maximum. The variation
Q of Modularity indicated by merging any two communities in the running partition
must be calculated at each iteration step to choose the best merger. Since merging
communities with no edges can never raise Q, only pairs of communities connected
by edges must be considered, which cannot exceed m. This part of the calculation
requires a time O(m) since each Q may be computed in constant time. After deciding
which communities to merge, the running partition’s matrix ei j , which represents the
percentage of edges between clusters I and j, must be up-dated (required to compute
Q), which may be done in the worst-case time O(n). Because the method takes n-1
rounds (community mergers) to complete, its complexity is O((m + n)*n), or O(n2) on
a sparse graph, allowing for clustering analysis on considerably bigger networks than
the Girvan and Newman algorithm (up to an order of 100000 vertices with current
computers). Clauset et al. pointed out in a subsequent article [74] that Newman’s algo-
rithm’s updating of the matrix ei j includes a significant number of pointless operations
due to the adjacency matrix’s sparsity. This process may be done more efficiently by
using sparse matrix data structures such as max-heaps, which reorganize the data into
binary trees. The sparse matrix of modularity variations Qi j , a max-heap containing
the most significant components in each row of the matrix Qi j , as well as the labels of
the associated communities, and a simple arraywhose elements are the sums of the ele-
ments in each row of the old matrix ei j were all preserved by Clauset et al. These three
data structures, which update considerably quicker than Newman’s approach, may be
used to achievemodularity optimization. The approach has anO(m*log n) complexity,
where d is the depth of the dendrogram reflecting the successive divisions found during
the algorithm’s execution, which grows exponentially with log n for networks with
a strong hierarchical structure. The technique then runs in O(n*log n) time for such
networks, allowing for analyzing the community structure of extensive graphs with
up to 106 vertices. Their greedy’s optimization is presently one of the few methods to
estimate maximum modularity on such huge networks. This greedy optimization of
modularity results in the rapid formation of big communities at the cost of tiny ones,
often resulting in low modularity maximum values. Danon et al. [42] proposed that
the modularity variation Q caused by the merging of two communities be normalized
by the percentage of edges incident on one of the two communities to favour tiny
clusters. This technique produces greater modularity optima than Newman’s original
formula, mainly when communities are highly dissimilar in size. Wakita and Tsu-
rumi [75] observed that, as a result of the bias toward large communities, Clauset
et al. quick technique is inefficient since it results in severely imbalanced dendro-
grams for which the relation d log n does not hold. As a consequence, the technique
often executes in its most complicated state. To address this problem, they proposed
a modification in which the community merger that results in the highest value of the
product of the modularity variation Q times a factor (consolidation ratio), which peaks
for communities of comparable size, is sought at each step. Thus, a trade-off exists
between increased modularity and community balance, in return for a large speed
advantage that enables the analysis of systems with up to 107 vertices. Interestingly,
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this adjustment often leads in greater mode maxima than those seen with the Clauset
et al. versions on large social networks. Girvan and Newman [72, 73, 76] offer one of
the first methods for small network community discovery. It is a divisive (or top-down)
technique for identifying and gradually removing edges from a network through the
edge betweenness score. It is equal to the shortest routes between vertex pairs that go
along the edge in question. Following a greedy paradigm, the algorithm repeatedly
evaluates the betweenness of all edges in the network and deletes the one with themost
significant score. Its fundamental concept advocates for the elimination of boundaries
between communities.

Genetic algorithms
Genetic algorithms were utilized to improve modularity. A conventional genetic
algorithm generates a collection of alternative solutions to a problem, numerically
represented as chromosomes, and an objective function for optimizing the space of
possible solutions. The objective function determines the chromosomes’ biological
fitness. Typically, one begins with a randomly generated collection of candidate solu-
tions and gradually adjusts them using approaches inspired by natural chromosomal
processes, such as point mutations (unexpected changes in specific regions of the chro-
mosome) and crossing over (generating new chromosomes by merging parts existing
chromosomes). The fitness of the most recent pool of candidates is then determined,
with the most fit chromosomes having the highest chance of survival in the following
generation. After several iterations, only solutions with a high fitness score survive.
Tasgin et al. [77] use partitions to represent chromosomes and Modularity to repre-
sent the fitness function. Tasgin et al. obtained findings of comparable quality using
a greedy modularity optimization on Zachary’s karate club [78], the college football
network [79], and the Girvan andNewman benchmark. Liu et al. [80] also used genetic
algorithms. In this example, the most remarkable modularity partition is produced by
executing sequential bipartitions of the graph, with each bipartition selected using a
genetic algorithm on each subgraph (starting with the original graph itself) that is
considered isolated from the rest of the graph. A bipartition is acceptable only if it
increases the overall modularity of the graph.

Simulated annealing
Simulated annealing is a stochastic method for locating ’low-cost’ configurations
without being stuck in ’high-cost’ local minima. This is accomplished via computed
temperature T.When T is large, the systemmay explore arrangements with a high cost,
while when T is small, the procedure only explores areas with a low price. The system
steadily falls into deepminima by beginning with a large T and progressively lowering
it, ultimately overcomingminor cost barriers. The goal of finding communities inside a
network is to maximize the Q, where Q is Modularity which is defined as a scale value
between −1 and 1 that measures the density of edges inside communities to edges
outside communities. Larger values of Q indicating stronger community structure.
The traditional simulated annealing technique (SA) [81] randomly selects a node
and moves it to a chosen community at each stage. The community may be any
of the existing communities, including the one in which the node currently resides
or a brand-new community with no nodes.Numerous approaches based on SA for
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Table 3 Comparitive analysis of Modularity based algorithms

Algorithm Advantage Disadvantage

Extremal optimization Less memory usage with usage of nature
inspired optimization techniques. Parallel
speedup, High load balancing, less execution
time with a smaller number of migrations.

Low scalability with high
response time

Greedy techniques Easier to implement and require less
computation

Don’t reach global optimization
level

Genetic algorithms Easy to write, understand and implement and
easy identification of errors

Time consuming, and difficult to
put in algorithm

Simulated annealing Cant find exact optimal solution and escapes
local maxima

Very sensitive to input parameters

detecting communities have been proposed in recent years [82, 83]. However, the
SA approach suffers from three drawbacks that contribute to its lengthy run time.
To begin, it completely optimizes Q. Second, it begins at a rapid rate. Third, only
one node is moved at a time. On this basis, Hu et al. proposes a fast simulated
annealing (FSA) approach for detecting communities. He et al. [84] first partitioned
the community according to a similarity measure and then began optimizing the Q at
a low temperature. Each step involves the transfer of a component which contains set
of links and nodes, not simply a single node.

4.1.3 Dynamic algorithms

Random walk
A random walk is a technique that may be used to discover communities inside a
network; in other words, when a random walk is employed, it scans the nodes in a
series of steps; it starts with the initial node and proceeds to surrounding nodes using a
random procedure. A random walk is a technique for discovering communities inside
a network; in other words, it scans the nodes in phases; it begins with the starting node
and goes to nearby nodes using a random process. The fundamental concept of [85]
is to conduct brief random walks, assuming that the nodes visited during the same
walk belong to the same community. During a walk, the next node to visit is one of the
visited node’s neighbors, which is selected at random. To begin, a similaritymatrix S is
constructed to aggregate the walks; each item S[i][j] represents the degree of similarity
between nodes I and j, with all entries set to zero. Each node in the network is used as a
starting point for a randomwalk once. A user-specified number of steps are taken from
that node throughout the network. The next node is selected probabilistically from all
neighbors (a node may be visited any number of times during a walk). As evidence of
community membership, the nodes visited during the journey are recorded in set C.
The entries in S are increased after each walk to match the nodes in C. The number of
stepsmay be determined by a graph-theoretic feature (for example, diameter or number
of nodes) or by the user. When all the walks have been completed, each item in the
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matrix represents the frequency with which two nodes appeared on the same route. A
higher number indicates a greater likelihood of belonging to the same community.

Algorithm 1 Random Walk Algorithm [87]
Require: Length of random walks
Ensure: Community graph
1: for i = 1....n and j = 1....n do
2: S[i][j]=0
3: end for
4: for each node startnode=1........n do
5: i=startnode
6: C=startnode
7: for number of steps h=1,.......num-steps do
8: Randomly select nextnode from neighbors(i)
9: C=C U nextnode
10: i = nextnode
11: end for
12: for each node i ∈ C and each node j ∈ C, i �= j do
13: S[i][j] +=1
14: end for
15: end for

Narges et al. [87] proposed an algorithm that aims to find communities so that
modularity factor increases; for this goal, random walks with random local search
agents are combined.

Instant optimal
In this method, the communities identified at time t must be the most relevant com-
munities in light of the network’s condition at that moment. The two-stage technique
is the most often used way for resolving this issue: Lists are easy to create:

• Detect static communities on a snapshot-by-snapshot basis.
• For each snapshot, compare the identified communities to the communities dis-
covered in the preceding one.

The earliest methods proposedwere using this approach. However, it is losing popular-
ity due to in-stability problems. This approach is notably used by Hopcroft et al. [88],
Palla et al. [89], Wang et al. [90], Rosvall and Bergstrom [91], Chen et al. [92], Greene
et al. [93], Dhouioui and Akaichi [94]

Temporal trade-off
Communities identified at time t represent a trade-off between the best communities
associated with the network at that moment and the history of communities discovered
by this approach. There are two types of such algorithms: those that update the com-
munities existing at t-1 in response to net-work changes between t and t-1 (implicit
trade-off), and those that define a quality function explicitly as a trade-off between
a quality function for communities at t (e.g., Modularity) and similarity be-tween
partitions at t and t-1 (e.g. Normalized Mutual Information NMI). The technique is
typically comprised of three steps: Numbered (ordered) lists are easy to create:
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Fig. 4 Random Walk algorithm, using a simple graph [86]

1. On the first snapshot, detect static communities.
2. The network at t + 1 and the communities at t, detect communities on snapshot t +

1.
3. Return to step 2 if not all snapshots have been processed.

Cross-time communities
Thismethod examines all stages of evolution simultaneously. Single community detec-
tion is performed, taking into account all of the network’s periods in a single pass and
giving a single decomposition. For the snapshot example, this procedure is shown in
Fig. 4.

Girvan Newman
This algorithm is mainly concerned with divisive techniques. These techniques have
received little attention in the prior literature, whether in social network theory or
elsewhere, but they seem to have many potentials. This technique starts with the
network of interest, identifies the least identical linked pairs of vertices, and then delete
the edges divisively. Then splits the network into smaller and smaller components
frequently, and may halt the process at any point and consider the features to be the
network communities. The process may be seen as a dendrogram, which depicts the
network’s progressive splits into smaller and smaller clusters. Thismethod is similar to
the cross-time communities approach, but it takes a different philosophical perspective.
Rather than searching for themostweakly linked vertex pairs and seeks for the network
edges that are most “between” other vertices, implying that the edge is responsible for
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connecting many pairs of others in some way. In terms of similarity, such edges do
not have to be weak.

4.1.4 For overlapping community detection

Clique percolation method
The most well-known method for identifying overlapping communities in networks is
clique percolation. The communities are constructed using k-cliques, complete sub-
graphs with k vertices. It is based on the notion that cliques are more likely to develop
from densely linked interior edges than sparsely connected exterior edges. It is based
on the idea that cliques are more prone to develop because of the high density of
people on the internal borders of society. On the other side, it is improbable that inter-
community edges form cliques: this notion was previously included in Radicchi et
al. [95] divisive’s approach. Palla et al. [31]defined a complete network with k vertices
as a k-clique. Take note that a k-clique is distinct from the n-clique often employed
in social research. If a clique could travel through a graph in any manner, it would
very certainly get stuck inside its initial community since it would be unable to pass
through the bottleneck created by the intercommunity edges. Palla et al. developed
a variety of ideas to carry out this notion. If two cliques share k 1 nodes, they are
neighboring. A k-clique chain is formed by joining neighboring k-cliques. If two k-
cliques are part of a k-clique chain, they are linked. Finally, a k-clique community is
the biggest connected subgraph produced by joining a k-cliquewith all other k-cliques.
The k-clique community is a massive component of all neighboring k-cliques linked
by a k-clique series. Additionally, top graph clusters (Macropol et al. [96]), SVINET
(Gopalan et al. [97]), and label propagation algorithms fallwithin this group (Raghavan
et al. [98]). This method suffers from the same flaw as Radicchi et al. [43], in that it
expects a high number of cliques in the graph. Consequently, it may fail to produce
meaningful covers for graphs with just a few cliques, such as technical networks and
specialized social networks. However, if many cliques are present, the technique may
create a trivial community structure, such as a cover consisting of the whole graph as
a single cluster in this instance. A more fundamental issue is that the approach looks
for subgraphs that “contain” numerous cliques, which may be very different objects
than communities, rather than natural communities, which would be compatible with
the widely accepted concept of dense subgraphs (for example, they could be “chains”
of cliques with low internal edge density, as opposed to communities). Another major
problem is that, similar to leaves on trees, many vertices in current networks are
excluded from communities. It’s conceivable to envision some kind of post-processing
method that would enable them to be included in communities, but this would need
additional criteria outside of the framework that inspired the approach. Furthermore,
it is not immediately clear which value of k should be utilized to identify critical
structural relationships. Finally, the parameters for determining the weighted graph
threshold and the definition of directed k-cliqueswere selected somewhat haphazardly.
Link graph and Link partitioning
By dividing a network’s connections into communities, one may discover overlapping
communities for the nodes by noting that a node belongs to the communities of the
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Fig. 5 Cross-time dynamic community detection method [30]

Table 4 Comparative analysis of dynamic algorithms

Algorithm Advantage Disadvantage

Random walk Small load balancing and attains local load
balancing

Variable performance

Instant optimal Simple and easy to modify Sensitive to outliers

Temporal tradeoff allow to cope with the instability problem that
affects Instant-optimal ones

Not easily parallelizable
for the community
detection

Cross time communities This class of algorithms does not suffer from
problems of instability and community drift that
affect previous ones

not able to handle
on-the-fly/real-time
community detection

Girvan Newman Appropriate speed and the ability to solve problems
with high dimensions

Can only give hierarchical
decomposition

links it is connected. Using this toy example in Fig. 6, a meaningful partition is defined
as dividing the connections into two groups of equal importance (straight blue lines and
the dashed red lines). Since it is located at the interface between both link communities,
the central node is considered to be a member of both communities in this scenario.

Few other methods have been suggested to identify overlapping communities of
nodes, such as [31, 43, 100], which are described below. In other words, communities
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are defined as a division of the connections rather than as a partition of the nodes [99,
101]. Therefore, a node may have links to multiple communities and, as a result, it
may be considered a member of several communities. The center node is a straight-
forward example in a Bow Tie network, as seen in Fig. 5. Suppose various kinds
of connections link the nodes of a network. In that case, this link partition method
should be particularly effective when the nodes are heterogeneous, and the links are
highly homogeneous, as is the point in this study. In the instance of the social network
described above, this would occur when an individual’s friendship network and work
network only had a very tiny amount of overlap.

Fuzzy detection
Luo et al. [102] analyzed The network structure from the composition of fuzzy
relations. A new method based on fuzzy relations is presented for non-overlapping
community identification, dubbed CDFR (Community Detection by Fuzzy Relations).
The basic concept of CDFR is to identify the NGC node (Nearest node with Greater
Centrality) for each node and then calculate the fuzzy connection between them using
this information. The community to which a node belongs is therefore dependent on
the NGC node that it is connected to. In addition, a decision graph will be created
to assist the identification of communities of interest. Experiments on artificial and
real-world networks confirmed the efficiency and superiority of the CDFR algorithm
developed by the researchers. Sun et al. [103] used fuzzy transitive rules to reveal
community structure in complex networks. By varying the criteria, their approach can
ultimately partition the network into several communities with varying resolutions.
The findings indicated that their system based on Rule I performs better when the
similarity between nodes belonging to the same group is higher than the similarity
between nodes belonging to different groups, which is precisely the reverse of Rule II.
When mu is near 0.8, our approach outperforms specific state-of-the-art algorithms.
This technique shed fresh light on network partitioning and community discovery.
A popular method for community identification in Social Network Analysis (SNA)
repeatedly employs three phases: spectral mapping, clustering (using either the Fuzzy
C-Means or the K-Means algorithms), and modularity calculation. Regardless of its
efficacy, this technique is inefficient. Utilizing Graphics Processing Units is a viable
solution to this issue. Additionally, since this algorithm is iterative, the new dynamic
parallelism technology lends itself to a beautiful solution. Al-Ayyoub et al. [43] pre-
sented different novel GPU implementations of both versions of the algorithm: Hybrid
CPU-GPU,DynamicParallel, andHybridNestedParallel. These new implementations
vary in their reliance on the CPU and their use of dynamic parallelism. We conduct
a comprehensive series of experiments to compare these implementations in various
con-texts. The findings indicate that theHybridNested Parallel implementation speeds
up about two or-ders of magnitude.

Statistical inference-based methods
Dao proposed a stochastic block model (SBM), a math-ematical model composed of
random blocks Riolo et al. [104]. Holland et al. [105] first described the SBM (1983).
They used Riolo et al. implementation, employing a Monte Carlo sampling method to
optimize a Bayesian posterior probability distribution across potential network com-
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Fig. 6 Clique perlocation method for community detection [32]

Fig. 7 Example of link graph and link partitioning [99]

munity splits. This probability denotes the likelihood of fitting an anticipated network
model to the observed net-work data. The authors compute posterior probability in this
block model variation using a novel prior on the number of communities based on a
queueing-type process. In the following sections, we examine both conventional SBM
and its degree-corrected variant DCSBM, which has been shown to perform better
in practice. Local optimization of ordering statistics Lancichinetti et al. [32] estimate
a community’s statistical significance by calculating the likelihood of discovering a
comparable one in a null scenario. Nodes are progressively aggregated into communi-
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Fig. 8 Dictionary-based community forming using NMF [106]

ties to identify essential communities using this approach. Then, nodes are exchanged
across communities to enhance the degree of importance.

NMF based methods
Non-Negative Matrix Factorization Methodologies (NMF) Many algorithms, espe-
cially those based on spectrum methods, identify communities based on eigenvalues,
which have a physical meaning that is difficult to explain in terms of real-world appli-
cations. NMF has shown to be a valuable technique for data analysis that improves
interpret-ability. This is a brand-new technique for assessing a dynamic network’s
structural and functional properties made up of overlapping communities.

It is a machine learningmethod that decomposes a given feature matrix to reveal the
characteristics of a particular structure [2, 107, 108]. This approach has the advantage
of eliminating negative feature vector components. According to the conventional
decomposition, X =W U, as shown in Fig. 7. Where X is the input data matrix of size
M*N and W, U denote the estimated factors of the input data matrix of dimensions
M*m and m*N, respectively, with m denoting the factorization rank. It is selected so
that (M + N) m < MN. The objective is to reduce:

f (W ,U ) = ||X − WU ||2F (14)

Principal component based analysis (PCA) methods
Newman et al. [72] developed a Principal Component Based Analysis(PCA) approach
for detecting overlap-ping communities in 2014. This method used PCA to determine
the optimal number of eigenvectors and then mapped the nodes to a low-dimensional
subspace using a Laplacian matrix. It uses fuzzy C-means (FCM) to uncover over-
lapping structures inside a network. Each vertex in FCM has a sealed membership
degree indicating its participation in various clusters. PCA is used to extract principal
components from provided nodes by examining the dispersion of adjacent eigen-
values to determine the optimum number of eigenvectors, which is critical for the
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efficiency of spectral clustering meth-ods. When PCA is complete, spectral analysis
reveals the overlapping community structure. In 2016, Li et al. used a PCA method
to enhance a traditional community identification algorithm based on k-means. Three
steps comprise the algorithm. To begin, it determines the distance between the net-
work’s nodes. The distance between nodes belonging to the same community is much
less than be-tween nodes belonging to different communities. The nodes are then
transferred to p-dimensional space. Finally, the k-means method determines the K
number of communities included inside a net-work. Tao et al. [109] presented another
method for detecting overlapping communities based on PCA and membership index
(MI), dubbed PCA-MI. PCA extracts relevant characteristics from the complicated
network, and then MI is used to categorize nodes into distinct communities.

5 Conclusion

This study aimed to identify and analyze various community detection techniques and
their evaluationmetrics. Theywere employed in fraud detection research disseminated
in data mining, and this study makes significant contributions in theory and practice.
The findings of this study indicate that community identification techniques have been
around for a long time and have applications in various areas such as physics, biology,
and graph networks. Every area has its own set of requirements, and we must select
algorithms carefully to meet those requirements. The identified gaps are needed for
new empirical study by researchers working on this topic. Additionally, this article
provides practitioners with a road map for appreciating the relationship between the
nature of their community, various sorts of difficulties, and the right graph-based solu-
tions for their requirements and application areas. This assessment highlights four
broad categories into which community identification approaches may be classified:
traditional methods, modularity-based techniques, dynamic techniques, and overlap-
ping community-based strategies. Current events have a strong resemblance to groups
that overlap, and researchers may use this categorization to pick from various metrics
that are suitable to their topic. Although comprehensive, this systematic review may
have missed some pertinent research due to the limits of the particular domains, psy-
chological effects used in community detection, and time-scale used for this study.
Thus, future work may include applying these strategies to a single domain and eval-
uating their performance over various parameters. Because this survey covers a wide
variety of domains, it may be limited down according to the domains to which it
applies.
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